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Abstract. We consider periodic, finite delay differential equations. The first two

theorems prove dissipativeness for these equations generalizing a result of Pliss. We use

dissipativeness to prove the existence of a periodic solution by a result of Hale and

Lopes. In our special case we give short, elementary proof for their theorem. We also

present a theorem using Liapunov functionals to show dissipativeness.

1. Introduction. Let / : RxRn-+Rn be continuous and locally Lipschitz in x

with/0+ T, x)=f(t9 x) for all (/, x) and some T >0. Under these conditions, Pliss [10,

Theorem 2.1] showed that solutions of

(1) x' = f(t,x)

are dissipative if and only if there is an r > 0 such that for each (t0, x0) there is a τ> t0

with \x(τ, to,xo)\<r.
An exact counterpart of this beautiful result would have great application in

functional differential equations. However, we show that an exact counterpart is false,

but that a variation of it is true. Hale and Lopes [4] proved that dissipativeness implies

the existence of a periodic solution for functional differential equations. We will give

a simpler proof of their more general result in this special case.

DEFINITION. The equation (1) is said to be dissipative, if there is an r > 0 such that

limsup|x(/, / 0 , x 0 ) | < r
t-+ao

for all t0 and x0.

DEFINITION. A wedge is a continuous function W: [0, oo)->[0, oo) with W(0) = 0

and W is strictly increasing.

The classical result on dissipative behavior for (1) may be stated as follows:

THEOREM A. Let V: [0, oo)x/?"-•[(), oo) be continuous and locally Lipschitz in

x and suppose that there are wedges W{ and a constant U>0 such that

( i ) W1Qx\)<V(t,x)<W2(\x\),
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(ii) V{1)(t,x)<-W3(\x\)if\x\>U,
(iii) W^s)^co as s^co.
Then solutions of (I) are dissipative.

This result is true even when/(/, x) is not periodic in t. Moreover, one can prove
uniform boundedness and uniform ultimate boundedness, which are much stronger
properties than the dissipativeness. For an example, which is dissipative, but neither
uniform bounded nor uniform ultimate bounded, we refer to Kato's paper [7].

We now introduce a functional differential equation with finite delay. Let (#, || ||)
be the Banach space of continuous functions φ: [-Λ, 0]-»/?π with the supremum norm.
Denote xt(s) = x(t + s) for -λ<.s<0 and let F: Rx<&-+Rn be continuous with
F(t+T, φ) = F(t, φ) for some Γ>0. We also assume that F is locally Lipschitz in φ, i.e.
for all M>0 there is an L>0 such that \ί\<M9\\φ1\\^M and ||<£2||<M imply
\F(t,φ1)-F(t,φ2)\<L\\φ1-φ2\\. Then

(2) x' = F(t,xt)

is a system of functional differential equations and for each (t0, φ)eRx(& there is a
unique solution x(t, t0, φ). From the local Lipschitz condition of Fwe know that Ftakes
bounded sets of (/, φ) into bounded sets of Rn. Note that from this property the
periodicity of F implies that F takes bounded sets of φ into bounded sets.

DEFINITION. The equation (2) is said to be dissipative or point dissipative, if there

is an r>0 such that

lim sup Ix(/, t0, φ)\<r
t->ao

for all t0 and φ e %>.

The classical conjecture parallel to Theorem A may be stated as follows:

CONJECTURE. Suppose that there is a continuous functional V: /? x<^-•[(), oo)
which is locally Lipschitz in φ, together with wedges Wt and a constant U>0 such that

( i ) W1(\φ(O)\)<V(t,φ)<W2(\\φ\\l
(ii) V'i2)(t,xt)< - W3(\x(t)\) if | x(0 |> U,
(iii) v ^(5)^00 as .s-xx).

Then solutions of (2) are dissipative.

If we do not assume that F is Γ-periodic, this conjecture is false (as is seen from
the example in [8]), but some severe modifications of it are true (cf. [3]).

However, such a V has been constructed for many important systems and it is
clear from (ii) that for each (t0, φ) there is a τ> t 0 such that |x(τ, t0, φ)\<U. Our ex-
ample shows that this is not enough to yield dissipativeness. We show that we must
ask that for each (/0, φ) there is a τ>t0 such that ||jc(ί0, φ)\\[τ~2h'τ]<U, where
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\\x\\[a>b] = sup{\x(s)\:a<s<b}.

2. Main results.

THEOREM 1. The solutions of equation (2) are dissipative if and only if there is an

r>0 such that for all (tθ9 φ)eRx% there is aτ>to + h such that \\x(t0, </>)||[T~2M1<r.

PROOF. This proof is very similar to that of Theorem 2.1 in [10]. The major

difference is the way we ensure compactness for the functions in the proof. That is why

we need the solution to be "small" on an interval of length twice the delay.

The necessity is clear. We prove the sufficiency by way of contradiction. Suppose

that there are functions φu φ 2 , . . . e # , constants /(

o

υ, t%\ ... eR and Rl9 R2,... ->oo

such that

\im sup \x(t,t$\φk)\>Rk.
f-»oo

We may assume Rk>r. By the given condition there is a τk>ί(

o

fc) + /j such that

\\χ(%\ φk)\\ίτk~2h'τk]<r. From the above assumption there is a ϊk>τk such that

Ix(h> t$\ φk)I>Rk and hence there exists a Θke[τk, tk~\ such that

\\x{t^\Φk)\\{Θk~2κΘkλ = r and \\x(t$\ & ) l l ί f ~ 2 M 1 > ' for all te(ΘkJk).

From the periodicity of F in / there are Θk,tk,φk such that 0<Θk<T, tk>Θk,

Φk = XΘk(t$\Φk) with \\φk\\ι-_2h>0]_=r,\x_(tk,Θk,φk)\>Rk and \\x(Θk, φkψ-2h>«>r for

all te(Θk, tk). Since \\x(t$\ φk)\\[Θk~2KΘk] = r and Fis bounded for φ bounded we have

I φ'kI<M, where M depends only on r and F. Hence φke{φec€\ | |φ | | = r, | φ(u) — φ(v)\

<M\u — v\}. Thus, by compactness (using Ascoli's Theorem) without loss of gen-

erality we may assume that Θk-+Θ and φk-^φ. Now for this Θ and φ there is a

τ>Θ + h such that \\x(Θ, φ)\\[τ-2h>τ]<r. Let R>r be such that \x(t, Θ,φ)\<R for all

te[Θ, τ]. By the continuous dependence of the solutions on the initial conditions

there is a k0 such that for all k>k0 we have \x(t,Θk,φk)\<R for all te[Θk, τ]

and ||jc(βfc, φk)\\lτ~2h'τ]<r. Let k>k0 such that Rk>R. Then |x(tk, Θk, φk)|>Rk im-

plies tk>τ. Therefore, \\x(Θk, φk)\\[t~2h't]>r for all te(Θk,tk) and this contradicts

||jc(βfc, φ k ) | | [ τ ~ 2 Λ ' τ ] <r. The proof is complete.

REMARK. Note, that the same proof works for any set of solutions of (2). In

particular, we can prove the following:

PROPOSITION. The solution x: [t0 — h, oo)->/?π of (2) is bounded if and only if there

is an r>0 such that for all K>to + h there is a τ>K such that | | x | | [ τ " 2 / l ' τ ] <r.

We do not use the proposition in the following, but this statement is interesting

for its own sake. It says that either the solution is bounded or lim ί^o o | |x | | [ ί" 2 / I ' ί l = oo.

A very similar proof shows in the case of ordinary differential equations that the solution
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is either bounded or l i m ^ J x(t) | = oo.

EXAMPLE 1. This example shows that the solutions of a general differential

equation can be zero on an interval of length less than the delay, but they are not

dissipative.

Let ε>0 be given and h= 1. Consider a smooth, 1-periodic function φ: [0, oo)->/?

such that 0(0) = 1 and φ(t) = O on the interval [ε/2, 1—ε/2]. Consider the differential

equation

where [ •] is the greatest integer function. Clearly, if x(t) is a solution, then x(t+ 1) is

a solution too (T= 1). It is also clear, that the solutions of this equation are not

dissipative; to see this, if we start the solution at t0 = 1 with the initial function Mφ(t)

(/e[0, 1]) for an arbitrary M > 0 we get the solution in the form Mφ on the interval

[0, oo). Hence we are unable to find a number R independent of the solutions, such

that every solution tends to the iΐ-ball. It is also obvious that for every solution there

is an interval of length 1 — ε (say the interval [[ί 0] +1 + ε/2, [ί 0] + 2 — ε/2]) on which

the solution is zero. This finishes our example.

One can construct an example so that every solution becomes bounded by 2 on

an interval of length less than twice the delay, but the equation is not dissipative. This

example is much too complicated to be presented in this paper. It involves a function

g defined by Kato in [6].

We know then that in the very general case we cannot expect to relax the condition

in Theorem 1. However, if we have a growth condition on Fwe can prove dissipativeness

from a weaker condition. To do this we need the following:

GENERALIZED BELLMAN'S LEMMA. Let Y(ή, H(ή be positive continous functions on

the interval [a, b], k>0 and ω: R-^R a positive continuous, non-decreasing function.

Then the inequality

)<k+\ i
J a

Y(t)<k+\ H(s)ω(Y(s))ds (a<t<b)

implies the inequality

Y(t)<Ω-1[Ω{k)+\ H(s)ds) (a<t<b'<b),

where

Ω(u

•ί.Ή

ω(s)

and Ω~x means the inverse function of Ω(u). Ω~1(M) certainly exists owing to the
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monotonicity of Ω(u). Of course, t must be in a subinterval {a, br) of {a, b) so that the

argument Ω(k) + γaH(s)ds will be within the domain of definition of Q~x.

The proof of this lemma can be found in [1].

THEOREM 2. Consider again the equation (2) and suppose that there are non-negative,

T-periodic functions H and G which are ίntegrable over one period, together with a positive,

continuous and non-decreasing function ω such that $ΰO(l/ω(s))ds=co and \F(t,φ)\<

H(t)ω(\\φ\\) + G(t). Then the solutions of the equation (2) are dissipatίve if and only if there

is an r>0 such that for all (t0, φ)eRx(£ there is a τ>t0 such that \\xτ(t0, φ)\\ <r.

PROOF. The necessity is clear. Let us integrate the equation (2) from τ to t (/>τ):

x{t)-x{τ)=ΐ F{s,xs)ds,

and hence

[\F(s,xs)\ds<r+ [H(s)ω(\\xs\\)ds+ ΓG(s)ds .•{'\F(s,xs)\ds<r+ίΉ(s)ω(\\xs\\)ds+{\

Taking the supremum of both sides in / on the interval [τ, /?] and using the property

that \\xτ\\ <r, we have

\\xp\\<r+ [P H(s)ω(\\xs\\)ds+ Ϊ* G(s)ds<lr+ ί^ G(s)ds~]+ ί" H(s)ω(\\xs\\)ds ,

if pe[τ, τ + λ]. Now using the generalized version of Bellman's Lemma we get

| | x p | | < Ω - 1 ^ r + ίτ+HG(s)ds\+ {*H(s)ds\ .

Using this inequality for p = τ + h we find

By the periodicity of H and G and the fact that they are integrable on one period we

can find an M>0 such that \\+hG(s)ds<M and γt

+hH(s)ds<M for all t. Taking into

account the inequality ||xτ|| <r we arrive at

and the conditions of Theorem 1 are satisfied. This completes the proof.

REMARK. Once again we note that the same proof works to establish the following:

PROPOSITION. Suppose that there are non-negative, T-periodic functions H and G

which are ίntegrable over one period, together with a positive, continuous and non-decreasing



422 G. MAKAY

function ω such that $co(\/ω(s))ds=oo and \F(t, φ)\<H(t)ω(\\φ\\) + G(t). The solution
x\ [to — h, oo)->/?" of (2) is bounded if and only if there is an r>0 such that for all K>t0

there is a τ>K such that \\x\\ <r.

Observe that Example 1 shows that we cannot expect a better condition in the
theorem's statement.

We now show how to use the dissipativeness of the solutions in proving the exis-
tence of a periodic solution. Note that uniform boundedness and uniform ultimate
boundedness is enough to prove that there is a Γ-periodic solution of (2) (see, e.g., [2]).
It is clear that dissipativeness is a weaker condition than uniform ultimate boundedness.
In the following, we restate some results of Hale and Lopes [4]. Their results are more
general than necessary for our purposes. The author was surprised to discover (again)
that dissipativeness itself is enough to prove the existence of a Γ-periodic solution. We
introduce the following properties.

DEFINITION. The equation (2) is said to be point dissipative (at t = 0), if there is
an r>0 such that

ί-»OO

for all φ € #.

DEFINITION. The equation (2) is compact dissipative (at ί = 0), if there is an r>0
such that for each compact subset K of # there is a P>0 such that | x(t, 0, φ) \ <r for
all φeK and t>P.

DEFINITION. The equation (2) is compact uniform bounded (at ί = 0), if for each
compact subset Kof # there is a B>0 such that |x(t, 0,φ)\<B for all φeKand t>0.

The next two theorems were also proved by Kato [7], in which he considers many
different kinds of boundedness and shows the connections among them. Here we give
a short direct proof in our special cases. In the following we assume that all solutions
can be continued for all future times. The property that (2) is point dissipative implicitly
implies this condition, but we want to be clear on this point.

LEMMA. If (2) is point dissipative at t = 0, then lim sup(_Jx(t, t0, φ)\<r for all
(/0, φ)eRx(£, so (2) is dissipative in the sense of the first definition of dissipativeness.

PROOF. For a given (t0, φ), let mTe[to,to + T) and φ: = χmT( , t0, φ). Then
x(t, t0, φ) = x(t, mT, φ) = x(t — mT, 0, φ) and hence

lim sup I χ(t, tθ9 φ) I = lim sup | x(t-mT, 0,φ)\<r
t-*oo f-*oo

from point dissipativeness at ί = 0, and the proof is complete.
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THEOREM 3. If (2) is dissipative (point dissipative), then it is compact uniform

bounded.

PROOF. Suppose this is not the case. Then we find a compact set K in %> and

sequences φneK and tn>0 such that | x(tn, 0,φn)\->ao. Let r > 0 be the number in the

definition of point dissipativeness and let L>0 be such that \F(t, φ)\<L for ||</>||<r.

Without loss of generality, we may adjoin to K the compact set {φe%>\ \\φ\\<r,

\φ(u) — φ(v)\<L\u — v\}, and still call it K. We can also assume that n is so

large that xtn( , 0, φn) is not in K, because K is bounded and | x(tn, 0, φn) |->oo. Since

Φn = *o(" > °> Φn) e AT, we can define τn so that φn: = xτn( , 0, </>„) e AT, but x,( ,0,φn)φK

for ίe(τ π , /„]. Using a translation argument we find a Tne[0, Γ] such that

*(/, Fπ, tfO = *(* + (!„-?„), τB, W = x(/ + (τ π -f π ), 0, φn). Since * and [0, Γ] are compact,

there are subsequences, say φn and ϊn again, such that φn-*φ and ?„-•?. Using the

lemma for this T and φ we find a P>ϊ such that |x(ί, f, φ)\<r for / > P . Let M > 0

be a number with |jt(ί, ϊ,φ)\<M on the interval [f, P]. Take any « large enough

to have I x(t, Tn, φn)\<M for te[ϊΛ9 P] , |x(tn, 0, φn)\ = \x(tn-(τn-?„), 7Λ9 φn)\>M and

|x(/, Tn, φn)\<r for / G [ P , P + 2Λ]. Then we must have tn-(τn-Tn)>P + 2h and also
χp+2h(' , ^Φn)e{ΦE^' l l^ll^^ \φ(u)-φ(v)\<L\u-v\}^K. But this is a contradic-

tion to the choice of τn, because we must have xt( , ?„, φn)φK for /e[fπ, /„ —(τn —fπ)].

This contradiction shows the required compact uniform boundedness.

THEOREM 4. 7/* (2) is dissipative (point dissipative), then it is compact dissipative.

PROOF. Let r > 0 be the number from point dissipativeness. From the previous

theorem we find an R>0 such that φe{φe(€\ | | ι ^ | | < r , | φ(ύ) — φ(v)\<L\u — v|} implies

I x(t, 0, φ) I < R, where L is from the proof of the previous theorem. We claim that (2)

is compact dissipative with R. Suppose for contradiction that there is a compact set K

and sequences φneK and ίπ->oo such that | x(tn, 0, φn) \ >R. As K is compact, there is

a subsequence of φn, say φn again, such that φn->φeK. For this φ we find a n w > 0

such that I ψ , 0, φ)\<r for te[mT—2h, mT\. Then, using the continuous dependence

of the solutions on the initial data, take n large enough to have | x(t, 0, φn) | < r for

te[mT—2h, mT\ and tn>mT. Using the compact uniform boundedness, we find that

\x(U 0, φn)\ = \x(t, mT, xmT( -, 0, φn))\ = \x(t-mT, 0, xmT( , 0, 0 J ) | < Λ for all t>mT,

which is a contradiction to tn>mTand | x(ίπ, 0, </>„) | >R. This contradiction shows the

compact dissipativeness.

THEOREM 5. If (2) is point dissipative, then it has a T-periodic solution.

PROOF. From Theorems 3 and 4 we know that (2) is compact uniform bounded

and compact dissipative. Since the proof of this theorem is very similar to the usual

proof of the existence of a Γ-periodic solution assuming uniform boundedness and

uniform ultimate boundedness (see [2, Theorem 4.2.2]), we will give only a sketch of

the proof. Let r>0 be the number from compact dissipativeness and JF(t, φ)\<L for



424 G. MAKAY

\\φ\\<r. Let

S0: = {φeV:\\φ\\<r,\φ(u)-φ(v)\<L\u-υ\}

and define P: #-•# by Pφ :=xτ( , 0, φ). From the compact uniform boundedness we
find Bx>0 such that HP^So)!! <Bi f o r «>0. Define L x >0 such that \\φ\\ <BX implies
|F(/,(/>)|<L i andlet

Once again using the compact uniform boundedness we define B2 and L2 such that if

S2: = {φeV:\\φ\\<B2,\φ(u)-φ(v)\<L2\u-v\},

then Pn(S1)cS2 for all « > 0. Also, from compact dissipativeness we find anm>0 such
that Pn(S1)<=S0 for n>m. Now all the conditions of Horn's fixed-point theorem (see
[5] or [2, Section 3.4]) are satisfied, and hence there is a fixed point of P, which is (of
course) a Γ-periodic solution of (2). The proof is complete.

To satisfy the condition of this theorem we do not need the dissipativeness stated
at the beginning of this paper, but we need only point dissipativeness at t = 0. In the
very same way as one proves Theorems 1 and 2, one can prove:

THEOREM 6. The solutions of the equation (2) are point dissipative at t = 0 if and
only if there is an r>0 such that for all φeΉ and K>h there is a τ>K such that
||jc(0,(/>)||[τ-2Λ'τ]<r.

Also, if we have the growth condition on F used in Theorem 2, we can prove a
similar result with ||xτ(0, φ)\\<r in it.

We now prove theorems using Liapunov functionals to prove dissipativeness.

THEOREM 7. Suppose there are a functional V: RxΉ^R and constants a, b, M,
U>0 such that

( i ) 0<F(/,4>),
(ii) V\t,xt)<M and
(iii) V\U xt)<-a\ x\i) \-bfor\ x(t) \ > U.

Then the solutions of (2) are dissipative.

PROOF. By our previous theorem we need only to prove that there is an r>0 such
that for every (to,φ)εRx(£ there is a τ > t0 + h such that || x( , t0, φ) \\[τ ~ 2h>τ] < r. Define
L>0 so that aL — 2Mh>0, and let r: = U+L. Suppose for contradiction that there is
(to,φ)eRx(# such that \\x( , t0, φ)\\[t~2Kt]>r for all t>to + h. Define tn = t0 + 2nh
and S,,: = [/„_!, ί j . From our assumption we can find a t'neSn such that \x{Q\ =
Ix(t'n, to,φ)\>r= U+L. We have two cases.

Case 1: If | x(t) \ > U for all t e Sn9 then using (iii)
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V(tn)- V(tn-ΰ< Γ V\s)ds< -b(tn-tn_1) = -2bh .

Case 2: If there is a / e Sn such that | x(t) \ < U, then by (ii) and (iii)

J a\x'(s)\ds <2Mh-aL<0.

In both cases we have proved that V(tn)— F(/ n _!)< — α < 0 for some α > 0 . There-

fore, V(tn)< V(to) — n<x<0 for a large enough n, which is a contradiction to (i). Hence

there is an n>0 with \\x( , t0, φ)\\[tn~2hftn]<r. The proof is complete.

Note that we can replace b by a function b: R-+R integrable on any finite interval

with Ĵ ° b(s)ds = oo and we do not have to change much in the proof. In this case we

argue that we cannot have Case 2 infinitely many times, and hence there is an N>0

such that Case 1 holds for n>N and so V(ίn) — V(tN)< — γt

n

Nb(s)ds, a contradiction for

large n.

If we consider this theorem purely as a tool to prove the existence of a Γ-periodic

solution, then this theorem is better than the theorem in [9] and better than Theorem

4.2.11 in [2]. We also mention that for ordinary differential equations one can prove

a theorem similar to Theorem 4.1.16 in [2].

THEOREM 8. Suppose there is a functional V: Rx%>->R such that

( i ) 0<V(t,φ),
(ii) V\t, xt) < - W{\ x(t) I) for I x(t) I > U.

Then the solutions of the ordinary differential equation are dissipative.

This theorem (considered again as a tool for proving the existence of a Γ-periodic

solution) is better than Theorem 4.1.16 in [2].
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