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Introduction. It is well known that the qualitative properties of solutions of finite
difference approximations of an ordinary differential equation may differ greatly from
the qualitative properties of the solutions of the differential equation. A classic example
is the differential equation

x + x = 0. (1)

If we set ?/i = x and y2 = x, then the Euler approximation of (1) is

yk+l = Ayk = h^jyk . (2)

The eigenvalues of the matrix A are 1 =b hi. Hence all the iterates 2/1,2/2, ■ • • , of (2)
spiral away from the origin. On the other hand, every non-trivial solution of (1) is periodic
with period 2ir.

The essential difficulty with the differential equation (1) is that the equilibrium
solution x = x = 0 is a center. Equivalently, the periodic solutions of (I) are not orbitally
asymptotically stable, and thus they may be destroyed under an arbitrary small pertur-
bation. The situation is very different, however, when x = <fi(t) (x = (a:, , ■ • • , x„))
is an orbitally asymptotically stable (unstable) solution of the differential equation

x = f(x). (3)

Let
xk+1 = F(xk , h) (4)

be a finite difference approximation of (3). While we cannot expect the difference equation
(4) to possess a closed invariant curve of periodic points, we would expect that the differ-
ence equation (4) has a closed invariant curve r near x = <t>{t), and that the solutions
xk of (4) spiral into T as k —> <» (—<»). This was verified recently for the special case
of the Van der Pol equation

x + e(x2 — l)x + x = 0. (5)

It is well known (see Hale [4]) that this equation has a periodic solution x = 4>{t) with
tj)2 + <£2 ~ 2, for e sufficiently small, and positive. Using theorems of Halanay [2], [3]
on the existence of periodic solutions of difference equations, and a suitable integral
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manifold method, Hurt [5] was able to show that the central difference analogue

p [x(i»+1) - 2x(tk) + *&-,)] + - 1) (x(tk+,) ~ x(tk-])) + x{Q = 0

to (5) has a closed invariant curve near x = <j>(t) for t > 0 and h sufficiently small.
In this paper we generalize Hurt's result to the case of any orbitally asymptotically

stable (unstable) periodic solution of any autonomous differential equation. In particular,
we prove the following theorem:

Theorem 1: Let x = <j>(t) be a periodic solution of (3), with characteristic multi-
pliers /ij , • • • , , ;u„ = 1 and let

xk+1 = F(xk , h) (6)

be a finite difference approximation of (3) which is at least as accurate as Euler's method.
Assume that either < 1, j = 1, • • • , n — 1 or > 1, j = 1, ■ ■ • , n — 1. Then
the difference equation (6) has a closed invariant curve Y near x = for h small.
Furthermore, the iterates xk of x„ sprial into T as lc —> or — oo, for xn sufficiently
close to T.

As a corollary to this theorem, we show that the second characteristic multiplier
of the periodic solution x = 4>(t) of the Van der Pol equation (5) has modulus less than
one. Hence, any finite difference approximation of (5) which is at least as accurate as
Euler's method has a closed invariant curve r near x = <t>(t), for h small, and all the
iterates xk of x0 spiral into F, for x0 sufficiently close to I\ This result answers all of the
questions raised in [5],

The mapping MN. For simplicity of writing and notational convenience, we will
prove Theorem 1 for the case n = 2, and then show how the proof generalizes to arbitrary
n. Thus we assume that the differential equation

A = f(x, y), y = g(x, y) (7)

has a periodic solution x = 4>(t), y = \p(t), with characteristic multipliers n, = 1 and ,
with |^2 7^ 1. The functions / and g have three continuous derivatives with respect to
x and y. Then, any finite difference approximation of (7) which is at least as accurate
as Euler's method can be written in the form

xk+i = xk + hf(xk , yk) + h2j(rk , yk , h) ^

2/t+i = Vt + fiQi-Tk , yt) + h2§(xk , yk , h)

The key step in proving Theorem 1 is to introduce "normal coordinates" r, 6 near the
periodic solution x = y = \p{t) of (7). Following Hale [4], we transform this periodic
solution to the circle r = 0 by a suitable transformation r = u(x, y), 6 — v(x, y). This can
be done in such a way that

r = uj + uv(j = a{d)r + /,(r, 6) ^

8 = v,f + v,g = 1 + f2(r, 6)
where

/2(0, 6) = MO, e) = (3/,/drX0, 6) = 0 (10)
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and exp (J"02r a (8) <18) is the characteristic multiplier n2 . Applying this transformation to
the difference equation (8) gives

>'i+l = U(Xlc + l , 2/i + ])

= u(xk + hj(xk , yk) + h2j, yk + hg(xk , yk) + h2§)

= u(xk , y,) + h(uj + u„g) + h,2 F \

= rk + ha(9k)rk + hf,(rk , 0k) + h2F,(rk , 8t , h).

Similarly,

0k+1 = v(xk + hf(xk , yk) + h2j, yk + hg(xk , yk) + h2 g)

= 6k + /([I 4" UiXh > 8k)] + h?G,(rk , 6k , h).

Thus, we consider the mapping M

r, = [1 + ha(8)]r + hf^r, 8) + h2F,(r, 8, h)M:
= 8 + hj2(r, 8) + h2G,(r, 6, h). (11)

Together with M, we include the Arth iterate MN of M, where N = \2t/h], and we write
MN in the form

rN = X(0, r, h)r + F(r, 8, h)

M : eN = 8 + 2k + G(r, 8, h). (12)

We will show that the mapping MN has a closed invariant curve r near the circle r = 0,
and then we will show that T is also invariant under M. It is very natural to consider
the mapping MN and its iterates, because this is the section map that figures very prom-
inently in the proof of the existence and stability of periodic solutions of differential
equations.

Estimates of X, F and G. We first derive explicit representations for X, F and G.
To this end, set

ak = 1 + ha(8k), bk = hf1(rk , 8k) + hi*F i(rk , 8k , h).

Then (see Braun [1]),

i~n — a„ ■ ■ ■ aN-xr + ^ an ■ ■ ■ a^_l
b,

j = 0 &0 • ' ' dj

= H [1 + ha(8,)]r + Pn (1 + ha^)) 1 E ^ +
L'-° Jnu + Moi

Hence,

\(0, r, h) = n [1 + /ia(0,.)], F(r, 8, h) = X £ (13)
II [1 + ha(0„)]
r =0

Our first step is to estimate the iterates r,- , = 1, ■ ■ • , N — 1. To this end, choose a



142 M. BHAUN AND J. HERSHENOV

positive constant c such that the functions a(6), a'(6), fi(r, 6)/r2, f2(r, 8), F^r, 6, h)
and (1, (r, 6, h) are all less than or equal to c in absolute value for 0 < 8 < 2ir, |r| < 1,
and 0 < h < 1. (If necessary, we can rescale r so that all these functions are defined
for |r| < R, with R > 1.) Then, we have the following lemma:

Lemma 1: Choose r and h sufficiently small that |r| + h < exp ( — 4«). Then,

|r,| < (1 + 2hcY(\r\ + h) < (exp (4«))(|r| + h), j = 1, • ■ ■ , N. (14)

Proof: From (11),

|»"*+i| < (1 + he) i?v| + he |r*f + eh2

< (1 + 2/ic) |r*| + eh2 (as long as \rk\ < 1).

These inequalities imply that

|r,| < (1 + 2hey jr | + ^ [(1 + 2he)1 - 1]

< (1 + 2he)'(\r\ + h) < (exp (2hcj))(\r\ + h)

< (exp (4ttc))( |r | + h)

as long as |rfr| < 1, k = 1, • ■ • , j, and this in turn follows immediately if \r\ + h <
exp ( —4irc).

Our next step is to show that X(r, 8, h) = H,«o~v_1 (1 + ha(8,■)) is approximately
the second characteristic multiplier p.2 of the periodic solution r = 0 of (9). In particular,
if M2 < 1, then 0 < X(r, 8, h) < p < 1 uniformly for 0 < 6 < 2w, and |r| and h suffi-
ciently small. This is the content of Lemmas 2 and 3.

Lemma 2:

XI (1 + ha(8,))
Limit , r = 1.

h-+ 0
exp

(N- 1
h X) a(0,-)

1=0

Proof: Observe that

where
exp (ha(8j)) = 1 + ha(8j) + e.

h2c2hi < ~y exp (he).

Hence,

II (1 + ha(6j)) = exp (h £ «(».)) II 1 ~ ?XP ((~
i= 0 \ j= 0 ' j= 0

ha{8,))e,)

so that

N-l / L2 2 \ II (1 + ha(8j)) AT-1 / ,22 \
II (l - — exp (2he)J < — r < II (l + -y exp (2hc)l
i=0 \ * ' I ^ \ i=0 \ & '

exp I ft 2^
\ j = 0
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Lemma 2 now follows immediately from the trivial observation that

lim 1 ± exp (2lie)
h-*0 L ^ J

= 1.

Lemma 3:
A'-l

Limit ^ h[a(6 + jh) — a{6,)} = 0
I r I + /i—»0 j-0

if JV = [2x/A].
Proof. From (11),

; — 1

0; = 6 + jh + £ hf2(rt , 6k) + /t2F2(rt , 0,, , A).
fc-0

Therefore,
J - 1

a(0,-) = a(6 + jh) + a'(</>,) X) , #*) + , 0* , h)
k = 0

for some 0, between 0 and 0 + jh. This implies that

|Aa(0,) — ha{6 + jh) \ < he X) [Ac(l + 2Ac)*(|r| + A) + cA2]

< lie'

Hence,

, (1 + 2he)' „ , , „
+ 2/(c (|r| + /0.

X) i^a(®i) - M0 + jh) | < h3c2 —^ (M + A) (1 + 2hcf - 1
2hc

< 2wVh + (|r| + A),

and this quantity approaches zero as |r| and h approach zero.
Finally, observe that

4 T c

N— 1 /» 2 7T

lim h ^2 a(6 + jh) = / a(0) dd.
A—»0 |=0 JO

It now follows immediately from Lemmas 2 and 3 that- we can find a number p with
0 < p < 1 such that

|X(0, r, h)| < p

if ImsI < 1.

Proof of Theorem 1. Let B be the Banach space of continuous curves r = g(6) with
g(6 + 2tt) = g(d), ||gr|| = max |</(0), and 1^(0) | < S, for some appropriate 5. We will
show that the mapping MN takes this space into itself, and is a contraction on this
space. It will then follow immediately that the mapping MN has a closed invariant
curve T near the circle r = 0.

Lemma 4: Let I = Airpc exp (12irc), and let 5 satisfy the inequality



144 M. BR ATTN AND J. HEIiSHENOV

r-Yc + '{h + 5'2 + /,2) - 5' (15)

Then, both MA and MN~l take B into itself.
Proof: Suppose that |r| < S. Then, from (12) and (13),

N-1 ,2eh2 + chi'j
f?n (1 — he)'I''A'I < P?> + P ^2 ,1 I,_\i + l

^ „ , 2ir pch , 2irpc exp (8ttc) , „ , , v2
s pJ + (i - te)»" + (i - /,,)•■" (i + ">

Now, for h small, 1 — he > exp ( — 2hc). Hence,

|r.v| < p5 + eXp2^^7[^ + 27rpr exp (12trc)(5 + //)a

< P5 + /(A + 62 + h2).

Thus MN takes B into itself if

p5 -|- l(h -j- + h2) < 5.

However, in proving that M also has a closed invariant curve, we will need that MN~l
also takes B into itself. Now it is easily verified that

b'jv-il < ^ — lie ̂  ^~ ^
if |r| < 8. Hence, if 5 satisfies (15), then B is invariant under both MN and MN~1. Finally
we obfierve that 5 must lie between 5_ and 5+ , where

1 ~ ±
a± = [(r^ - 0' 4/(//», + lh2)

21

Hence we can find a suitable 5 if we choose h so small so that

4,(1/, + (*■) < - .

Lemma 5: The mapping MN is a contraction on the space B, for h and 5 suitably
small.

Proof: Let r = g(d) be a curve in B. The image of this curve is the curve r = g,(d),
where (see Eq. (12))

X(0, 0(0), h)g(6) + F(g(8), 0, h) = g,(6 + G(g(6), 6, h)).

Equivalently,

<7i(0) = \(d-N , g(d-N), h)g{d-N) + F{g(d-N), 0-.v , h).

If r = 0(0) is a second curve in B, then its image under MN is r = 0i(0) where

0i(0) = X(0-jv > §0-n), h)§(d-N) + F(§(6-n), 6-n , h).
(Notice that 0_v depends on 0(0).) We want to show that

ll<7,W - 01 (0)11 < * IkW - 0(0)11 (16)
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for some constant a, with 0 < <r < 1. To this end we first prove that drk/dr and d9k/dr
are bounded, for 1 < k < N — 1.

Lemma 6: The partial derivatives drk/dr and d8k/dr, k — I, ■■■, N — 1, are uni-
formly bounded for r and h small.

Prooj: Observe that

<5 rk/dr

ddt/dr.

drk-,/dr

d6k.Jdr

k= II dr,/dr,drj dd^,

d0,/d0,_, d0,/d0,_,

dr, / dr

ddjdr.

drk/drk-I drk/ddk.l

d8k/drk- i d8h/ddk-,,

so that

dr,:/dr

ddk/dr.

Choose a so large that

f | d/,/dr| < a |r|, \dFJdr\ < a, \df2/dr\ < a, \dGJdr\ < a
l|d/i/d0| < a |r|2, \dFJd6\ < a, |d/,/d0| < a |r|, \dG\/dd\ < a.

Then,

|dr,-/dr,_, | < 1 + he + ha oxp (4?rc)[|r| + //] + ah2,

|d?',/d0,_, | < he exp (4irc)[|rj + /(] + ha exp (8irc)[|r| + h]2 + ah2,

\d8j/drj^i\ < ha + ah2,

\dOj/ddj_ \ | < 1 + ha exp (4-jrc)[|r| + //] + ah2.

Consequently,

\drk/dr\

\d8k/dr\
<

1 + 2(3 h.

1 + ph ph k~1 1 + ph

ph 1 + ph\ ph .

for some suitable constant p. Using the fact that ||-A'|| < ||^4||' for any matrix A, and

'l -i- ph ph

ph 1 + Ph,
we see that

max {\drk/dr\, \ddk/dr\] < (1 + 2ph)k~\\ + ph)

< (1 + 2ph)k < exp (2Phk) < exp (4irp)

and this proves Lemma 6.
Lemma 6, together with the estimate \\(d, r, h)\ < p < 1 and the observation that

|0_w — Ln\ is very small compared to \g(0) — g(6)|, gives us the estimate (16), and this
completes the proof of Lemma 5.

It follows immediately from Lemma 5 that MN has a closed invariant curve r near
the circle r = 0 if n2 < 1. This in turn implies that the curves MT, M2V, • ■ ■ , MN'lV
are also invariant under M'x. As remarked previously, the curve MN~1T lies in B. How-
ever, since MN is a contraction on B, the curves r and Mrf~1T must be the same, and
this can only be the case if Mr = T. Thus T is also invariant under M. Finally, if #i2 > 1,
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then we work with M'1 instead of M, and the proof goes through exactly as before.
This completes the proof of Theorem 1 in the special case n — 2.

Remarks: 1. Our proof of Theorem 1 generalizes quite easily to the case n > 2.
Let x = 4>{l) be a periodic solution of x = j(x) with characteristic multipliers hi , ■ • • , m»-i >
Hn = 1. Then, we can find new coordinates r, 9 such that

r = A(0)r + fi(r, 9), 9=1+ f2(r, 9)

and, moreover, the periodic system r = A (t)r has characteristic multipliers n, , • • • , jur_, .
The only change in the proof of Theorem 1 is in estimating the quantity X
hA(8j)]. Here, we must appeal to our knowledge that the solutions of the finite difference
scheme converge to the solutions of the differential equation as h —* 0.

2. Using our knowledge that the solutions of the finite difference scheme converge
to the solutions of the differential equations, we can greatly sharpen the estimates in
this proof. Thus, the mapping M has a closed invariant curve for much larger values of h
than our proof implies.

Application to the Van der Pol equation. It is well known (Hale [4]) that the periodic
solution of Van der Pol's equation (5) is orbitally asymptotically stable. This follows
from the Poincare-Bendixson Theorem. To apply Theorem 1 to this equation, we need
the additional fact that ti2 < 1. We prove this as follows: Set

Then, the variational equation of (5) about the periodic solution

I 2 cos A .
LaroJ + OM

IS

f = ° /
— 1 — 2 txx —t(x2 — 1).

To first order in t, the determinant of the monodromy matrix 12 of (17) is

f. (17)

detn=exp( — efo [4(| + ^)-l dt + 0(«2)

= exp (—2irt + 0(t).

Hence, det 12 < 1 for t > 0 sufficiently small, and this implies that /i2 < 1. Consequently,
every finite difference approximation of the Van der Pol equation which is at least as
accurate as Euler's method has a closed invariant curve near the circle of radius 2 for
e > 0 and h sufficiently small.

The inverse problem. In this section we show that the existence of a closed invariant
curve T of a finite difference approximation implies the existence of a periodic solution
of the differential equation. Indeed, we reverse our steps. Assume that the difference
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approximation

Xi = x + hf(x) + h2F(x, h)

of the differential equation x = j(x) has a closed invariant curve r for some value h,
and that we can find new coordinates r, 6 such that r = 0 is T and

r, = r + hA(d)r + 9, h)

= e + hg(6) + hg,(r, 6, h)

with g(6) > 0 and /! and g, small compared to h. If we write the differential equation
in terms of r and 6, we find that

r = A(6)r + hF^r, 6, h), 8 = g(6) + hG^r, d, h).

Define a new time scale r by the relation clt/dr = 1 /g(6). Then,

dr/dr = (A{0)/g{6))r + hFJg^d)

dd/dr = 1 + hG,/g(6)
If all the characteristic multipliers of the system

f = (A(t)/g(t))!;
have modulus 5^ 1, then the system (18) has a periodic solution if h is sufficiently small-
This follows immediatelj' from Poincare's continuation theroem.

References

[1] M. Braun, Differential equations and their applications, A.M.S. series #15, Springer-Verlag, 1975
[2j A. Halanay, Invariant manifolds for discrete systems, in Proceedings of the second Czechoslovakian

conference on differential equations and their applications (Equadiff II), Bratislava, Czechoslovakia,
1966

[3] A. Halanay, Periodic and almost periodic solutions of systems of finite difference equations, Arch. Rat.
Mech. Anal. 12, pp. 134-149 (1963)

[4] J. Hale, Differential equations, Wiley-Interscience, 1969
[5] J. Hurt, Almost periodic solutions of difference equations, Ph.D. dissertation, Brown University, 1968


