Periodic solutions of a nonlinear n-th order vector
differential equation.

RorLr REeissig (Saarbriicken) (*)

Summary. ~ We investigate a non-autonomous n-th order differential equation for a function
x(t) € B» supposing that the equation contains one nonlinear term only depending on .
Our aim is to prove the existence of at least one periodic solution (with the same period
as the external forcing). The conditions developed for the nonlinear ferm are rather
general and do not imply the global boundedness of the solutions.

1. Intreduction

Let us consider the n-th order differential equation (n=2)
(1) x4 At 4 L4 Aaix’ 4 Fla) = pli)

where x € B~ (B" denotes the m-dimensional Euclidean space with norm |x|),
the m,m-matrices A; are constant and the functions f{x), p(f) are continuous
for all xe RB™ respectively te R. Sedziwy [D] proves the following theorem
concerning with the asymptotic behavior of solutions of equation (1):

These solutions are globally bounded if

a) the polynomial
p(A) = Det A E,+ 22 A+ ... + A,)
(E. — m, m~unit matric)

has only roots with negative real paris;

b) A._: is o symmelric and posilive-definile matriz;

¢) |pl(t)

< M., [P =] [1p(dz|= M, for 2 0;
d) | flx)| = F for all x;
e) lim (f(x). x)= -+ oo.

|X]>00

(*) Entrata in Redazione il 21 luglio 1970.
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Applying the Brouwer Fixed Point Theorem in the special case
(2) ple+ o) =plY)

Sedziwy still establishes the existence of at least one w-periodic solution.
But for this an additional assumption is peeded: uniqueness of the solution
of the initial value problem and continuous dependence of the solutions on
the iunitial conditions,

Omitting the latter restrictions and replacing conditions d), e} by weaker
ones we prove an existence theorem for periodic solutions with the aid of
the Leray-Schauder fixed point technique (see [2], [3]).

THEOREM 1. - Equation (1) with a w-periodic forcing ferm admits at least
one w-periodic solution if apart from a)-c) the following conditions are ful-
filled:

d) lim F0)] =0

[xf-sc0 le -

e) either fix)a; =0 for |l zh (1 =i=m)

or  fix)a; =0 for ;| =h (1 i =m).
REMARK - Defining
{3) Max |Ax)| = F{R) {(monotonely increasing)

X|=R

we can easily show:

. N R) .
@ lim =57 =0.

Equation (4) is evident if |f{x) is bounded.

|
Now let |£(x}| be unbounded; hence we have

lim F(R)=oo.
Ry

Supposing that equation (4) is not true we choose a divergent set |{I,]
with the properties

F(E,)

b =1 (for a certain positive value v), F(R...)> F(R,).

F(Iﬁn_f.l} = f f{xn+l} $
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for a vector X, y(R, < |xu41| = R.y1) we conclude

F(Bop) _ | Fa)| [ %ot
R,y [*ap1]  Bapr

% f{xn—}—l) ;
!xn-l—l 1

A

-0 (n—>c0),
on the contrary to (4).

2. - Equivalent system of first order, characteristic equation
Denoting
X =y, y/ =¥2, ey Yom2 = Yo
we obtain according to (1) the n-th differential equation
Yoi = — Ay — .. — A1 yo1—[F(x) — plt)].

Introducing the m{n — 1), m(n — 1)-matrix

(0 , E., 0 ,., 0 )
0 , 0 , En,., O
A= ,
0 , 0 , 0 ,., En.
| — A, —Aus, —Aus, ., — A

e

the m{rn —1), m-matrices

0 E.
: 0
B: y C:
0 :
— E. 0

and the m(n— 1)-vector of derivatives

»:

y= :
[ Y1

we deduce the differential system (see [B])

(5) ¥ = Ay + Blflx)—p(t)], ¥ =C'y.
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Regarding x = x({) as a known continuous function of ¢/ and the differen-
tial equation for y as a non-homogeneous linear one we determine the cor-
responding characteristic equation (of degree m{n — 1))

REm,7 _Em,’ 0 g reey O

0, AE., —E,, ..,
p(})= Det (AE,—y— A) =

An——l; IL"n——Z, An—Sy seey l‘E'm,_'}"JAI

= Det (ln—l Em + ln—z Al + o + l14n—2 + An—l) = 0 .

The real parts of the roots A=1%;, 1 =i=m(n—1) are assumed to be
negative; consequently

(6) Redi< —o<0 for 1 =¢=mn—1).
Furthermore we study the homogeneous linear system

() ¥=Cy y=Ay+hBx

(h an adequate real constant)

or

| —hEn )

a nm,nm-matrix.
The corresponding characteristic polynomial (of degree nm) is

gi{A) =Det AE,, — D) = Det(\E,, +- A" Ay -+ ... + A A1+ R EL),
where

go(l) = )\”'p()\) =0
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possesses m roots A =0 and the above-mentioned m{n —1) roots A =2; with
negative real parts.
Choosing 40 we find

g0}y =h+0,

all roots of ¢u(») =0 are different from zero.
In order to investigate these roots for a positive but sufficiently small
|h| we consider the matrix

®) (EEnd Ans)) +IR+18),

E=a-if a complex constant, R and S real m,m-matrices. We look for
conditions on which the determinant of this matrix is unequal zero. Hence
we establish the equation (z = u -+ év being a complex m-vector)

G/ EE.+Ar+R+i8)z=0,
that is

‘ au—fv+ Aryu+ Ru— Sv=0

)
l Bu+ov+ Aw-1v+ Su+ Rv=0.

Forming the inner product with u respectively v and summing up we
obtain

O(u, v) =a(|ul® + |v ) + (A1 u+ v'A, 1 0)
+ (#' Ru+ v' Rv) + (v' Su — u' Sv) = 0.
Because A, is a symmetric positive-definite matrix we can estimate
uA.sutvAavZp(lalt4 v

(e >0 being the smallest eigenvalue of A,_,).
Provided that

P P e
(10) «z—3, |IRIZS 3, [S[=5
the following inequalities are valid:

O, v) Z (o + )|z —F|2F — glul|v]
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2(§+a) =p

2%1zp>0 (it z==0).

.

For this reason equation (9) does not admit a non-zero solution, matrix

(11) (EEn+ Aw)+(R+i8); Rebz —5, [R|< F, (S|4

is non-singular.
Let A be a complex number and

R4LiS="E,+ 3 2A + ..+ 24,33
the resirictions contained in {11) are realised if

(12) NE=

N 4
e FAEF AT+ T 1A=

The algebraic equation ¢uA) =0 (h==0) being satisfied by a value A
A|=1, can be rewritten as

Det (£ En+ Ans [ Ep .4 A Aus]) =0, E= ’%

¥

an immediate consequence of the above statement [see (11)] is

__hRe e
Re E—- I)\Iz <_g;
that is
(13) Re X <O for >0, Re )’ >0 for h<O0.

The roots of equation ¢4A) =0 are continuously depending on the para-
meter k. Let e>0 be a prescribed number; then there exists a number 3{e)>0
such that |k|= 3(e) implies

[N —X| = e for m(n —1) roots A/,

A7 =e for m roots 1.



R. RE1ssi16: Periodic solutions of a nonlinear n-th order vector, etc. 117

Choosing
¢e=< ¢*=Min <l, g), 0<|h| =3% = 3(z*)
we obtain
g :
Re)/= — 5 | A" 1=1
and by virtue of (13)
Re (h}/") < 0.

Therefore system (7) admits no w-periodic solution apart from the trivial one.

ReMark - Condition b) can be replaced by the weaker one
t') A.—1 has no purely imaginary eigenvalue.

Denoting the eigenvalues of A,_; by g1, .., pn and the eigenvalues of
the «perturbed» matrix A, (R-%S) by o1, ..., 0. we conclude from

|Reg;|Zp>0 (1=j=m)

by virtue of continuity:
|Re | =2 it [R+4S|= 7 (small enough).
Identifying (like above)

. h
R4+iS=""E.4 ..+ rAw2, ;=— G
i
we satisfy the restriction for the «perturbation matrix» by the choice |A|=l.

Then we obtain

Hence the linear system (7) does not permit any free oscillation.

3. - Boundedness of derivatives

Let (x(t),y(!)) be a solution of system (5) the x-component of which is
bounded for {=0. We determine

F=sup | f(x(t)|.

120
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The differential equation for the y-component

(14) ¥y = Ay + B{f (x(t) —p(?)]

may be considered as a nonhomogeneous linear system the general solution
of which is

yity=eyo+ f e¢=4 BlF(x(t) —p(x) ] dr, £Z0.

Matrix A being stable the following estimafion is possible:
letd | < we—o (6> 0).

With regard to this we obtain
(15) Y| Z#yo e + | B|(F+ M)
<k(F 4 M) for t Zt,

A
(k> E(BH

4, - Uniform boundedness of periodie solutions

Following to the Lieray-Schauder procedure we replace system () by a
more general system depending on a paramefer p:

(16) x'=C'y, ¥ = h Bx + Ay + pBIf(x) —hx —plf)]
O=ps1, 0<ih|S 2.

For p=1 systems (5) and (16) are identical, for p =0 systems (7) and
(16) are identical; in the latter case the zero solution is the only w-periodic
one.

If the possible ®-periodic solutions of system (16) are a priori bounded
for 0 < p <1 then the existence of at least one w-periodic solution for p=1
is ensured (see [4]).

Let (x(#), ¥(f)) be such a w-periodic solution of (16), 0 <p <1, and let be

R = Max | x(t)|> 0.

[0, w]
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Equations (16) are equivaleunt to the n-th order equation

(17) & 00(0) 4+ Axl) .+ Awaxll) — uP()

Liet us suppose

h>0 if fix)e:= 0 (|| =h)
and

<O if fipx)a =0 (o] = b))
Then it results for O<p <1, 1=i=m, |w:|=h
(18) pi{x); > 0 [respectively o¢;(x)x; < 0].
Apparently we have for all ¢
| 9lee(t) | < Fo= F(B) + 1| R [see (3)];
hence the vector y(f) of derivatives can be estimated like in section 3.,
(19) |y(t)| =k (Fo + M) for sufficiently large values ¢

{that is for all { because of periodieity).
Let be x;{f) > h: on an interval (, ¢"); then we conclude from (17):

i

= —fcp,-(x(t)) dt

PG

+

() 4 .+ A () — 1P

< 0 (respectively > 0.

The left hand member vanishes for " —?¢ = ©»; consequently the length
of the considered interval is smaller then w. There must exist a value =t
such that

ﬁ‘}i{’i) = hi.
Applying (19) we obtain on the interval 1 =¢=1+ o

xt) = t) + (£ —<) (m(E):,
ﬁ?;{ﬂ _ﬁ__ hz,; + &)k(Fg + ,BIO) .
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The component x{f) being w-periodic the derived estimation is true for

all ¢.
An analogous result can be deduced for — x;(f}. From

|(t)| = hi+ ok(Fo+ Mo), 1=ism
we conclude that
|x(8) | = H+ m ok Fy
= H+ mwk(F(R)+ |h|R)
(H=Tn+ ... + hu+ mokM);

particularly the amplitude B can be bounded by the last quantity. Choosing
the amount of parameter i sufficiently small,

1
2muwk’

IA

(k]

we can solve the inequality

R= H-+mok (F(B)+ |h|R):

% B={l—muwk |h|)E= H+ mok F(R),
2H F(B)
< 22 b
1= B + 2mok R
and hence
(20) R=4H-+ R,
when
F(R) 1
T < Tk for B> R, [compare (4)].

From (20) we see that the w-periodic solutions of the system (16}, 0<
p <1, are uniformly bounded. This completes our proof.

5. - Special case n=1

At last we turn to the simple equation

(21) x'+ fix) = p(t), plt +0v)=pll),
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x a m~vector, fix) and p(f} continuous for all x € B~ respectively te R.

THEOREM 2. - The condilions

(O]

a) fp(t)dt =0;

0

b) for each index i(1=1¢=1m)
either f{x)x: =0 or fix)x: =0 (| =hi)

ensure the exislence of at least one w-periodic solution.

This solution can be established by the Leray-Schauder technique like
above.

Let L be a nonsingular real m,m-matrix of diagonal form,

e
\ O AJ

then we introduce the aunxiliary system

(22) x' o Lx = p[— f(x) + Lx + p(t)]

containing the original system (21) for p=1.
The characteristic equation corresponding to the homogeneous linear
system (p =0) is

Det (AEn 4 L) = (A 4 a)s evv o(h = 1) = 0;

the roots are

A==l =i =m).
Let us choose
(28) 2> 0 if fix)e; =0 (|| = hi)
and
(23") L <0 if fifxjoe, = 0 (|x:! Z2hi).

Annali di Matematica 16
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In order to prove the a priori boundediess of w-periodic solations of
(22) for 0 <p <1 we consider such a solution x(f) and write instead of (22)

(24 ol — w P = — glx),

o) = pif(x) + (1 —p) Lx.
Evidently we have for |w;|=h;
@i(x)x: >0 respectively gi(xja; < 0.
By virtue of this condition we conclude like above that
x{t) =< h; and x,(v")= — M

for certain values t/, 1”.
At first we study the case (23'). Let # be a moment when x(#') > h;, and
let be

v =sup{t <t at) = hi}
(' —7 <w).

After integrating the ¢-th component of equation (24) from ' to ! we
obtain

I

(25) MH=Mﬂ+MMH~BMFJ@MMW

T'

< h; + 2M1 ;
consequently the estimation

is valid for all #. This result can be deduced too for —wiff).
Now we turn to the case (23"). Let # be a moment when x;(f') > h:, and let be

v =inf {7 > ' wft) = R}
Because of

pilx(f) <O for ¥ =t=7, ' <7
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we have again

and therefore
i(t) < hi - 2M.
As a consequence of the m inequalities
|ai(t) | = hi + 2M, (for all ¢)
we obtain the boundedness result
lx(t)| S H+2mMy, H=h 4+ ... + hn

which completes the proof.
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