Periodic Solutions of Hamiltonian Systems with Superquadratic Potential (${ }^{(*)}\left(^{(* *)}\right.$.

V. Benoi - A. Capozzi - D. Fortunato

Sunto. - In questo lavoro si dimostra un teorema astratto di punti critici per funzionali fortemente indefiniti. Si applica poi tale teorema alla ricerca di soluzioni T-periodiche, con periodo T prefissato, del sistema Hamiltoniano

$$
\dot{p}=-H_{q}(p, q), \quad \dot{q}=H_{p}(p, q)
$$

dove $p, q \in \boldsymbol{R}^{n}$, e l'Hamiltoniano $H \in C^{1}\left(\boldsymbol{R}^{2 n}, \boldsymbol{R}\right)$ è del tipo

$$
H(p, q)=\sum_{i, j} a_{i, j}(q) p_{i} p_{i}+\sum_{i} b_{i}(q) p_{i}+V(q)
$$

con $V(q) /|q|^{2} \rightarrow+\infty$ per $|q| \rightarrow+\infty$.
0. - Introduction and statements of the main results.

Consider the Hamiltonian system of $2 n$ ordinary differential equations

$$
\begin{equation*}
\dot{p}=-H_{q}(t, p, q), \quad \dot{q}=H_{p}(t, p, q), \quad p, q \in \boldsymbol{R}^{n}, t \in \boldsymbol{R} \tag{0.1}
\end{equation*}
$$

where $H \in C^{1}\left(\boldsymbol{R}^{2 n+1}, \boldsymbol{R}\right), \cdot$ denotes $d / d t, H_{q}=\partial H / \partial q, H_{p}=\partial H / \partial p$. The system (0.1) can be represented more concisely as

$$
\begin{equation*}
-J \dot{z}=H_{z}(t, z) \tag{0.2}
\end{equation*}
$$

where $z=(p, q), H_{z}=\partial H / \partial z$ and J is the simplectic matrix in $\boldsymbol{R}^{2 n}$, i.e.

$$
J=\left(\begin{array}{cc}
0 & -\mathrm{I} \mathrm{~d} \\
\mathrm{I} \mathrm{~d} & 0
\end{array}\right)
$$

Id being the identity matrix in $\boldsymbol{R}^{\boldsymbol{n}}$.

[^0]There are many types of questions, both local and global, in the study of periodic solutions of (0.2) (cf. e.g. the review article of Rabinowirz [35] and its references). We suppose in the sequel that $H(t, z)$ is T-periodic in t.

Here we are concerned about the existence of T-periodic solutions of (0.2). RABINowitz, in a pioneering work [34], has proved that if $H(t, p, q)$ is «superquadratic» in both the variables p and q, i.e.
(0.3) there exist $r>0$ and $\mu>2$ such that

$$
\left(H_{z}(t, z) \mid z\right)_{R^{2 n}} \geqslant \mu H(t, z)>0 \quad \text { for }|z|>r \text { and } t \in[0, T]
$$

and it satisfies other assumptions, then (0.2) has a T-periodic solution. If $\partial H / \partial t \equiv 0$ and $H(t, z)$ satisfies (0.3), then Rabinowitz has proved that (0.2) has a nonconstant T-periodic solution for every prescribed period T [36]. Later many other papers appeared dealing with (0.2) when $H(t, z)$ is «superquadratic» ([4], [6], [11], [17], [19], [25], [26]).

Unfortunately the above results on superquadratic Hamiltonians do not cover the classical mechanical problems. In fact, consider a mechanical system with holonomous constraints imbedded in a conservative field of forces. The Hamiltonian of such a system has the form

$$
\begin{equation*}
H(t, p, q)=\sum_{i, j=1}^{n} a_{i j}(t, q) p_{i} p_{j}+\sum_{i=1}^{n} b_{i}(t, q) p_{i}+V(t, q) \tag{0.4}
\end{equation*}
$$

where $\left\{a_{i j}(t, q)\right\}$ is a positive definite matrix for every t and q. The Hamiltonian (0.4) is quadratic in p, then it does not satisfy (0.3).

If

$$
\begin{cases}a_{i j} \text { do not depend on } q & (i, j=1, \ldots, n) \tag{0.5}\\ b_{i}=0 & (i=1, \ldots, n)\end{cases}
$$

(0.1) can be reduced to a second order system of n equations of the form

$$
\begin{equation*}
\ddot{x}=-\frac{\partial U}{\partial x}, \quad U=U(t, x), x \in \boldsymbol{R}^{n} \tag{0.6}
\end{equation*}
$$

which is more easy to study then (0.1) (cf. discussion in [18]). In this case, for example, it is known that if $\partial U / \partial t=0$ and U grows more than quadratically at infinity, in the sense of (0.3), then (0.6) has a non-constant T-periodic solution for each fixed $T>0$ (cf. [16], [33] and references in [35]).

In this paper we consider Hamiltonians with the form (0.4) without the restrictions (0.5) and with «superquadratic» growth in q. We make the following assumptions on the Hamiltonian (0.4):

Assumptions $\left(H_{0}\right)$:
$\left(V_{1}\right)$ There exist constants $R>0, \alpha>2$ such that

$$
0<\alpha V(t, q) \leqslant\left(V_{q}(q, t), q\right) \quad \text { for }|q|>R \text { and every } t \in R .
$$

$\left(V_{2}\right)$ There exist constants $C_{1}, C_{2}, s, R>0$ such that

$$
\left|V_{q}(q, t)\right| \leqslant O_{1} V(q, t) \leqslant\left. C_{2} q\right|^{s} \quad \text { for }|q|>R \text { and every } t \in R .
$$

$\left(A_{1}\right)$ There exists a real, continuous function $\eta(q)>0$ such that

$$
\sum_{i j} a_{i j}(q, t) p_{i} p_{j} \geqslant v(q)|p|^{2} \quad \text { for every } p, q \in R^{n} \text { and } t \in R
$$

$\left(A_{2}\right)$ There exist constants $\left.\beta \in\right] 0, \alpha-2[$ and $\mu>0$ such that

$$
\sum_{i j} M_{i j}(\underline{q}, t) p_{i} p_{j} \geqslant \mu|p|^{2} \quad \text { where } \quad\left\{M_{i j}(\underline{q}, t)\right\}=\left\{\beta \alpha_{i j}+\Sigma_{k i} \frac{\partial a_{i j}}{\partial q_{k}} q_{k c}\right\} .
$$

$\left(A_{8}\right)$ There exists a constant $C_{3}>0$ such that

$$
\left|\sum_{i j} \frac{\partial a_{i j}}{\partial q_{k}}(q, t) p_{i} p_{j}\right| \leqslant C_{3} \sum_{i j} a_{i j}(q, t) p_{i} p_{j} \quad \text { for every } \quad k=1, \ldots, n ; q \in R^{n}, t \in R
$$

$\left(A_{4}\right)$ There exists a constant $C_{4}>0$ such that

$$
\left|\alpha_{i j}(q, t)\right| \leqslant C_{4} V(q, t) \quad \text { for }|q| \text { large and every } t \in R .
$$

(B_{1}) $\quad \lim _{|q| \rightarrow \infty} \frac{b_{i}(q, i)^{2}}{v(q) V(q, t)}=0 \quad$ for every $i=1, \ldots, n$
$\left(B_{2}\right) \quad \lim _{|q| \rightarrow \infty} \frac{\left|\partial b_{i} / \partial q_{k}(q, t) q_{k}\right|^{2}}{\nu(q) \bar{V}(q, t)}=0 \quad$ for every $i, k=1, \ldots, n$.

Assumption $\left(V_{1}\right)$ implies that V grows more than $|q|^{\alpha}$ at infinity. It replaces assumption (0.3) of other papers.
$\left(A_{1}\right)$ is a physical assumption which depends on the fact that the «kinetic energy" is positive. Observe that it is allowed that $p(q) \rightarrow 0$ as $|q| \rightarrow \infty$.
$\left(A_{2}\right)$ is a technical assumption which is deeply related to the nature of our results. Probably it has some meaning which we have not fully understood.
$\left(V_{2}\right),\left(A_{3}\right),\left(A_{4}\right),\left(B_{1}\right),\left(B_{2}\right)$ are growth conditions on the coefficients of (0.4). Probably they can be weakened using a cut-off technique as in [33], [19] or [36].

We have the following results for Hamiltonians of the form (0.4).

Theorem 0.1. - Suppose that H satisfies the assumptions $\left(H_{0}\right)$ and
$\left(H_{1}\right)$ the system is autonomous i.e. $\partial H / \partial t=0$.
Then (0.2) has infinitely many nonconstant T-periodic solutions for every prescribed period T.

THEOREM 0.2. - Suppose that H satisfies the assumptions $\left(H_{0}\right)$ and
$\left(H_{2}\right) H(t, z)$ is T-periodic in t
$\left(H_{3}\right) z=0$ is the minimum point of H for every $t \in R$
$\left(H_{4}\right) H$ is twice differentiable for $z=0$
$\left(H_{5}\right)$ there exists a constant $\left.\gamma \in\right] 0,1[$ such that

$$
\sum_{i, j} \frac{\partial^{2} H(t, 0)}{\partial z_{i} \partial z_{j}} \zeta_{i} \zeta_{j} \leqslant \frac{2 \pi}{T} \gamma|\zeta|^{2} \quad \text { for every } t \in R \text { and } \zeta \in R^{2 n}
$$

Then (0.2) has at least a nonconstant T-periodic solution.
Remark 0.3. - Theorem 0.1 just states the existence of periodic solutions but not of prime periodic solutions, i.e. solutions for which T is the minimal period.

Remark 0.4. - If H does not depend on t and it is twice differentiable for $z=0$, Theorem 0.1 can be deduced from Theorem 0.2. In fact by virtue of the assumption $\left(H_{0}\right), H$ has a minimum in $R^{2 n}$. It is not restrictive to suppose that the minimum point is $z=0$. Given any period T, there is a period $T_{1}=T / k_{1}\left(k_{1} \in N\right)$ such that $\left(H_{5}\right)$ is satisfied. Since a T_{1}-periodic solution is also a T-periodic solution, we can deduce from Theorem 0.2 that for any period $T>0$ we have a nonconstant T-periodic solution $z_{1}(t)$. Also there exists a number h_{1} such that z_{1} has the minimal period equal to $T / h_{1} k_{1}$. If we take $k_{2}>h_{1} k_{1}$ we can find, using Theorem 0.2 a $\left(T / k_{2}\right)$-periodic solution z_{2} which is of course a T-periodic solution and $z_{2} \neq z_{1}$. In this way we can find infinitely many nonconstant T-periodic solutions. We finally observe that, if $b_{i}=0(i=1, \ldots, n)$, and $\partial H / \partial t=0$, variants of Theorem 0.1 can be found in [12], [29].

This paper consists of five sections and two appendices. Sections 1-2-3 and A_{1}, A_{2} are devoted to some abstract critical point theorems. Sections 4-5 contain the proofs of Theorems 0.1-0.2.

I. SOME ABSTRAOT CRITICAL POINTS THEOREMS

1. - Statements of the abstract results.

Before stating the main results of this section we shall introduce some notations and definitions. We denote by E a real Hilbert space, by (\cdot, \cdot) the scalar product in E, by $\|\cdot\|$ the norm in E. By $C^{1}(E, R)$ we denote the space of Frechét differen-
tiable maps from E to R and, if $f \in C^{1}(E, R)$, by $f^{\prime}(u)$ its derivative at $u \in E$. We shall identify E with its dual E^{\prime} so that $f^{\prime} \in C^{0}(B, E)$. For $u \in E$ and $R>0$ we set $B(u, R)=\{v \in E:\|v-u\|<R\}, B_{R}=B(0, R), S_{2}=\partial B_{R}$. Let G be a compact Lie group and let $r: G \rightarrow U(E)$ be a representation of G on the group of the unitary linear transformations on D. We set $\mathcal{G}=r(G)$.

Definition 1.1. - A functional f on E is called \mathcal{G}-invariant if foT $=f$ for every $T \in \mathcal{G}$.

Definition 1.2. - A map h from E to E is called \mathcal{G}-equivariant if $h \circ T=T \circ h$ for every $T \in \mathcal{G}$.

Defintion 1.3. - A subset $A \subset W$ is called \mathcal{G}-invariant if $T(A)=A$ for every $T \in \mathcal{G}$.

Sometimes, when no ambiguity is possible, we will write " G-invariant», and «G-equivariant», etc. instead of «G-invariant», etc. We set Fix $G=\{u \in E: T(u)=u$ for every $T \in G\}$. If $u \in E$ the «orbit» of u is the set $\{T(u): T \in G\}$. In the sequel we shall consider $G=S^{1}=R / 2 \pi Z$. Moreover if L is a linear operator on E we denote by $\sigma(L)$ the spectrum of L.

In the sequel we will be concerned with functionals $f \in C^{1}(E, R)$ satisfying the following assumptions:
$\left(f_{1}\right) f(u)=\frac{1}{2}(L u, u)-\psi(u)$, where
(i) L is a continuous self-adjoint operator on D,
(ii) $\psi \in C^{1}(\boldsymbol{H}, \boldsymbol{R}), \psi(0)=0$ and ψ^{\prime} is a compact operator.
(f_{2}) (i) $E=\oplus M_{\lambda}$ where the M_{λ}^{\prime} s are eigenspaces of L (which might be infinite dimensional),
(ii) 0 is a regular value for L or it is an isolated eigenvalue of finite multiplicity of L;
$\left(f_{3}\right)$ given $\left.c \in\right] 0,+\infty\left[\right.$, every sequence $\left\{u_{r}\right\}$, for which $\left\{f\left(u_{r}\right)\right\} \rightarrow c$ and $\left\|f^{\prime}\left(u_{r}\right)\right\|^{*}$ $\cdot\left\|u_{r}\right\| \rightarrow 0$, possesses a bounded subsequence.

We set

$$
E^{+}=\overline{\oplus_{\lambda>0} M_{\lambda}}, \quad E^{-}=\overline{\oplus_{\lambda<0} M_{\lambda}}, \quad E^{0}=\operatorname{ker} L
$$

and let P_{+}, P_{-}and P_{0} be the relative orthogonal projections. Then

$$
\begin{equation*}
E=E^{+} \oplus E^{0} \oplus E^{-} \tag{1.1}
\end{equation*}
$$

In the case in. which E^{+}(resp. E^{-}) is finite-dimensional, f is bounded from above (resp. from below) modulo weakly continuous perturbations. In fact we can write
$f(u)=\frac{1}{2}\left(L P_{+} u, P_{+} u\right)+\frac{1}{2}\left(L P_{-} u, P_{-} u\right)-\psi(u)$ and if, for example, dim $E^{-}<+\infty$ then $\Phi(u)=\frac{1}{2}\left(L P_{-} u, P_{-} u\right)-\psi(u)$ has compact derivative. We shall consider the case in which f can be «strongly indefinite», i.e. E^{+}and E^{-}are both infinite-dimensional, as it occurs in the stady of periodic solutions of Hamiltonian systems.

Theorem 1.4. - Let $f \in C^{1}(E, R)$ be a functional satisfying $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$. Moreover we suppose that a unitary representation of the group S^{1} acts on E such that
$\left(f_{4}\right) L$ and ψ^{\prime} are \mathbb{S}^{1}-equivariant;
$\left(f_{5}\right)$ there exist two closed linear subspaces $V, W \subset E$ such that
(i) V and W are S^{1} invariant,
(ii) $\operatorname{dim}(V \cap W)<+\infty, \operatorname{codim}(V+W)<+\infty$,
(iii) $\operatorname{Fix}\left(S^{1}\right) \subset V$ and/or $\operatorname{Fix}\left(S^{1}\right) \subset W$,
(iv) there exist positive constants C_{0} and ϱ such that

$$
f(u)>C_{0} \quad \text { for every } \quad u \in V \cap S_{Q}
$$

(v) there exist $O_{\infty} \in R$ such that $f(u)<C_{\infty}$ for every $u \in W$,
(vi) $f(u)<O_{0}$ for $u \in \operatorname{Fix}\left(\mathcal{S}^{1}\right)$ such that $f^{\prime}(u)=0$. Under the above assump. tions there exist at least

$$
\frac{1}{2}(\operatorname{dim}(V \cap W)-\operatorname{codim}(V+W))
$$

orbits of critical points, with critical values in $\left[C_{0}, O_{\infty}\right]$.
Remark 1.5. - In the Theorem 1.4 the assumptions $\left(f_{2}\right)$ and $\left(f_{3}\right)$ replace the well known conditions of Palais and Smale (P.S.) used in similar theorems. They do not imply (P.S.), but a weaker condition (i.e. (i) and (ii) of Lemma 1 of App. 1, which has been introduced by G. Cerami (cf. [22]; cf. also [8]). The conditions (f_{5}) are geometrical assumptions, which allow us to give a lower bound to the number of orbits of critical points of the functional f.

Remark 1.6. - Theorem 1.4 generalizes Theorem 4.1 of [11] in two points. The assumptions $\left(f_{2}\right)$ and $\left(f_{3}\right)$ are easier to verify than (P.S.). This fact allows to treat Hamiltonians of the form (0.4). Moreover in [11] the assumption (f_{5}) (iii) is replaced by the stronger assumption

$$
\text { Fix } S^{1} \subset W
$$

This generalization permits us to obtain the multiplicity results for asymptotically quadratic Hamiltonian systems contained in [14] (for the proof we refer to [15]).

In the case in which the functional f does not exibit any symmetry, we have the following theorem:

Theorem 1.7. - Let $f \in C^{1}(E, R)$ be a functional satisfying $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$. Moreover suppose that there exist a L-invariant subspace $V \subset E$, an eigenvector $e \in V$ of L, and positive constants $R_{1}, R_{2}, C_{\infty}, C_{0}, \varrho$ with $0<C_{0}<C_{\infty}$ and $\varrho<R_{1}$ such that
(i) $\sup f(Q)=C_{\infty}$,
(ii) inf $f\left(\mathcal{S}_{\varrho} \cap V\right)=C_{0}$,
(iii) $\sup f(\partial Q)<0$,
where $Q=\left\{m+v: m \in V^{\perp} \cap B_{R_{2}}, v \in T\right\}, T=\left\{t e: t \in\left[0, R_{1}\right]\right\}$.
Under the above assumptions f has at least one critical value $o \in\left[O_{0}, O_{\infty}\right]$.

Remark 1.8. - Theorem 1.7 generalizes Theorem 0.1 of Benci-Rabinowitz [19], because $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$ are weaker assumptions than the respective assumptionsin [19]. This fact allows us to obtain the Theorem 0.2, which applies to Hamiltonians of the form (0.4).

Remark 1.9. - Using the techniques developed in this paper it is possible to generalize also Theorems of [19] (cf. [20], [21]).

Remark 1.10. - The assumption (f_{2}) (i) is not necessary. In fact, if it does not hold, we can replace the inner product of E with a new inner product such that $\left(f_{2}\right)$ (i) is satisfied.

The new inner product is defined as follows

$$
(u, v)_{N}=\left(L P^{+} u, v\right)-\left(L P^{-} u, v\right)+\left(P_{0} u, v\right)
$$

We observe that every $T \in G$ is a unitary transformation also with respect to the new inner product. If we define a linear operator $\tilde{L}: E \rightarrow D$ as follows:

$$
\begin{array}{ll}
\tilde{L} u=u & \text { if } u \in D^{+} \\
\tilde{L} u=-u & \text { if } u \in E^{-} \\
\tilde{L} u=0 & \text { if } u \in E^{0}
\end{array}
$$

then we have

$$
(\tilde{L} u, v)_{N}=(L u, v)
$$

and

$$
f(u)=\frac{1}{2}(\tilde{L} u, u)_{N}-\psi(u)
$$

So the function f satisfies $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{4}\right)$ in E equipped with the new inner product. Since $\left(f_{3}\right)$ and $\left(f_{5}\right)$ essentially are topological properties, they are as well satisfied (of course minor changes are necessary). Then Theorem 1.4 holds without assumptions (f_{2}) (ii). A similar remark can be done about Theorem 1.7. However, in the applications which we consider in this paper, assumption (f_{2}) (ii) is satisfied.

Remark 1.11. - An analogous version of Theorem 1.4 can be obtained if f is even, i.e. it is Z_{2}-invariant. Then if V (respectively W) is finite-dimensional, we get a variant of a theorem of CLark [23] (respectively Ambrosettir-Rabinowitz [5]).

Remark 1.12. - Applications of Theorem 1.4 are contained in [9], [32], [37].

2. - Index and pseudoindex theory.

We recall some notions (as the notion of index theory) and some theorems which are often used in the critical point theory.

First, some notation is necessary. We set

$$
N_{\delta}(A)=\{u \in E: \operatorname{dist}(u, A) \leqslant \delta\}
$$

where dist (u, A) denotes the distance from u to A. For $f \in C^{1}(E, R)$ and $c \in R$, we set

$$
\begin{aligned}
& K_{c}=\left\{u \in E: f^{\prime}(u)=0, f(u)=c\right\} \\
& A_{c}=\{u \in E: f(u) \leqslant c\} .
\end{aligned}
$$

Definition 2.1. - Let E be a Hilbert space on which a representation $r: G \rightarrow$ $\rightarrow r(G) \subset U(E)$ of a compact Lie group G acts. An index theory is a triplet $\{I, H, i\}$ where
$I I$ is the family of G-invariant closed subsets of E;
H is the set of G-equivariant continuous mappings;
$i: \Pi \rightarrow N \cup\{+\infty\}$ is a mapping, which satisfies the following properties:
(a) $i(A)=0$ if and only if $A=\varnothing \emptyset$;
(b) if $A \subset B$ then $i(A) \leqslant i(B)$ for all $A, B \in \Pi$;
(c) $i(A \cup B) \leqslant i(A)+i(B)$ for all $A, B \in \Pi$;
(d) if $A \in \Pi$ is a compact set, then there exists $\delta>0$ such that

$$
i\left(N_{\delta}(A)\right)=i(A)
$$

(e) $i(A) \leqslant i \overline{(h(A))}$ for every $A \in \Pi$ and for every $h \in H$.

Definitron 2.2. - We say that an index theory satisfies the d-dimensional property ($d \in N$) if

$$
\begin{equation*}
i(\partial \Omega \cap V)=\frac{\operatorname{dim} V}{d} \tag{2.2}
\end{equation*}
$$

where V is a finite dimensional, G-invariant subspace of E such that $V \cap$ Fix $(G)=$ $=\{0\}$ and Ω is a bounded invariant neighborhood of the origin.

The Definition 2.2 makes sense, because, in the examples which we know, if V is as before, then the dimension of V is a multiple of some integer number d.

Remark 2.3. - Since in the sequel we shall consider the case in which $G=S^{1}$, then we shall consider the homological index defined in [28] or the geometrical index defined in [10]. These index theories satisfy the 2-dimension property for any representation $r: G \rightarrow U(E)$.

We refer to [7] for an abstract construction of an index theory.
In the following theorem we shall list some property of the index which will be used in this paper.

Theorem 24 - Let $\{I, H, i\}$ be an index theory whioh satisfies the dimension property. Then we have
(i) if $[\operatorname{Fix}(G)]^{\perp}$ is infinite dimensional, and $A \cap \operatorname{Fix}(G) \neq \emptyset$, then $i(A)=+\infty$;
(ii) if $V \in \Pi$ is a finite dimensional space and $A \subset V-\operatorname{Fix}(G)$ then $i(A) \leqslant$ $\leqslant \operatorname{dim} V / d$;
(iii) if $A \cap \operatorname{Fix}(G)=\emptyset$ and $i(A) \geqslant 2$ then A contains infinitely many distinct G-orbits;
(iv) if $h \in H$ is a homeomorphism, then $i(h(A))=i(A)$.

For the proof of this theorem we refer to [10] and [11].

Definition 2.5. - Given an index theory $\{I I, H, i\}$ and a group of homeomorphisms $H^{*} \subset H$, for every $A, B \in I I$ we set

$$
i^{*}\left(A, B, H^{*}\right)=\min _{h \in H^{*}} i(h(A) \cap B)
$$

The triplet $\left\{\Pi, H^{*}, i^{*}\right\}$ will be called pseudoindex theory (cf. [11] or [8]). When no ambiguity is possible we shall write $i^{*}(\cdot, \cdot)$ instead of $i^{*}\left(\cdot, \cdot, H^{*}\right)$.

Definition 2.6. - Given a G-invariant functional $f \in C^{1}(E, R)$ and a group of
G-equivariant homeomorphism H^{*}, we say that f satisfies the condition (B) in $] \alpha, \beta\left[(-\infty<\alpha<\beta<+\infty)\right.$ with respect to H^{*} if for every $\left.c \in\right] \alpha, \beta[$.
(i) K_{σ} is compact;
(ii) for every $N=N_{\delta}\left(K_{c}\right)$ there exists $\eta \in H^{*}$ and a constant $\varepsilon>0$ such that
(a) $[c-\varepsilon, c+\varepsilon] \subset] \alpha, \beta[$,
(b) $\eta\left(A_{c+\varepsilon}-N\right) \subset A_{e-\varepsilon}$.

The concept of pseudoindex and the property (B) are related to the critical point theory by means of the following theorem.

THEOREM 2.7. - Let $f \in C^{1}(E, R)$ be a G-invariant functional satisfying the condition (B) in $] \alpha, \beta\left[\right.$ with respect to H^{*}. Given $D, F \in \Pi$, we suppose that
(i) $\sup f(D)=c_{\infty}<\beta$;
(ii) inf $f(F)=c_{0}>\alpha$;
(iii) $i^{*}\left(D, F, H^{*}\right)=\bar{k}$.

If we set

$$
\Gamma_{k_{i}}=\left\{A \in \Pi: i^{*}\left(A, F, H^{*}\right) \geqslant k\right\}
$$

then, for $k=1, \ldots, \bar{k}$, the numbers

$$
c_{k}=\inf _{A \in \Gamma_{k}} \sup _{u \in A} f(u)
$$

are well defined, are oritical values of f and

$$
c_{0} \leqslant c_{1} \leqslant \ldots \leqslant c_{\bar{k}} \leqslant c_{\infty} .
$$

Moreover if $e=c_{k}=\ldots=c_{k_{+j}}(k \geqslant 1, k+r \leqslant \bar{k})$, then $i\left(K_{c}\right) \geqslant r+1$.
The proof of this theorem follows standard arguments of the critical point theory and it will not be given here (see e.g. [8]).

Remark 2.8. - If Theorem 2.7 holds we cannot deduce that f has at least \bar{k} distinct orbits of critical points. In fact it might happen that

$$
c_{1}=\ldots=c_{\bar{k}}=c
$$

and $K_{c}=\{\bar{u}\}$ where $\bar{u} \in \operatorname{Fix}(G)$.
Then in this case, by Theorem 2.4 (i), we have $i\left(K_{e}\right)=+\infty$, but we have only one orbit of critical points i.e. $\{\bar{u}\}$. However if $i\left(K_{c}\right) \geqslant 2$ and $K_{c} \cap$ Fix $(G)=\emptyset$, by

Theorem 2.4 (iii) deduce that K_{c} contains infinitely many distinct orbits. Therefore if the assumptions of Theorem 2.7 hold, we can deduce that one of the following alternatives follows
(a) there exists at least one critical point $\bar{u} \in \operatorname{Fix}(G)$;
(b) there exist at least \vec{k} distinet orbits of critical points.

Now we shall enounce the analogous of Theorem 2.7 in the case in which the functional has no symmetry. In this case we can suppose that the functional is G-invariant with respect to the trivial group $G=\{I d\}$. Then the property (B) makes sense (cf. def. 2.6).

Definition 2.9. - Given two sets D and F and a group of homeomorphisms K we say that «D and $F K$-intersect» if

$$
h(D) \cap F \neq \emptyset \quad \text { for every } h \in K
$$

Theorem 2.10. - Let $f \in C^{1}(E, R)$ be a functional satisfying the property (B) in $] \alpha, \beta\left[\right.$ with respect to K and let $C_{0}, O_{\infty} \in R$ be two constants such that
(i) $\sup f(D)=C_{\infty}<\beta$;
(ii) $\inf f(F)=O_{0}>\alpha$;
(iii) F and $D K$-intersect.

Then f has at least a critical value $c \in\left[O_{0}, 0^{\infty}\right]$.
The proof follows standard arguments and it will not be given here (cf. e.g. [8]).

3. - Proof of the abstract theorems.

Phoof of theorem 1.4. - In order to prove Theorem 1.4 we want to use Theorem 2.7. The crucial point is to determine a class of equivariant homeomorphisms H^{*} such that
(i) if $\left(f_{1}\right),\left(f_{2}\right),\left(f_{3}\right)$ and $\left(f_{4}\right)$ hold, f satisfies the property (B) with respect to H^{*};
(ii) if $\left(f_{5}\right)$ holds, then
the pseudoindex $i\left(\cdot, \cdot, H^{*}\right)$ can be estimated by means of $\operatorname{dim}(V \cap W)$ and codim $(V+W)$.

In order to define H^{*} we need the following lemma:
Lemma 3.1. - Suppose that L satisfies $\left(f_{2}\right)$. Moreover suppose that L is G-inva-
riant, where G is a unitary representation of a compact Lie group G. Then

$$
\begin{equation*}
E=\overline{\oplus_{j \in Z} E_{j}} \tag{3.1}
\end{equation*}
$$

where the E_{j} 's are G-invariant and L-invariant finite dimensional subspaces, orthogonal with each other.

Proof. - If $u \in M_{\lambda}$, then $L T u=T L u=T \lambda u=\lambda T u$ for every $T \in G$. So every eigenspace of L is G-invariant.

Then by Peter-Weyl theorem M_{λ} can be decomposed in finite dimensional G-invariant subspaces orthogonal with each other

$$
M_{\lambda}=\oplus_{i} E_{j}
$$

Of course, the spaces E_{i} 's constructed in this way, are L-invariant because they are subspaces of an eigenspace of L.

Now we define the class H^{*} as follows:
Definition 3.2_{i} - Let \mathcal{U} be a class of continuous maps $U: E \rightarrow E$ such that $\left(V_{1}\right) \quad U$ is bounded;
$\left(V_{2}\right) U(u)=\exp [\alpha(u) L][u]$ where $\alpha: E \rightarrow R$ is a G-invariant functional.
Clearly every $U \in \mathcal{U}$ is G-equivariant.
Let \mathfrak{B} be a class of continuous maps $b: E \rightarrow E$ such that
$\left(b_{1}\right) b$ is G-equivariant and bounded;
$\left(b_{2}\right)$ for every $R>0$, there exists a finite set of indexes $I(R) \subset Z$ such that

$$
b\left(B_{R}\right) \subset \bigoplus_{j \in I(R)} E_{j}
$$

Finally we define H^{*} as the class of all maps h such that
$\left(\boldsymbol{H}_{1}^{*}\right) \quad h$ is a homeomorphism;
(H_{2}^{*}) $h=U_{0}+b_{0}$ where $U_{0} \in \mathcal{U}, b_{0} \in \mathcal{B}$;
$\left(H_{3}^{*}\right) \quad h^{-1}=U_{1}+b_{1}$ where $U_{1} \in \mathfrak{U}, b_{1} \in \mathscr{B}$;
$\left(\boldsymbol{H}_{4}^{*}\right) \quad h(0)=\mathbf{0}$.
Obviously H^{*} is a nonempty class of bounded G-equivariant homeomorphisms. It is not difficult to prove that H^{*} is a group (cf. [13]).

From now on H^{*} will denote the class of homeomorphisms just defined and $i^{*}(\cdot, \cdot)=i^{*}\left(\cdot, \cdot, H^{*}\right)$.

The following "deformation theorem» holds:
THEOREM 3.3. - Suppose that $f \in C^{\mathbf{1}}(E, \boldsymbol{R})$ satisfies $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$ and that it is G-invariant. Given $\varepsilon>0$ and a neighborhood N of K_{c}, there exist constants $\bar{\varepsilon}>\varepsilon>0$ (with $\bar{\varepsilon}<c$) and an operator $\eta: E \rightarrow E$ such that
(a) $\eta\left(A_{c+\varepsilon}-N\right) \subset A_{e-\varepsilon} ;$
(b) $\eta=U+b \in H^{*}$;
(c) $\quad U(u)=u, b(u)=0$ for every $u \notin f^{-1}([c-\bar{\varepsilon}, c+\bar{\varepsilon}])$.

In particular f satisfies the condition (B) in $] 0,+\infty\left[\right.$ with respect to H^{*} (cf. Definition 2.6).

The proof of this theorem is quite technical and it will be given in Appendix 1.
The following theorem permits us to estimate the pseudoindex of suitable sets of B :

Theorem 3.4. - Consider two G-invariant closed linear subspaces, $V, W \subset E$ and a bounded G-invariant neighborhood of the origin Ω. Suppose that
(i) Fix $G \subset W$ (or Fix $G \subset V$);
(ii) $\operatorname{dim}(V \cap W)<+\infty, \operatorname{codim}(V+W)<+\infty$;
(iii) the index theory i satisfies the d-dimension property (of. Definition 2.2).

Then

$$
i^{*}(\Omega \cap V, W) \geqslant \frac{\operatorname{dim}(V \cap W)-\operatorname{codim}(V+W)}{d}
$$

Also the proof of this theorem is quite technical and it will be given in Appendix 2.
Now we are ready to prove Theorem 1.4. The proof is based on Theorem 2.7. We have to check that all the assumptions of Theorem 2.7 are fulfilled.

We choose $G=S^{1}$ and $G=r(G)$ where r is a unitary representation of S^{1}. By virtue of Theorem $3.3, f$ satisfies the condition (B) in $] 0,+\infty[$. We set $D=W$ and $F=S_{e} \cap V$. Then (2.7) (i) and (ii) follow from (f_{5}) (iv) and (v).

By virtue of (f_{5}) (i), (ii), (iii), the assumptions of Theorem 3.4 are satisfied.
Moreover, $G=r\left(S^{1}\right)$ satisfies the 2 -dimension property (cf. [10]). Then

$$
\bar{k}=\frac{1}{2}[\operatorname{dim}(V \cap W)-\operatorname{codim}(V+W)]
$$

Therefore c_{1}, \ldots, c_{k} are critical values of f.

By $\left(f_{5}\right)$ (vi), it follows that $K_{\theta_{i}} \cap \operatorname{Fix}\left(S^{1}\right)=\emptyset$; then the second alternative of Remark 2.8 (b) holds.

Proof of Theorem 1.7. - In order to prove Theorem 1.7, we shall apply Theorem 2.10.

First, we define the class of homeomorphism K as follows: Set

$$
\begin{equation*}
K=\left\{h=U+b \in H^{*}: h(u)=u \text { for every } u \in f^{-1}(]-\infty, 0[)\right\} \tag{3.2}
\end{equation*}
$$

In this case H^{*} is given by the Definition 3.2 with $G=\{I d\}$, i.e. no invariancy property is required for $h \in H^{*}$.

Now we need a lemma which is a variant of other similar results (cf. e.g. [19], [8]).
Lemona 3.5. - Q and $S_{\varrho} \cap V$, as defined in Theorem 1.7, K-intersect (cf. Definition 2.9).

Proof. - We have to show that

$$
h(Q) \cap\left(S_{\varrho} \cap V\right) \neq \emptyset, \quad \forall h \in K
$$

The above formula holds provided that for each $h \in K$ the following equations have at least one solution:

$$
\left\{\begin{array}{l}
s \in\left[0, R_{1}\right] ; \quad u \in B_{R_{2}} \cap V^{\perp} \tag{3.3}\\
\left\|P_{V} \cdot h(u+s e)\right\|=\varrho \\
P_{V^{\perp}} \cdot h(u+s e)=0
\end{array}\right.
$$

where P_{V} and $P_{V^{\perp}}$ denote the projection on V and V^{\perp} respectively. Let $h=U+$ $+b \in K, U=\exp [\alpha(\cdot) L][\cdot]$, then the second equation in (3.3) can be written

$$
\begin{equation*}
P_{V^{\perp}}[\exp [\alpha(u+s e) L](u+s e)]+P_{V^{\perp}} b(u+s e)=0 \tag{3.4}
\end{equation*}
$$

Since se $\in V$, we have

$$
\exp [\alpha(u+s e) L](s e) \in V
$$

Then (3.4) can be written as follows

$$
\begin{equation*}
P_{V^{\perp}}[\exp [\alpha(u+s e) L](u)]+P_{V^{\perp}} b(u+s e)=0 \tag{3.5}
\end{equation*}
$$

Moreover, since $u \in V^{\perp}$, we have

$$
\exp [\alpha(u+s e) L](u) \in V^{\perp}
$$

Then (3.5) can be written

$$
\begin{equation*}
\exp [\alpha(u+s e) L] u+P_{\nabla^{1}} b(u+s e)=0 \tag{3.6}
\end{equation*}
$$

(3.6) is equivalent to the following equation

$$
\begin{equation*}
u+\exp [-\alpha(u+s e) L]\left[P_{V^{\perp}} b(u+s e)\right]=0 \tag{3.7}
\end{equation*}
$$

Then (3.3) can be written as follows

$$
\left\{\begin{array}{l}
s \in\left[0, R_{1}\right], \quad u \in B_{R_{2}} \cap V^{\perp} \tag{3.8}\\
\left\|P_{V} h(u+s e)\right\|=\varrho \\
u+\exp [-\alpha(u+s e) L]\left[P_{V^{\perp}} b(u+s e)\right]=0
\end{array}\right.
$$

Using a Leray-Schauder degree argument as in [19] (cf. also [8] and [16]) it can be proved that equation (3.8) has at least one solution.

Proof of Theorem 1.7. - If K is the class of homeomorphisms (3.2), then by virtue of Theorem 3.3, f satisfies the property (B) in $] 0,+\infty[$. We now set $D=Q$ and $F=S_{\varrho} \cap V$. Then by virtue of Lemma $3.5, F$ and $D K$-intersect.

Therefore the conclusion follows from Theorem 2.10.

II. APPLICATIONS TO HAMILTONIAN SYSTEMS

4. - Some estimates for the action functional.

We initially introduce some functional spaces we shall need in the following. If $m \in N$ and $t>1$ we set

$$
L^{t}=L^{t}\left(\mathcal{S}^{1}, R^{m}\right)
$$

If $s \in R$ we set

$$
W^{s}=\left\{u \in L^{2}\left(S^{1}, R^{2 n}\right): \sum_{\substack{j \in Z \\ k=1, \ldots, 2 n}}\left(1+|j|^{2}\right) s\left|u_{j k}\right|^{2}<+\infty\right\}
$$

where $u_{j n}(j \in Z, k=1, \ldots, 2 n)$ are the Fourier components of u with respect to the basis (in $L^{2}\left(S^{1}, R^{2 n}\right)$)

$$
\begin{equation*}
\psi_{j k}=\exp [j t J] \Phi_{k}=\cos (j t) \Phi_{k}+J \operatorname{sen}(j t) \Phi_{k} \tag{4.1}
\end{equation*}
$$

2 - Annali di Matematica
where $\left\{\Phi_{k}\right\}(k=1, \ldots, 2 n)$ is the standard basis in $R^{2_{n}}$. W's equipped with the inner product

$$
\begin{equation*}
(u \mid v)_{W^{s}}=\sum_{j, k}\left(1+|j|^{2}\right)^{s} u_{j k} v_{j k} \tag{4.2}
\end{equation*}
$$

is a Hilbert space. We recall that the embedding $W^{s} \rightarrow L^{t}$ is compact if $1 / t>\frac{1}{2}-s$. So in particular $W^{\frac{1}{3}}$ is compactly embedded in L^{t} for any $t \geqslant 1$.

Now we consider the Hamiltonian system (0.2) where $H(t, z)$ is T-periodic in t. Making the change of variable $t \rightarrow 2 \pi t / T$, (0.2) becomes

$$
\begin{equation*}
-J \dot{z}=\omega H_{2}(\omega t, z) \quad \text { where } \quad \omega=\frac{T}{2 \pi} \tag{4.3}
\end{equation*}
$$

Obviously the 2π-periodie solutions of (4.3) correspond to the T-periodic solutions of (0.2).

In order to construct the action functional whose critical points are the 2π periodic solutions of (4.3) we introduce the following bilinear form

$$
a(u, v)=\sum_{j \in Z} \sum_{k=1}^{2 n} j u_{j_{k}} v_{j k}, \quad u, v \in W^{\frac{1}{\bar{z}}}
$$

Where $u_{j k}, v_{j k}$ are the Fourier-components of u, v with respect to the basis (4.1). The bilinear form $a(\cdot, \cdot)$ is symmetric and continuous in $W^{\frac{2}{2}}$. Let $L: W^{\frac{1}{2}} \rightarrow W^{\frac{1}{2}}$ be the self-adjoint, continuous operator defined by

$$
\begin{equation*}
(L u \mid v)_{W^{\frac{1}{2}}}=a(u, v), \quad u, v \in W^{\frac{1}{3}} \tag{4.4}
\end{equation*}
$$

Observe that if $u, v \in C^{1}\left(S^{1}, R^{2_{n}}\right)$

$$
(L u \mid v)_{W^{\frac{1}{2}}}=\int_{0}^{2 \pi}(-J \dot{u}, v) d t
$$

Suppose now that there are positive constants c_{1}, c_{2}, s such that

$$
\begin{equation*}
\left|H_{z}(t, z)\right| \leqslant c_{1}+c_{2}|z|^{s} \quad \text { for any } i \text { and } z \tag{4.5}
\end{equation*}
$$

Standard arguments show that the functional

$$
\begin{equation*}
f(z)=\frac{1}{2}(L z \mid z)_{W^{\frac{1}{3}}}-\omega \int_{0}^{2 \pi} H(\omega t, z) d t, \quad z \in W^{\frac{1}{t}} \tag{4.6}
\end{equation*}
$$

is Frechét-differentiable and that its critical points correspond to the 2π-periodic solutions of (4.3). For simplicity in the sequel we shall take $\omega=1$ and suppose
$H(t, z) 2 \pi$-periodic in t, so (4.6) becomes

$$
\begin{equation*}
f(z)=\frac{1}{2}\left(L_{z} \mid z\right)_{W^{\frac{1}{2}}}-\psi(z) \tag{4.7}
\end{equation*}
$$

Where $\psi(z)=\int_{0}^{2 \pi} H(t, z) d t$.
Since $W^{\frac{1}{2}}$ is compactly embedded in L^{t} for any $t \geqslant 1$, by (4.5) we have that the map $z \rightarrow H_{z}(t, z)$ is compact from $W^{\frac{1}{2}}$ on $W^{\frac{1}{2}}$, then ψ^{\prime} is compact.

Now it is easy to verify (cf. [17], sec. 3) that the spectrum of L consists of the limit points $-1,1$ and of the eigenvalues

$$
\lambda_{i}=\frac{j}{\left(1+j^{2}\right)^{\frac{2}{2}}}, \quad j \in Z,
$$

and that each eigenvalue λ_{j} has multiplicity $2 n$. Then the functional (4.7) is «strongly indefinite» in the sense used in Section 1, moreover it satisfies the assumptions $\left(f_{1}\right)$ and $\left(f_{2}\right)$ of $\S 1$, because we can suppose $H(t, 0)=0$.

Let $M_{\lambda_{j}}$ denote the eigenspace corresponding to the eigenvalue λ_{j}. We set

$$
W^{+}=\overline{\bigoplus_{j>0} M_{\lambda_{j}}}, \quad W^{-}=\overline{\bigoplus_{j<0} M_{\lambda_{j}}}, \quad W^{0}=\operatorname{Ker} L
$$

Every $z \in W^{\frac{1}{s}}$ can be decomposed as follows

$$
z=z^{+}+z^{-}+z^{0} \quad \text { with } z^{+} \in W^{+}, z^{-} \in W^{-}, z^{0} \in W^{0}
$$

So we have
(a) $\langle L z, z\rangle=\left\langle L z^{+}, z^{+}\right\rangle+\left\langle L z^{-}, z^{-}\right\rangle$
(b) $(1 / \sqrt{2})\left\|z^{+}\right\|^{2} \leqslant\left\langle L z^{+}, z^{+}\right\rangle \leqslant\left\|z^{+}\right\|^{2}$
(c) $(1 / \sqrt{2})\left\|z^{-}\right\|^{2} \leqslant-\left\langle L z^{-}, z^{-}\right\rangle \leqslant\left\|z^{-}\right\|^{2}$.

Now our aim is to find conditions on the Hamiltonian H which guarantee that also the assumption $\left(f_{3}\right)$ is satisfied. We consider a sequence $\left\{z_{n}\right\} \subset W^{\frac{1}{3}}, z_{n}=\left(p_{n}, q_{n}\right)$ such that

$$
\begin{align*}
& \left.f\left(z_{n}\right) \rightarrow c \in\right] 0,+\infty[\tag{4.9}\\
& \left\|f^{\prime}\left(z_{n}\right)\right\| \cdot\left\|z_{n}\right\| \rightarrow 0 \tag{4.10}
\end{align*}
$$

Let us initially prove the following lemma.

Lemma 4.1. - Let $\left\{z_{n}\right\} \subset W^{\frac{1}{2}}, z_{n}=\left(p_{n}, q_{n}\right)$, be a sequence satisfying (4.9) and (4.10), then the following sequences

$$
\begin{align*}
& \int_{0}^{2 \pi}\left(H\left(t, z_{n}\right)-\left(H_{p}\left(t, z_{n}\right) \mid p_{n}\right)\right) d t \tag{4.11}\\
& \int_{0}^{2 \pi}\left(H\left(t, z_{n}\right)-\left(H_{q}\left(t, z_{n}\right) \mid q_{n}\right)\right) d t \tag{4.12}
\end{align*}
$$

are bounded.

Proof. - Easy computations show that
(a) $\left\langle f^{\prime}\left(z_{n}\right),\left(p_{n}, 0\right)\right\rangle=\int_{0}^{2 \pi}\left(\left(\dot{q}_{n} \mid p_{n}\right)-\left(H_{p}\left(t, z_{n}\right) \mid p_{n}\right)\right) d t$
(b) $\left\langle f^{\prime}\left(z_{n}\right),\left(0, q_{n}\right)\right\rangle=\int_{0}^{2 \pi}\left(\left(\dot{q}_{n} \mid p_{n}\right)-\left(H_{q}\left(t, z_{n}\right) \mid q_{n}\right)\right) d t$
(c) $f\left(z_{n}\right)=\int_{0}^{2 \pi}\left(\left(\dot{q}_{n} \mid p_{n}\right)-H\left(t, z_{n}\right)\right) d t$.

By (4.9) and (4.10) the sequences

$$
\left\langle f^{\prime}\left(z_{n}\right),\left(p_{n}, 0\right)\right\rangle, \quad\left\langle f^{\prime}\left(z_{n}\right),\left(0, q_{n}\right)\right\rangle, \quad f\left(z_{n}\right)
$$

are bounded. Then also right hand sides of the (4.13)'s are bounded. Subtracting (4.13) (c) from (4.13) (a) we get that (4.11) is bounded. Subtracting (4.13) (c) from (4.13) (b) we get that (4.12) is bounded.

Now we consider the case in which H has the form (0.4) with $a_{i j}, b_{i}$ and V of class C^{1}.

In the sequel we shall use the following shortened notation:
(4.14) $a(q), A(q), a^{k}(q) \quad(k=1, \ldots, n)$ will denote respectively the matrices

$$
\left\{\alpha_{i j}(t, q)\right\}, \quad\left\{\left(\operatorname{grad} a_{i j}(t, q) \mid q\right)\right\}, \quad\left\{\frac{\partial a_{i j}}{\partial q_{k}}(t, q)\right\}, \quad(k=1, \ldots, n)
$$

Moreover
(4.15) $b(q), B(q), b^{k}(q)(k=1, \ldots, n)$ will denote respectively the vectors in R^{n}

$$
\left\{b_{i}(t, q)\right\}, \quad\left\{\left(\operatorname{grad} b_{i}(t, q) \mid q\right)\right\}, \quad\left\{\frac{\partial b_{i}}{\partial q_{k}}(t, q)\right\}, \quad(k=1, \ldots, n)
$$

Moreover, if v is a vector in R^{n} or $R^{2 n},|v|$ will denote its norm.

Leyma 4.2. - Assume that the Hamiltonian H has the form (0.4) with $a_{i j}, b_{i}$ $(i, j=1, \ldots, n)$ and V of class C^{1}. Assume moreover that $\left(V_{1}\right),\left(A_{1}\right),\left(A_{2}\right),\left(B_{1}\right),\left(B_{2}\right)$ hold. Then, if $\left\{z_{n}\right\}\left(z_{n}=\left(p_{n}, q_{n}\right)\right)$ is a sequence in $W^{\frac{1}{2}}$ satisfying (4.9) and (4.10), the following sequences

$$
\int_{0}^{2 \pi} V\left(t, q_{n}\right) d t, \quad \int_{0}^{2 \pi}\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right) d t
$$

are bounded.

Proof. - Let $\delta>0$ be a constant such that

$$
\begin{equation*}
\alpha-\beta-2 \delta=2 \tag{4.16}
\end{equation*}
$$

(α and β are the constants of assumptions $\left(V_{1}\right)$ and $\left(A_{2}\right)$).
By Lemma 4.1 we have that the sequences

$$
\begin{equation*}
(1+\beta+\delta) \int_{0}^{2 \pi}\left[\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right)-V\left(t, q_{n}\right)\right] d t \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[\left(A\left(q_{n}\right) p_{n} \mid p_{n}\right)+\left(B\left(q_{n}\right) \mid p_{n}\right)+\left(V_{q}\left(t, q_{n}\right) \mid q_{n}\right)-H\left(t, z_{n}\right)\right] d t \tag{4.18}
\end{equation*}
$$

are bounded.
Adding (4.17) to (4.18) we obtain that the sequence

$$
\begin{align*}
& \int_{0}^{2 \pi}\left[\delta\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right)+\left(A\left(q_{n}\right) p_{n} \mid p_{n}\right)+\beta\left(\alpha\left(q_{n}\right) p_{n} \mid p_{n}\right)+\right. \tag{4.19}\\
& \left.\quad+\left(V_{q}\left(t, q_{n}\right) \mid q_{n}\right)+(-\beta-2-\delta) \nabla\left(t, q_{n}\right)+\left(B\left(q_{n}\right) \mid p_{n}\right)-\left(b\left(q_{n}\right) \mid p_{n}\right)\right] d t
\end{align*}
$$

is bounded.
By $\left(V_{1}\right),\left(A_{2}\right),(4.16)$ and (4.19) there exists $M_{1}>0$ such that

$$
\begin{equation*}
M_{1}>\int_{0}^{2 \pi}\left[\delta\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right)+\delta V\left(t, q_{n}\right)+\left(B\left(q_{n}\right) \mid p_{n}\right)-\left(b\left(q_{n}\right) \mid p_{n}\right)\right] d t \tag{4.20}
\end{equation*}
$$

for every $n \in N$.
Now, by $\left(B_{1}\right)$ and $\left(B_{2}\right)$

$$
\begin{equation*}
\frac{|B(q)|^{2}+|b(q)|^{2}}{\delta v(q)} \leqslant \frac{\delta}{2} V(t, q)+M_{2} \quad \text { for every } t \in R \text { and } q \in R^{n} \tag{4.21}
\end{equation*}
$$

where M_{2} is a positive constant. Then, using (4.21), we get

$$
\begin{align*}
& \int_{0}^{2 \pi}\left[\left(B\left(q_{n}\right) \mid p_{n}\right)-\left(b\left(q_{n}\right) \mid p_{n}\right)\right] d t \leqslant \int_{0}^{2 \pi}\left[\left|B\left(q_{n}\right)\right|\left|p_{n}\right|+\left|b\left(q_{n}\right)\right|\left|p_{n}\right|\right] d t \leqslant \tag{4.22}\\
& \leqslant \int_{0}^{2 \pi}\left[\frac{\left|B\left(q_{n}\right)\right|^{2}}{\delta v\left(q_{n}\right)}+\left|p_{n}\right|^{2} \cdot \frac{\delta}{4} v\left(q_{n}\right)+\frac{\left|b\left(q_{n}\right)\right|^{2}}{\delta v\left(q_{n}\right)}+\frac{\delta}{4} v\left(q_{n}\right)\left|p_{n}\right|^{2}\right] d t \leqslant \\
& \leqslant \int_{0}^{2 \pi}\left[\frac{\delta}{2} V\left(t, q_{n}\right)+\frac{\delta}{2} v\left(q_{n}\right)\left|p_{n}\right|^{2}\right] d t+{ }_{5}^{5} M_{3} \quad \text { for every } n \in N
\end{align*}
$$

where M_{3} is a positive constant. By (4.20), (4.22) and $\left(A_{1}\right)$ we deduce that

$$
\begin{aligned}
M_{1} \geqslant \int_{0}^{2 \pi}\left[\delta\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right)+\right. & \left.\delta V\left(t, q_{n}\right)-\frac{\delta}{2} V\left(t, q_{n}\right)-\frac{\delta}{2} v\left(q_{n}\right)\left|p_{n}\right|^{2}\right] d t-M_{3} \geqslant \\
& \geqslant \int_{0}^{2 \pi}\left[\frac{\delta}{2}\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right)+\frac{\delta}{2} V\left(t, q_{n}\right)\right] d t-M_{3} \quad \text { for every } n \in N .
\end{aligned}
$$

From the above inequality, the conclusion follows.
Lemma 4.3. - Let the assumptions of Lemma 4.2 hold. Moreover assume that (V_{2}), $\left(A_{3}\right)$ and $\left(A_{4}\right)$ hold. Then, if $\left\{z_{n}\right\},\left(z_{n}=\left(p_{n}, q_{n}\right)\right)$, is a sequence in $W^{\frac{1}{3}}$ satisfying (4.9) and (4.10), the sequence

$$
\int_{0}^{2 \pi}\left|H_{z}\left(t, z_{n}\right)\right| d t
$$

is bounded.

Proof. - Just computing $H_{z}(t, z)$, we get

$$
\begin{align*}
\left|H_{z}\left(t, z_{n}\right)\right| \leqslant 2\left|a\left(q_{n}\right) p_{n}\right|+\left|b\left(q_{n}\right)\right| & +\sum_{k}\left|\left(a^{k}\left(q_{n}\right) p_{n} \mid p_{n}\right)\right|+ \tag{4.23}\\
& +\sum_{k_{k}}\left|\left(b^{k}\left(q_{n}\right) \mid p_{n}\right)\right|+\left|V_{q}\left(t, q_{n}\right)\right| \quad \text { for every } n \in N
\end{align*}
$$

Observe that

$$
\begin{equation*}
\text { for every } q, p \in R^{n}, \quad|a(q) p| \leqslant\|a(q)\|+(a(q) p \mid p) \tag{4.24}
\end{equation*}
$$

By (4.24), $\left(A_{4}\right)$ and Lemma 4.2, it follows that
(4.25) for every $n \in N, \quad \int_{0}^{2 \pi}\left|a\left(q_{n}\right) p_{n}\right| d t \leqslant \int_{0}^{2 \pi}\left[\left\|a\left(q_{n}\right)\right\|+\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right)\right] d t \leqslant M_{1}$
where M_{4} is a positive constant. By $\left(A_{1}\right)$, we get that

$$
\begin{equation*}
\|a(q)\| \geqslant v(q) \quad \text { for every } q \in R^{n} . \tag{4.26}
\end{equation*}
$$

Then, from $\left(B_{1}\right)$, the above formula and $\left(A_{4}\right)$ we get:

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|b\left(q_{n}\right)\right| d t \leqslant \int_{0}^{2 \pi} v\left(q_{n}\right)^{\frac{1}{2}} \cdot\left|V\left(t, q_{n}\right)\right|^{\frac{1}{2}} d t+M_{5} \leqslant\left(\int_{0}^{2 \pi} v\left(q_{n}\right) d t\right)^{\frac{1}{2}} \cdot\left(\int_{0}^{2 \pi}\left|V\left(t, q_{n}\right)\right|^{\frac{1}{2}} d t\right)+M_{5} \leqslant \\
& \quad \leqslant\left(\int_{0}^{2 \pi}\left\|a\left(q_{n}\right)\right\| d t\right)^{2 \pi} \cdot\left(\int_{0}^{2 \pi}\left|V\left(t, q_{n}\right)\right| d t\right)^{\frac{1}{2}}+M_{5} \leqslant M_{0} \int_{0}^{2 \pi}\left|V\left(t, q_{n}\right)\right| d t+M_{7} \quad \text { for every } n \in N .
\end{aligned}
$$

Then, by Lemma 4.2 and the above inequality, it follows that

$$
\begin{equation*}
\forall n \in N, \quad \int_{0}^{2 \pi}\left|b\left(q_{n}\right)\right| d t \leqslant M_{8} \tag{4.27}
\end{equation*}
$$

Now, by $\left(A_{3}\right)$ and Lemma 4.2, we have
(4.28) $\quad \forall n \in N \quad \sum_{k} \int_{0}^{2 \pi}\left|\left(\alpha^{k}\left(q_{n}\right) p_{n} \mid p_{n}\right)\right| d t \leqslant M_{9} \int_{0}^{2 \pi}\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right) d t \leqslant M_{10}$.

Moreover, using (B_{2}) and (4.26), we have

$$
\begin{aligned}
V n \in N \quad \sum_{k} \int_{0}^{2 \pi}\left|\left(b^{k}\left(q_{n}\right) \mid p_{n}\right)\right| d t \leqslant \sum_{k} & \left(\int_{0}^{2 \pi} \frac{\left|b^{k}\left(q_{n}\right)\right|^{2}}{\nu\left(q_{n}\right)}\right)^{\frac{1}{z}} \cdot\left(\int_{0}^{2 \pi} \nu\left(q_{n}\right)\left|p_{n}\right|^{2} d t\right)^{\frac{1}{2}} \leqslant \\
& \leqslant\left(M_{11}+M_{12} \int_{0}^{2 \pi} V\left(t, q_{n}\right) d t\right)^{\frac{1}{2}} \cdot\left(\int_{0}^{2 \pi}\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right) d t\right)^{\frac{1}{2}} .
\end{aligned}
$$

Then, from Lemma 4.2, we get

$$
\begin{equation*}
\forall n \in N \quad \sum_{k} \int_{0}^{2 \pi}\left|\left(b^{k}\left(q_{n}\right) \mid p_{n}\right)\right| d t \leqslant M_{13} \tag{4.29}
\end{equation*}
$$

At last we observe that by Lemma 4.2 and (V_{2})

$$
\begin{equation*}
\forall n \in N, \quad \int_{0}^{2 \pi}\left|V\left(t, q_{n}\right)\right| d t \leqslant M_{1 \underline{\Lambda}} \tag{4.30}
\end{equation*}
$$

So, by (4.23), (4.25), (4.27), (4.28), (4.29) and (4.30), we deduce that the sequence $\int_{0}^{2 \pi}\left|H_{z}\left(t, z_{n}\right)\right| d t$ is bounded.

Liemma 4.4. - Let the assumption of Lemma 4.3 hold. Let $\left\{z_{n}\right\} \subset W^{\frac{1}{2}}$ be a sequence which satisfies (4.9) and (4.10). Then we can select from $\left\{z_{n}\right\}$ a subsequence which is bounded in $W^{\frac{1}{2}}$.

Proof. - Suppose that $\left\{z_{n}\right\} \subset W^{\frac{1}{2}}$ satisfies (4.9) and (4.10). Then by Lemma 4.3 $\left\{H_{z}\left(t, z_{n}\right)\right\}$ is bounded in $L^{1} . L^{1}$ is continuously embedded into $W^{-\frac{1}{2}-\eta / 2}$, for any $\eta>0$. Then

$$
\begin{equation*}
\left\|H_{z}\left(t, z_{n}\right)\right\|_{W^{-\frac{1}{2}-n / 2}} \quad \text { is bounded. } \tag{4.31}
\end{equation*}
$$

By (4.10) we have:

$$
\begin{equation*}
L z_{n}-H_{z}\left(t, z_{n}\right) \rightarrow 0 \quad \text { in } W^{-\frac{1}{2}} \tag{4.32}
\end{equation*}
$$

So by (4.31) and (4.32) we have

$$
\begin{equation*}
L z_{n} \text { is bounded in } W^{-\frac{1}{2}-\eta / 2} \tag{4.33}
\end{equation*}
$$

By the definition of the space $W^{\frac{1}{5}}$ and easy compatation, we get

$$
\begin{equation*}
\text { for each } z \in W^{\frac{1}{2}}, \quad\|\tilde{z}\|_{W^{\frac{1}{2}-n / 2}} \leqslant \text { const }\|L z\|_{W^{-\frac{1}{3}-n / 2}} \tag{4.34}
\end{equation*}
$$

where $\tilde{z}=z-z^{0}=z^{+}+z^{-}$. By (4.33) and (4.34) we have that

$$
\begin{equation*}
\left\|\tilde{z}_{n}\right\|_{W^{\frac{1}{3}-n j^{2}}} \text { is bounded } \tag{4.35}
\end{equation*}
$$

Then, since $\eta>0$ is arbitrary, by the Sobolev embedding theorems,

$$
\begin{equation*}
\left\|\tilde{z}_{n}\right\|_{L^{t}} \quad \text { is bounded for any } t \geqslant 1 \tag{4.36}
\end{equation*}
$$

Then next step is to prove that

$$
\begin{equation*}
\left\{z_{n}^{0}\right\} \quad \text { is bounded in } L^{1} \tag{4.37}
\end{equation*}
$$

We set

$$
\left(p_{n}^{0}, q_{n}^{0}\right)=z_{n}^{0}, \quad \forall n \in N .
$$

By (V_{1}) we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|q_{n}^{0}\right|^{x} d t \leqslant c_{1} \int_{0}^{2 \pi} V\left(t, q_{n}^{0}\right) d t+c_{2}, \quad \forall n \in N \tag{4.38}
\end{equation*}
$$

where c_{1}, c_{2} are positive constants.

Then, by (4.38) and Lemma 4.2,

$$
\begin{equation*}
\left\{q_{n}^{0}\right\} \quad \text { is bounded in } L^{\alpha} \text { and then in } L^{1} \tag{4.39}
\end{equation*}
$$

Now we have to show that also $\left\{p_{n}^{0}\right\}$ is bounded in L^{1}.
To this end we initially show that there exists $\mu>0$ s.t.

$$
\begin{equation*}
\forall n \in N, \quad \int_{0}^{2 \pi} v\left(q_{n}\right)>\mu \tag{4.40}
\end{equation*}
$$

By (4.36) and (4.39) there exists $M>0$ s.t.

$$
\begin{equation*}
\forall n \in N, \quad\left\|q_{n}\right\|_{L^{1}} \leqslant M \tag{4.41}
\end{equation*}
$$

We now set

$$
\nu_{0}=\inf _{|\alpha| \leqslant M / \tau} v(q) \quad \text { and } \quad \Omega_{n}=\left\{t \in[0,2 \pi]| | q_{n}(t) \mid \leqslant M / \pi\right\}
$$

Then

$$
\forall n \in N, \quad M \geqslant \|\left|q_{n}\right|_{L^{2}} \geqslant \int_{[0,2 \pi] \backslash \Omega_{n}}\left|q_{n}\right| d t \geqslant M / \pi\left(2 \pi-\operatorname{meas} \Omega_{n}\right) .
$$

From which we get

$$
\forall n \in N, \quad \operatorname{meas} \Omega_{n} \geqslant \pi
$$

Therefore we have

$$
\forall n \in N, \quad \int_{0}^{2 \pi} v\left(q_{n}\right) d t \geqslant \int_{\Omega_{n}} v\left(q_{n}\right) d t \geqslant v_{0} \cdot \text { meas } \Omega_{n} \geqslant v_{0} \pi
$$

Then (4.40) holds with $\mu=\nu_{0} \pi$.
Now, by Lemma 4.2 and $\left(A_{1}\right)$ there exists $0>0$ s.t.
(4.42) $\quad \forall n \in N, \quad c \geqslant \int_{0}^{2 \pi}\left(a\left(q_{n}\right) p_{n} \mid p_{n}\right) d t \geqslant \int_{0}^{2 \pi} v\left(q_{n}\right)\left|p_{n}\right|^{2}=\int_{0}^{2 \pi} v\left(q_{n}\right)\left|p_{r s}^{0}+\tilde{p}_{n}\right|^{2} d t \geqslant$

$$
\begin{array}{r}
=\left|p_{n}^{0}\right|^{2 \pi} \int_{0}^{2 \pi} v\left(q_{n}\right) d t-2\left|p_{n}^{0}\right| \int_{0}^{2 \pi} v\left(q_{n}\right)\left|\tilde{p}_{n}\right| d t+\int_{0}^{2 \pi} v\left(q_{n}\right)\left|\tilde{p}_{n}\right|^{2} d t \geqslant \\
\geqslant\left|p_{n}^{0} \|^{2} \int_{0}^{2 \pi} v\left(q_{n}\right) d t-2\right| p_{0}\left|\int_{0}^{2 \pi} v\left(q_{n}\right)\right| \tilde{p}_{n} \mid d t .
\end{array}
$$

Now

$$
\begin{equation*}
\int_{0}^{2 \pi} v\left(q_{n}\right)\left|\tilde{p}_{n}\right| d t \leqslant\left\|\nu\left(q_{n}\right)\right\|_{L^{2}} \cdot\left\|\tilde{p}_{n}\right\|_{L^{2}} \tag{4.43}
\end{equation*}
$$

By $\left(A_{4}\right)$ and $\left(V_{2}\right)$ we get

$$
\begin{equation*}
\forall n \in N, \quad\left\|v\left(q_{n}\right)\right\|_{L^{2}}^{2} \leqslant c_{1} \int_{0}^{2 \pi} V\left(t, q_{n}\right)^{2} d t+c_{2} \leqslant c_{3} \int_{0}^{2 \pi}\left|q_{n}\right|^{2 s} d t+c_{4} \tag{4.44}
\end{equation*}
$$

Where $c_{1}, c_{2}, c_{3}, c_{4}$ are positive constants.
Moreover, because ker L is finite dimensional, from (4.39) and (4.36) we deduce that

$$
\begin{equation*}
\left\|q_{n}\right\|_{\text {L}^{2 s}} \quad \text { is bounded. } \tag{4.45}
\end{equation*}
$$

Then from (4.43), (4.44), (4.45) it follows that

$$
\begin{equation*}
\forall n \in N, \quad \int_{0}^{2 \pi} v\left(q_{n}\right)\left|\tilde{p}_{n}\right| d t \leqslant\left\|v\left(q_{n}\right)\right\|_{L^{2}}\left\|\tilde{p}_{n}\right\|_{L^{2}} \leqslant c_{5}\left\|\tilde{p}_{n}\right\|_{L^{2}} \tag{4.46}
\end{equation*}
$$

Using (4.36) and (4.46) we get

$$
\begin{equation*}
\forall n \in N, \quad \int_{0}^{2 \pi} \nu\left(q_{n}\right)\left|\tilde{p}_{n}\right| d t \leqslant e_{6} \tag{4.47}
\end{equation*}
$$

where c_{6} is a positive constant. So from (4.42), (4.40) and (4.47) we get

$$
\begin{equation*}
\forall n \in N, \quad c \geqslant \mu\left|p_{n}^{0}\right|^{2}-c_{\tau}\left|p_{n}^{0}\right| \tag{4.48}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|p_{n}^{0}\right| \quad \text { is bounded } \tag{4.49}
\end{equation*}
$$

Finally, because $\operatorname{dim} \operatorname{ker} L<+\infty$, from (4.39), (4.49) and (4.36) we deduce that

$$
\begin{equation*}
\text { for any } t>1, \quad\left\|z_{n}\right\|_{L^{t}} \text { is bounded. } \tag{4.50}
\end{equation*}
$$

Let us now show that $\left\|z_{n}\right\|_{W^{\frac{1}{2}}}$ is bounded.
By (4.10) we have

$$
\begin{equation*}
\forall n \in N, \quad\left\|z_{n}^{+}\right\|_{W^{t}}^{2} \leqslant c_{7}\left(1+\int_{0}^{2 \pi}\left|H_{i z}\left(t, z_{n}\right) \| z_{n}^{+}\right| d t\right) \tag{4.51}
\end{equation*}
$$

where c_{7} is a positive constant.
By (4.23) and the assumptions $\left(\boldsymbol{H}_{0}\right)$ there exists $\gamma>0$ s.t.

$$
\forall z \in R^{2 n}, \forall t \in R, \quad\left|H_{z}(t, z)\right| \leqslant \operatorname{const}\left(1+|z|^{\gamma}\right)
$$

Then from (4.51) we get

$$
\begin{equation*}
\forall n \in N, \quad\left\|z_{n}^{+}\right\|_{W^{\frac{1}{2}}}^{2} \leqslant \operatorname{const}\left(1+\left\|z_{n}\right\|_{L^{2 v}}^{\gamma} \cdot\left\|z_{n}^{+}\right\|_{W^{\frac{1}{2}}}\right) . \tag{4.52}
\end{equation*}
$$

Then from (4.50) and (4.52) it follows that

$$
\left\|\tilde{z}_{n}^{+}\right\| \quad \text { is bounded }
$$

Analogously it can be proved that

$$
\left\|z_{n}^{-}\right\|_{W^{\frac{1}{2}}} \quad \text { is bounded }
$$

Finally, because $\operatorname{ker} L$ is finite dimensional, we deduce that also

$$
\left\|z_{n}^{0}\right\|_{W^{\frac{1}{2}}} \quad \text { is bounded }
$$

We conclude this section with the following lemma.
Lemma 4.5. - If $\left(H_{0}\right)$ hold, the functional (4.7) satisfies $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$ in the space $W^{\frac{1}{2}}$.

Proof. - $\left(f_{1}\right)$ (i) and $\left(f_{2}\right)$ follow from the construction of L.
By assumptions $\left(V_{2}\right),\left(A_{3}\right),\left(A_{4}\right),\left(B_{1}\right),\left(B_{2}\right)$ and standard majorizations, it follows that H satisfies (4.5). Then $\left(f_{1}\right)$ (ii) is satisfied. (f_{3}) follows from Lemma 4.4.

5. - Proof of theorems 0.1 and 0.2 .

In this section we shall prove Theorem 0.1 and 0.2 . It will be useful to introduce the following notation

$$
\begin{equation*}
W_{j}^{+}=\overline{\oplus_{k>j} M_{\lambda_{k}}}, \quad W_{j}^{-}=\overline{\bigoplus_{k<j} M_{\lambda_{k}}} \tag{5.1}
\end{equation*}
$$

If $j>0$, then $W_{j}^{+} \subset W^{+}$so that, for every $z \in W_{j}^{+},(4.8)(b)$ holds. The following lemmas provide estimates which shall be used in the proof of the theorems.

Lemma 5.1. - For every $c_{0}>0$, there exist $j \in Z$ and $R>0$ such that

$$
f(z) \geqslant c_{0} \quad \text { for every } z \in W_{j}^{+},\|z\|=R
$$

where f is the functional defined by (4.7).

Proof. - Since \boldsymbol{H} grows polynomially, there are constants $r, c_{1}, c_{2}>0$ such that

$$
|H(t, z)| \leqslant c_{1}+c_{2}|z|^{r}
$$

Then

$$
\begin{equation*}
|\psi(z)| \leqslant 2 \pi c_{1}+c_{2}\|z\|_{L^{r}}^{n} \tag{5.2}
\end{equation*}
$$

Now, by the Sobolev embedding theorem, there are constants $c_{3}, s>0$ such that

$$
\begin{equation*}
\|z\|_{Z^{r}} \leqslant c_{3}\|z\|_{W^{\frac{1}{2}}-s} \tag{5.3}
\end{equation*}
$$

If $z \in W_{j}^{+}, j>1$, we have

$$
\|z\|_{W^{\frac{1}{2}-s}}^{2}=\sum_{k>j}\left(1+k^{2}\right)^{\frac{1}{2}-s}\left|z_{k}\right|^{2} \leqslant\left(1+j^{2}\right)^{-s} \sum_{k>j}\left(1+k^{2}\right)^{\frac{1}{2}}\left|z_{k}\right|^{2}=\left(1+j^{2}\right)^{-s}\|z\|^{2} \leqslant j^{-2 s}\|z\|^{2}
$$

Then by the above formula, (5.2) and (5.3) we get

$$
|\psi(z)| \leqslant c_{4} j^{-e}\|z\|^{r}+c_{5} \quad \text { for every } z \in W_{j}^{+}
$$

where c_{4} and c_{5} are suitable positive constants and $\varrho=s r>0$.
Then, by (4.8) and the above formula, for $z \in W_{i}^{+},\|z\|=R$ we have

$$
f(z)=\frac{1}{2}\langle L z, z\rangle-\psi(z) \geqslant \frac{1}{4} R^{2}-c_{4} j^{-\varrho} R^{r}-c_{5}=\left[\frac{1}{4}-c_{4} j^{-\varrho}-R^{r-2}\right] R^{2}-c_{5}
$$

The above formula proves the lemma, in fact, it is sufficient to choose R such that $\frac{1}{8} R^{2}>c_{5}+c_{0}$ and j such that

$$
e_{4} j^{-\varrho} R^{r-2}<\frac{1}{8}
$$

Lemma 5.2. - Suppose that H satisfies assumptions $\left(\boldsymbol{H}_{\mathbf{0}}\right)$. Then there exist constants a_{1} and $a_{2}>0$ such that

$$
\begin{equation*}
H(z, t)>a_{1}|q|^{\alpha}-a_{2} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta H(z, t)+\left(H_{z}(z, t) \mid z\right)>a_{1}|q|^{\alpha}+\mu|p|^{2}-a_{2} \tag{5.5}
\end{equation*}
$$

where $z=(p, q)$ and μ is the constant in $\left(A_{2}\right)$.
Proof. - We prove (5.5):
We shall use the notations introduced in Section 4 (cf. (4.14), (4.15)), moreover c_{1}, \ldots will denote positive constants.

By $\left(A_{1}\right),\left(A_{2}\right)$ and $\left(V_{1}\right)$ we have

$$
\begin{align*}
& \beta H(z, t)+\left(H_{z}(z, t) \mid z\right)=([\beta a(q)+2 a(q)+A(q)] p \mid p)+ \tag{5.6}\\
&+((\beta+1) b(q)+B(q) \mid p)+\beta V(q, t)+\left(V_{q}(q, t) \mid q\right) \geqslant \\
& \geqslant \mu|p|^{2}+2 v(q)|p|^{2}-|(\beta+1) b(q)+B(q)||p|+\beta V(q, t)-c_{1}
\end{align*}
$$

Using (B_{1}), (B_{2}) we have

$$
\begin{align*}
|(\beta+1) b(q)+B(q)||p| \leqslant \frac{|(\beta+1) b(q)+B(q)|^{2}}{2 v(q)} & +\frac{v(q)}{2}|p|^{2} \leqslant \tag{5.7}\\
& \leqslant \frac{\beta}{2} \nabla(q, t)+v(q)|p|^{2}+c_{2}
\end{align*}
$$

Then, by (5.6), (5.7) we have

$$
\beta H(z, t)+\left(H_{z}(z, t) \mid z\right) \geqslant \mu|p|^{2}+v(q)|p|^{2}+\frac{\beta}{2} V(q, t)-c_{3} .
$$

Then, using again assumption $\left(V_{1}\right)$, we get (5.5). Similar arguments can be used to prove (5.4).

Lemoma 5.3. - Let φ a Frechét differentiable functional on a Hilbert space E, with $\varphi(0)=0$. Suppose that φ satisfies the following assumption: there exist $R, M, \lambda>0$ such that

$$
\lambda \varphi(x)+\left\langle\varphi^{\prime}(x), x\right\rangle \leqslant \begin{cases}M & \text { if }\|x\| \leqslant R \tag{5}\\ -1 & \text { if }\|x\| \geqslant R\end{cases}
$$

Then there exist $\bar{R}>0$ such that

$$
\varphi(x)<0 \quad \text { for }\|x\|>\bar{R}
$$

Proof. - Let $v_{0} \in H,\left\|v_{0}\right\|=1$ and set

$$
g(t)=\lambda \varphi\left(t v_{0}\right), \quad t \geqslant 0
$$

We shall initially prove that

$$
\begin{equation*}
g(t) \leqslant M \quad \text { for any } t \geqslant 0 \tag{5.9}
\end{equation*}
$$

We argue by contradiction and suppose that there exists $t_{1}>0$ s.t.

$$
g\left(t_{1}\right)>M
$$

Then, since $g(0)=0$, there exists $t_{0}<t_{1}$ such that

$$
g(t)>M, \quad \forall t \in] t_{0}, t_{1}\left[\quad \text { and } \quad g\left(t_{0}\right)=M\right.
$$

Obviously there is $\bar{t} \in] t_{0}, t_{1}[$ s.t.

$$
g^{\prime}(\bar{t})>0
$$

Then

$$
g(\bar{t})+\frac{\bar{l}}{\lambda} g^{\prime}(\bar{t})>M
$$

which means that

$$
\lambda \varphi\left(\bar{t} v_{\mathbf{0}}\right)+\left\langle\varphi^{\prime}\left(\bar{t} v_{0}\right), \bar{t} v_{\mathbf{0}}\right\rangle>M
$$

and this contradicts (5.8).
Now consider

$$
\bar{R}>0 \quad \text { s.t. } \quad M-\lambda \ln \bar{R} / R<0
$$

Let us now show that

$$
\begin{equation*}
\text { there exists } \quad t_{2} \in[R, \bar{R}] \quad \text { s.t. } \quad g\left(t_{2}\right)<0 \tag{5.10}
\end{equation*}
$$

By (5.8) we have

$$
\begin{equation*}
g(t)+\frac{1}{\lambda} g^{\prime}(t) \cdot t \leqslant-1 \quad \text { if } t>R \tag{5.11}
\end{equation*}
$$

Then, since $g(R) \leqslant M$ (cf. 5.9), we have:
$g(\bar{R}) \leqslant \int_{R}^{\bar{R}} g^{\prime}(s)+M \leqslant-\int_{R}^{\bar{R}} \frac{\lambda}{s} d s-\int_{R}^{\vec{R}} \frac{g(s)}{s} d s+M=M-\lambda \ln \bar{R} / R-\int_{R}^{\bar{R}} \frac{g(s)}{s} d s \leqslant-\int_{R}^{\vec{R}} \frac{g(s)}{s} d s$.
From this inequality it is easy to deduce that (5.10) holds.
Now we prove that

$$
\varphi(x)<0 \quad \text { for } \quad\|x\|>\bar{R}
$$

Obviously it is sufficient to show that

$$
\begin{equation*}
g(t)<0 \quad \text { for } t>t_{2} \tag{5.12}
\end{equation*}
$$

Arguing by contradiction suppose that there exists $t_{4}>t_{2}$ s.t. $g\left(t_{4}\right)>0$. Then obviously there exists $t_{3} \in\left(t_{2}, t_{4}\right)$ such that

$$
\begin{equation*}
g\left(t_{3}\right)=0 \quad \text { and } \quad g^{\prime}\left(t_{3}\right) \geqslant 0 \tag{5.13}
\end{equation*}
$$

Since $t_{3}>R$, by (5.8) we get

$$
\begin{equation*}
g\left(t_{3}\right)+\frac{g^{\prime}\left(t_{3}\right)}{\lambda} t_{3} \leqslant-1 \tag{5.14}
\end{equation*}
$$

Obviously (5.14) contradicts (5.13).
Lemma 5.4. - Suppose that H satisfies $\left(H_{0}\right)$ then for any $j \in Z$, there exists $R>0$ such that

$$
f(z)<0 \quad \text { for } \quad\|z\|>R, \quad z \in W_{j}^{-}=\overline{\oplus_{k \leqslant j} M_{\lambda_{k}}}
$$

Proof. - The interesting case occurs when $j>0$, otherwise it is trivial.
By virtue of Lemma 5.3 it is enough to prove that

$$
\begin{equation*}
\beta f(z)+\left\langle f^{\prime}(z), z\right\rangle \rightarrow-\infty \quad \text { as }\|z\| \rightarrow \infty \tag{5.15}
\end{equation*}
$$

In the following c_{1}, \ldots, c_{6} will denote positive constants.
Let $z=\binom{p}{q} \in W_{j}^{-}$and set

$$
z=z^{*}+z_{0}+\hat{z}
$$

where

$$
\begin{aligned}
& z^{*}=\binom{p^{*}}{q^{*}} \in M_{\lambda_{-j}} \oplus M_{\lambda_{-j+1}} \oplus \ldots \oplus M_{\lambda_{-1}} \oplus M_{\lambda_{1}} \oplus \ldots \oplus M_{\lambda_{j}} \\
& z_{0}=\binom{p_{0}}{q_{0}} \in \operatorname{Ker} L, \quad \hat{z}=\binom{\hat{p}}{\hat{q}} \in W_{-j-1}^{-}=\frac{\oplus_{k \leqslant-j-1}}{M_{\lambda_{k}}}
\end{aligned}
$$

Then, by using Lemma (5.2), it is easy to see that
(5.16) $\beta f(z)+\left\langle f^{\prime}(z), z\right\rangle \leqslant\left(\frac{\beta}{2}+1\right)\left(\left\langle L z^{*}, z^{*}\right\rangle+\langle L \hat{z}, \hat{z}\rangle\right)-$

$$
\begin{aligned}
& -\mu\left(\left\|p^{*}\right\|_{L^{2}}^{2}+\|\hat{p}\|_{L^{2}}^{2}+\left\|p_{0}\right\|_{L^{2}}^{2}\right)-c_{1}\left(\left\|q^{*}\right\|_{L^{2}}^{\alpha}+\|\hat{q}\|_{L^{2}}^{\alpha}+\left\|q_{0}\right\|_{L^{2}}^{\alpha}\right)+c_{2} \leqslant \\
& \leqslant\left(\frac{\beta}{2}+1\right)\left(\left\langle L z^{*}, z^{*}\right\rangle-\frac{1+j}{2+j}\|\hat{z}\|^{2}\right)- \\
& -\mu\left\|p^{*}\right\|_{L^{2}}^{2}-c_{1}\left\|q^{*}\right\|_{L^{2}}^{\alpha}-c_{3}\left(\|\hat{z}\|_{L^{2}}^{2}+\left\|z_{0}\right\|_{L^{2}}^{2}\right)+c_{2} \leqslant h\left(z^{*}\right)-c_{4}\left(\|\hat{z}\|^{2}+\left\|z_{0}\right\|_{L^{2}}^{2}\right)+c_{2}
\end{aligned}
$$

where

$$
h\left(z^{*}\right)=\left(\frac{\beta}{2}+1\right)\left\langle L z^{*}, z^{*}\right\rangle-\mu\left\|p^{*}\right\|_{L^{2}}^{2}-c_{\mathbf{1}}^{\prime}\left\|q^{*}\right\|_{L^{2}}^{\alpha} .
$$

The above formula shows that (5.15) is verified once we prove that

$$
\begin{equation*}
h\left(z^{*}\right) \rightarrow-\infty \quad \text { as }\left\|z^{*}\right\|_{L^{2}} \rightarrow+\infty \tag{5.17}
\end{equation*}
$$

In order to prove (5.17) we need to find a more «explicit» form of $\left\langle L z^{*}, z^{*}\right\rangle$, $\left\|p^{*}\right\|_{L^{2}},\left\|q^{*}\right\|_{L^{2}}$. We set

$$
z^{*}=\sum_{l=1}^{j}\left(z_{l}+z_{-l}\right), \quad z_{l}=\binom{p_{l}}{q_{l}} \in M_{\lambda_{l}}
$$

It is not difficult to verify that for any l we have

$$
\begin{aligned}
& p_{l}=\sum_{k=1}^{n} a_{l k} \cos l t e_{k}-b_{l k} \sin l t e_{k} \\
& q_{l}=\sum_{k=1}^{n} a_{l k} \sin l t e_{k}+b_{l k} \cos l t e_{l k}
\end{aligned}
$$

where $e_{k}(k=1, \ldots, n)$ is the standard basis in R^{n} and $a_{l k}, b_{l k}$ are real coefficients.
By straight computations we obtain

$$
\begin{equation*}
\left\langle L z^{*}, z^{*}\right\rangle=\sum_{l=1}^{j} l\left(\left\|z_{l}\right\|_{L^{2}}^{2}-\left\|z_{-l}\right\|_{L^{2}}^{2}\right)=\sum_{l=1}^{i} \sum_{k=1}^{n} 2 l\left(a_{l k}^{2}+b_{l k}^{2}-a_{-l k}^{2}-b_{-l k}^{2}\right) . \tag{5.18}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\left\|p^{*}\right\|_{L^{\mathrm{s}}}^{2}=\sum_{l=1}^{j} \sum_{k=1}^{n}\left(a_{l k}+a_{-l k}\right)^{2}+\left(b_{l k}-b_{-l k}\right)^{2} \tag{5.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|q^{*}\right\|_{J^{2}}^{2}=\sum_{l=1}^{j} \sum_{k=1}^{n}\left(a_{l k}-a_{-l k}\right)^{2}+\left(b_{l k}+b_{-l k}\right)^{2} . \tag{5.20}
\end{equation*}
$$

Then

$$
h\left(z^{*}\right) \leqslant q\left(z^{*}\right)
$$

where

$$
\begin{aligned}
& q\left(z^{*}\right)=\sum_{l=1}^{j} \sum_{k=1}^{n}\left(\frac{\beta}{2}+1\right) 2 l\left(a_{l k}^{2}-a_{-l k}^{2}\right)-\mu\left(a_{l k}+a_{-l k}\right)^{2}-c_{5}\left|a_{l k}-a_{-l k}\right|^{\alpha}+ \\
&+\left(\frac{\beta}{2}+1\right)\left(b_{l k}^{2}-b_{-l k}^{2}\right)-\mu\left(b_{l k}-b_{-l k}\right)^{2}-c_{5}\left|b_{l k}+b_{-l k}\right|^{\alpha} .
\end{aligned}
$$

Since $\alpha>2$ it can be verified that

$$
q\left(z^{*}\right) \rightarrow-\infty \quad \text { as } \quad\left\|z^{*}\right\|_{L^{2}}^{2}=\sum_{l=1}^{j} \sum_{k=1}^{n} a_{l k}^{2}+a_{-l k}^{2}+b_{l k}^{2}+b_{-i k}^{2} \rightarrow \infty
$$

Then (5.17) easily follows.
Proof of Theorem 0.1. - We will apply Theorem 1.4. We consider the unitary representation of S^{1} on $W^{\frac{1}{2}}$ given by the time-translations (i.e. if $g \in S^{1}, r(g)$ is the unitary map in $W^{\frac{1}{2}}$ defined by $z(t) \rightarrow z(t+g)$).

By Lemma 4.5, $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$ follow. Since the Hamiltonian H does not depend on t, also $\left(f_{4}\right)$ is satisfied. It remain to verify the geometrical assumptions $\left(f_{5}\right)$.

We set

$$
c_{0}=\max \left\{1,-2 \pi \cdot \inf _{z \in R^{2 n}} H(z)\right\}+1
$$

The constant c_{0} is well defined because by Lemma $5.2, H$ is bounded from below.
By virtue of Lemma 5.1, it is possible to choose $R>0$ and $j \in Z$ such that

$$
f(z) \geqslant c_{0} \quad \text { for every } z \in W_{j}^{+} ;\|z\|=R
$$

Now set

$$
V=W_{j}^{+}
$$

and, chosen n arbitrarily, set

$$
W=W_{j+n}^{-}=\left(W_{j+n}^{+}\right)^{\perp}
$$

With such a choice of V and W, the assumptions $\left(f_{5}\right)$ (i), (ii), (iii) and (iv) are trivially satisfied. Moreover $\left(f_{5}\right)(v)$ is satisfied by virtue of Lemma 5.4 and $\left(f_{5}\right)$ (vi) is satisfied by our choice of c_{0}.

Then the conclusion of Theorem 1.4 applies and we get the existence of at least

$$
\frac{1}{2}(\operatorname{dim}(V \cap W)-\operatorname{codim}(V+W))=n
$$

critical values with critical points z_{1}, \ldots, z_{n} such that

$$
\begin{equation*}
f\left(z_{k}\right) \geqslant c_{0} \tag{5.21}
\end{equation*}
$$

It remains to show that the corresponding critical points are not constants.
Suppose that one of them is a constant function \bar{z}. Then we have

$$
f(\bar{z})=-2 \pi H(z)<c_{0}
$$

This contradicts (5.21).
By the arbitrariness of n the conclusion follows.

Proof of Theorem 0.2. - We shall apply Theorem 1.7.
We can assume without loss of generality that

$$
H(t, 0)=0 \quad \text { for every } t \in R
$$

It is not difficult to prove that f is twice Fréchet differentiable for $z=0$. Then by $\left(H_{3}\right)$, we have:

$$
\begin{align*}
& f(z)=f(0)+\left\langle f^{\prime}(0), z\right\rangle+\frac{1}{2} f^{\prime \prime}(0)[z, z]+o\left(\|z\|^{2}\right)= \tag{5.22}\\
&=\frac{1}{2}\langle L z, z\rangle-\frac{\omega}{2} \int_{0}^{2 \pi}\left(H_{z z}(\omega t, 0) z \mid z\right) d t+o\left(\|z\|^{2}\right)
\end{align*}
$$

where $\omega=T / 2 \pi$, and $z \in W^{\frac{1}{2}}$. By $\left(H_{5}\right)$, it follows that

$$
\omega \int_{0}^{2 \pi}\left(H_{z z}(\omega t, 0) z, z\right) d t \leqslant \gamma \int_{0}^{2 \pi}|z|^{2} d t
$$

Then by the above inequality and (5.22)

$$
\begin{equation*}
f(z) \geqslant \frac{1}{2}\langle L z, z\rangle-\frac{\gamma}{2}\|z\|_{L^{2}}^{2}+o\left(\|z\|^{2}\right) \tag{5.23}
\end{equation*}
$$

By the definition of $\langle L z, z\rangle$, we have that

$$
\langle L z, z\rangle \geqslant\|z\|_{L^{2}}^{2} \quad \text { for every } z \in W^{+} .
$$

Then by the above inequality, (5.23) and (4.8) (b) we get

$$
\begin{aligned}
f(z) \geqslant & \frac{1}{2}(1-\gamma)\langle L z, z\rangle+\frac{\gamma}{2}\langle L z, z\rangle-\frac{\gamma}{2}\|z\|_{L^{2}}^{2}+o\left(\|z\|^{2}\right) \geqslant \\
& \geqslant \frac{1}{4}(1-\gamma)\|z\|^{2}+o\left(\|z\|^{2}\right) \quad \text { for every } z \in W^{+}
\end{aligned}
$$

So there exist $\varrho, c_{0}>0$ such that

$$
\begin{equation*}
f(z) \geqslant c_{0} \quad \text { for every } z \in W^{+},\|z\|=\varrho \tag{5.24}
\end{equation*}
$$

Now let $e \in W^{+}$be the eigenfunction corresponding to the first positive eigenvalue λ_{1} of L and let R_{1}, R_{2} be two positive constants. We set

$$
T=\left\{s e: s \in\left[0, R_{1}\right]\right\}, \quad Q=\left\{u+v: u \in W^{-} \oplus \operatorname{ker} L,\|u\| \leqslant R_{2} \text { and } v \in T^{T}\right\}
$$

Observe that $Q \subset W_{I}^{-}$. Then by Lemma 5.4

$$
\sup _{z \in Q} f(z)<+\infty
$$

Moreover, by Lemma 5.4 , if R_{1} and R_{2} are large enough, we get that

$$
f(z) \leqslant 0 \quad \text { for every } z \in \partial Q
$$

Thus all the assumptions of Theorem 1.7 are satisfied with $V=W^{+}$. Then f has a critical value c

$$
\begin{equation*}
c \geqslant c_{0}>0 \tag{5.25}
\end{equation*}
$$

The corresponding critical point $\vec{z} \in W^{\frac{1}{2}}$ cannot be constant because in this case we would have

$$
c=f(\bar{z})=-\int_{0}^{8 \pi} H(\omega t, z) \leqslant 0
$$

and this inequality contradicts (5.25).

Appendix 1.

The proof of Theorem 3.3 is based on the following lemmas:
Lemma 1. - If f satisfies $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$ then we have:
(i) every bounded sequence $\left\{u_{k}\right\} \subset f^{-1}(] 0, \infty[)$ such that $f^{\prime}\left(u_{k}\right) \rightarrow 0$, admits a convergent subsequence;
(ii) for every $c>0$, there exist constants $\bar{\varepsilon}, \bar{R}, b, \mu>0$ such that
(a) $[c-\bar{\varepsilon}, c+\bar{\varepsilon}] \subset[0,+\infty[$,
(b) $\left\|f^{\prime}(u)\right\| \cdot\|u\| \geqslant \mu$ for every $u \in f^{-1}([c-\bar{\varepsilon}, c+\bar{\varepsilon}]) \cap\left(E-B_{\bar{R}}\right)$;
(iii) for every $c>0, K_{c}$ is compact;
(iv) for every c and $R>0$ and for every neighborhood N of K_{c}, there exist positive constants $\bar{\varepsilon}, b$ such that

$$
\left\|f^{\prime}(u)\right\|>b \quad \text { for every } u \in\left(A_{c+\bar{\varepsilon}}-A_{c-\bar{\varepsilon}}\right) \cap\left(B_{R}-N\right)
$$

Proof. - (i) We put

$$
S=L+\lambda P_{0}
$$

where $\lambda \neq 0$ and P_{0} is the orthogonal projector on ker L. Clearly S is a bounded invertible operator. Now let u_{k} be a bounded sequence such that $f^{\prime}\left(u_{k}\right) \rightarrow 0$.

Then we can write

$$
L u_{t_{t}}-\psi^{\prime}\left(u_{k}\right)=v_{k}
$$

with $v_{k} \rightarrow 0$. Then we have

$$
S u_{k}-\lambda P_{0} u_{k}-\psi^{\prime}\left(u_{k}\right)=v_{k}
$$

or

$$
S u_{k}=\lambda P_{0} u_{k}+\psi^{\prime}\left(u_{k}\right)+v_{k}
$$

Since P_{0} and ψ^{\prime} are compact operators, there is a subsequence u_{k}^{\prime} such that $P u_{k}^{\prime}$ and $\psi^{\prime}\left(u_{k}^{\prime}\right)$ converge. Thus $S u_{c}^{\prime}$ converges. Since S is invertible u_{k}^{\prime} converges.
(ii), (iii) and (iv) follow by using standard arguments.

The condition (i) and (ii) of the above lemma can be considered as a weakened version of the well known condition of Palais and Smale (cf. Remark 1.5).

Lemma 2. - Let $k: \hbar \rightarrow E$ be a compact operator. For every $\varepsilon>0$ there exists a compact operator $\tilde{k}: E \rightarrow E$ such that:
(a) \tilde{k} is locally Lipschitz continuous;
(b) $\|k(u)-\tilde{h}(u)\| \cdot(1+\|u\|) \leqslant \varepsilon$ for every $u \in E$.

Moreover, if k is G-equivariant, \tilde{k} can be chosen G-equivariant.
Proof. - The proof follows the same argument as Lemma 3.2 in [11].
Lemma 3. - Let $\tilde{k}: E \rightarrow E$ be a locally Lipschitz continuous, G-equivariant, compact operator. For every $R>0$ and $\varepsilon>0$ there exists an operator $\tilde{b} \in B$ (cf. Definition 3.2) such that
(a) $\|\tilde{k}(u)-\tilde{b}(u)\|<\varepsilon$ for every $u \in B_{R}$;
(b) \tilde{b} is locally Lipschitz continuous.

Proof. - Since $\tilde{k}\left(B_{R}\right)$ is relatively compact, for every $\varepsilon>0$ there exists a finite set of points y_{n}, \ldots, y_{s} such that $\tilde{k}\left(B_{n}\right) \subset \bigcup_{i=1}^{s} B\left(y_{i}, \varepsilon / 2\right)$. Let $n \in N$ and set P_{n} the projector on $\oplus_{i=-n}^{n} E_{i}$. If n is big enough, we have

$$
\left\|y_{i}-P_{n} y_{i}\right\|<\frac{\varepsilon}{2}, \quad \forall i \in\{1, \ldots, s\} .
$$

Consider now the operator

$$
\tilde{b}: B_{R} \rightarrow \oplus_{i=-n}^{n} E_{i}, \quad \tilde{b}(u)=\frac{\sum_{i=1}^{s} \mu_{i}(u) P_{n} y_{i}}{\sum_{i=1}^{s} \mu_{i}(u)}
$$

where $\mu_{i}(u)=\operatorname{dist}\left(\tilde{k}(u), E-\left(B\left(y_{i}, \varepsilon / 2\right)\right)\right.$. It is easy to check that \tilde{b} is a bounded, Lip. continuous operator and that for every $u \in B_{R},\|\tilde{k}(u)-\tilde{b}(u)\|<\varepsilon$. To prove that b can be chosen G-equivariant it is sufficient to repeat the arguments of Lemma 3.2 in [11].

Lemina 4. - Let $\tilde{k}: E \rightarrow E$ be as in Lemma 3.6 ; given $\varepsilon>0$ there exists an operator $b \in B$ such that
(a) $\|\tilde{k}(u)-b(u)\| \cdot(1+\|u\|)<\varepsilon$ for every $u \in E ;$
(b) b is locally Lipsehitz continuous.

Proof. - Given $\varepsilon>0$, by Lemma 3 for every $n \in N$ there exists a locally Lipschitz continuous operator $\tilde{b}_{n}: B_{n+1} \rightarrow V_{n+1}$ such that

$$
\begin{align*}
& V_{n+1}=\underset{i \in(I(n)}{\oplus} E_{i} \quad \text { for a finite set } I(n) \subset Z \tag{A1.1}\\
& \left\|\tilde{k}(u)-\widetilde{\partial}_{n}(u)\right\|<\frac{\varepsilon}{2(n+\mathbf{1})} \quad \text { for every } u \in B_{n+1} . \tag{A1.2}
\end{align*}
$$

For every $n \in N$ we consider a non-increasing map $X_{n}(t) \in C^{1}(R,[0,1])$ such that

$$
X_{n}(t)= \begin{cases}1 & \text { if } t \in[0, n] \\ 0 & \text { if } t \in\left[n+\frac{1}{2},+\infty\right]\end{cases}
$$

we set

$$
b_{n}(u)= \begin{cases}\tilde{b}_{n}(u) & \text { if } u \in B_{n+1} \\ 0 & \text { if } u \notin B_{n+1}\end{cases}
$$

We define a sequence of operators $c_{n}: D \rightarrow E$ as follows:
(A1.3)

$$
\begin{aligned}
& c_{1}(u)=b_{1}(u) \\
& c_{2}(u)=X_{1}(\|u\|) c_{1}(u)+\left(1-X_{1}(\|u\|)\right) b_{2}(u) \\
& \cdots \omega_{n} \ldots \ldots \\
& c_{n+1}(u)=X_{n}(\|u\|) c_{n}(u)+\left(1-X_{n}(\|u\|)\right) b_{n+1}(u) .
\end{aligned}
$$

We observe that if $u \in B_{n}, c_{n}(u)=c_{n+1}(u)=\ldots$. We set for $u \in E$

$$
\begin{equation*}
b(u)=\lim _{n \rightarrow \infty} e_{n}(u) \tag{A1.4}
\end{equation*}
$$

Clearly $b \in B$ and satisfies (b). Let us prove (a). If $u \in B_{n_{+1}}$ we have
(A1.5) $\quad\|b(u)-\tilde{k}(u)\|=\left\|c_{n+1}(u)-\tilde{k}(u)\right\|=$

$$
\begin{aligned}
& =\left\|X_{n}(\|u\|) c_{n}(u)+\left(1-X_{n}(\|u\|)\right) b_{n+1}(u)-\tilde{k}(u)\right\|= \\
& =\left\|X_{n}(\|u\|)\left(c_{n}(u)-\tilde{k}(u)\right)+\left(1-X_{n}(\|u\|)\right)\left(b_{n+1}(u)-\tilde{k}(u)\right)\right\| \leqslant \\
& \left.\leqslant X_{n}(\|u\|)\left\|c_{n}(u)-\tilde{k}(u)\right\|+\left(1-X_{n}(\|u\|)\right) \| b_{n+1}(u)-\tilde{k}(u)\right) \| .
\end{aligned}
$$

Since if $u \in B_{n+1}, \tilde{b}_{n+1}(u)=b_{n+1}(u)$, then by (A1.2) we have

$$
\begin{equation*}
\left\|b_{n+1}(u)-\tilde{k}(u)\right\|<\frac{\varepsilon}{2(n+2)} \quad \text { if } u \in B_{n+1} \tag{A1.6}
\end{equation*}
$$

To prove (a) it is sufficient to prove that, for every $n \in N$, if $u \in B_{n}$

$$
\begin{equation*}
\|b(u)-\tilde{k}(u)\|<\frac{\varepsilon}{1+\|u\|} \tag{A1.7}
\end{equation*}
$$

In order to prove (A1.7) we argue by induction: if $n=1$ by (A1.3), (A1.5) and (A1.6) we get

$$
\|b(u)-\tilde{k}(u)\|=\left\|c_{1}(u)-\tilde{k}(u)\right\|=\left\|b_{1}(u)-\tilde{k}(u)\right\|<\frac{\varepsilon}{4}<\frac{\varepsilon}{1+\|u\|} .
$$

Now suppose that

$$
\begin{equation*}
\|b(u)-\tilde{k}(u)\| \leqslant \frac{\varepsilon}{1+\|u\|} \quad \text { for every } u \in B_{n} \tag{A1.8}
\end{equation*}
$$

We have to verify (A1.8) for $u \in B_{n+1}-B_{n}$.
We observe that for $u \in B_{n_{+1}}-B_{n}, c_{n}(u)=b_{n}(u)$. Then by (A1.2)

$$
\begin{equation*}
\left\|c_{n}(u)-\tilde{k}(u)\right\|=\left\|b_{n}(u)-\tilde{k}(u)\right\|=\left\|\tilde{b}_{n}(u)-\tilde{k}(u)\right\|<\frac{\varepsilon}{2(n+1)} \tag{A1.9}
\end{equation*}
$$

Then for $u \in B_{n+1}-B_{n}$ by (A1.5), (A1.6) and (A1.9) we get

$$
\begin{align*}
& \|b(u)-\tilde{k}(u)\| \leqslant X_{n}(\|u\|) \frac{\varepsilon}{2(n+1)}+ \tag{A1.10}\\
& \quad+\left(1-X_{n}(\|u\|)\right) \frac{\varepsilon}{2(n+2)}<\frac{\varepsilon}{2(n+1)}<\frac{\varepsilon}{1+(n+1)}<\frac{\varepsilon}{1+\|u\|}
\end{align*}
$$

Finally by (A1.8) and (A1.10) we have that
(A1.11) $\quad\|b(u)-\tilde{k}(u)\|<\frac{\varepsilon}{1+\|u\|} \quad$ for every $u \in B_{n+1}$ and (A1.7) is proved.
By Lemma 2 and 4, we get the following lemma:
Lemma 5. - Let $k: E \rightarrow E$ be a G-equivariant, compact operator. Given $\varepsilon>0$ there exists a bounded operator $b \in B$ such that
(a) $\|k(u)-b(u)\| \cdot(1+\|u\|)<\varepsilon$ for every $u \in E ;$
(b) b is locally Lipschitz continuous.

Now we can prove the Theorem 3.3.

Proof. - Given $c \in] \alpha, \beta\left[\right.$, by Lemma 1 (iii), K_{o} is compact, hence there exists $\delta>0$ such that $N \supset M_{\delta} \supset K_{c}$, where $M_{\delta}=N_{\delta}\left(K_{c}\right)$. Moreover, by Lemma 1 (iv) there exist $\bar{\varepsilon}>0$, and $b>0$ such that

$$
\begin{equation*}
\left\|f^{\prime}(u)\right\|>b, \quad \forall u \in\left(A_{c+\bar{\varepsilon}}-A_{c-\bar{\varepsilon}}\right) \cap\left(B_{\bar{R}}-M_{\partial / \beta}\right) \tag{A.1.12}
\end{equation*}
$$

We can assume that \bar{R} is big enough such that $B_{\bar{R}} \supset M_{\delta}$. Also we can assume that

$$
\begin{equation*}
\bar{\varepsilon}<\frac{\delta b}{12} \tag{A1.13}
\end{equation*}
$$

Let $\gamma>0$ be such that

$$
\begin{equation*}
\gamma<\min \left[\frac{\tilde{\varepsilon}}{4}, \frac{b}{4}\right] \tag{A1.14}
\end{equation*}
$$

By Lemma 5 there exists a locally Lipschitz continuous operator $b \in B$ such that

$$
\begin{equation*}
\|k(u)-b(u)\| \leqslant \frac{\gamma}{1+\|u\|} \quad \text { for every } u \in E \tag{A1.15}
\end{equation*}
$$

We set $S=\left(A_{c+\bar{\varepsilon}}-A_{c-\bar{\varepsilon}}\right) \mid M_{\delta / 8}, S_{1}=S \cap B_{R}, S_{2}=S-B_{R}$, By (A1.14) and (A1.12) we have

$$
\begin{equation*}
\frac{\gamma}{1+\|u\|}<\frac{b}{4}<\frac{\left\|f^{\prime}(u)\right\|}{4} \quad \text { for every } u \in S_{1} \tag{A1.16}
\end{equation*}
$$

and by (A1.14) and Lemma 1. (ii) we have

$$
\begin{equation*}
\frac{\gamma}{1+\|u\|} \leqslant \frac{\| f^{\prime}(u)}{4} \quad \text { for every } u \in S_{2} \tag{A1.17}
\end{equation*}
$$

Thus, by (A1.10), (A1.16) and (A1.17),

$$
\begin{equation*}
\|k(u)-b(u)\| \leqslant \frac{1}{4}\left\|f^{\prime}(u)\right\| \quad \text { for every } u \in S \tag{A1.18}
\end{equation*}
$$

We observe that if $u \in S$

$$
\|L u+b(u)\|=\left\|f^{\prime}(u)-(k(u)-b(u))\right\| \geqslant\left\|f^{\prime}(u)\right\|-\|k(u)-b(u)\|
$$

Then by the above inequality and (A.1.18)

$$
\begin{equation*}
\|L u+b(u)\| \geqslant \frac{3}{4}\left\|f^{\prime}(u)\right\|>0 \quad \text { for every } u \in S \tag{A1.19}
\end{equation*}
$$

Now we set
(A1.20) $\quad V(u)=2 \frac{L u+b(u)}{\|L u+b(u)\|^{2}} \quad$ for every $u \in S$.
By (A1.19) we have

$$
\begin{equation*}
\|V(u)\| \leqslant \frac{8}{3} \frac{1}{\left\|f^{\prime}(u)\right\|} \quad \text { for every } u \in \mathbb{S} \tag{A1.21}
\end{equation*}
$$

then by Lemma 1 (ii), (A1.12) and (A1.21)

$$
\begin{equation*}
\|\nabla(u)\|<K_{1}+K_{2}\|u\| \quad \text { for every } u \in S \tag{A1.22}
\end{equation*}
$$

where K_{1} and K_{2} are positive constants.
Now we observe that if $u \in S$, by virtue of (A1.18)

$$
\|k(u)-b(u)\| \leqslant \frac{1}{4}\left\|f^{\prime}(u)\right\|=\frac{1}{4}\|L u+k(u)\| \leqslant \frac{1}{4}\|L u+b(u)\|+\frac{1}{4}\|k(u)-b(u)\|,
$$

then

$$
\|k(u)-b(u)\| \leqslant \frac{1}{3}\|L u+b(u)\|
$$

From the above inequality, we get

$$
\begin{align*}
& \left\langle V(u), f^{\prime}(u)\right\rangle=2\left\langle\frac{L u+b(u)}{\|L u+b(u)\|^{2}}, L u+k(u)\right\rangle= \tag{A1.23}\\
& \quad=\frac{2}{\|L u+b(u)\|^{2}}\langle L u+b(u), L u+b(u)-b(u)+k(u)\rangle= \\
& \quad=\frac{2}{\|L u+b(u)\|^{2}}\left[\|L u+b(u)\|^{2}+\langle L u+b(u), k(u)-b(u)\rangle\right] \geqslant \\
& \quad \geqslant 2-2 \frac{\|L u+b(u)\| \cdot\|k(u)-b(u)\|}{\|L u+b(u)\|^{2}} \geqslant 2-\frac{2}{3}>1 \quad \text { for every } u \in S
\end{align*}
$$

Now we consider a Lipschitz continuous functional $\varphi: E \rightarrow R$ such that

$$
\varphi(u)= \begin{cases}0 & \text { if } u \notin f^{-1}([c-\bar{\varepsilon}, c+\bar{\varepsilon}]) \text { or } u \in M_{\delta / 8} \tag{A1.24}\\ 1 & \text { if } u \in f^{-1}([c-\varepsilon, c+\varepsilon])-M_{\delta / 4}\end{cases}
$$

where $\varepsilon=\bar{\varepsilon} / 2$. We can assume that φ is \mathcal{G}-invariant. We set

$$
\bar{V}(u)= \begin{cases}-\varphi(u) V(u) & \text { if } u \in S \tag{A1.25}\\ 0 & \text { if } u \notin \mathbb{S}\end{cases}
$$

Consider now the following initial value problem
(A1.26)

$$
\left\{\begin{array}{l}
\frac{d \eta}{\overline{d t}}=\bar{V}(\eta) \\
\eta(0)=u
\end{array} \quad u \in E\right.
$$

Since \bar{V} is loc. Lipschitz continuous, by (A1.22) and standard arguments (cf.: also [11], [8], [13]) it can be proved (a).

In order to prove (b), we set

$$
\bar{\phi}(u)=\frac{-2 \varphi(u)}{\|L u+b(u)\|^{2}}
$$

so the equation (A1.26) becomes

$$
\begin{equation*}
\frac{d \eta}{d t}=\bar{\phi}(\eta)[L \eta+b(\eta)], \quad \eta(0)=u \tag{A1.27}
\end{equation*}
$$

Following an idea of Hofer [30] we set:

$$
\begin{equation*}
\alpha(t, s, u)=\int_{0}^{t-s} \tilde{\varphi}(\eta(t+s, u)) d t \tag{A1.28}
\end{equation*}
$$

It can be proved that the Cauchy problem (A.1.27) is equivalent to the following integral equation:

$$
\eta(t, u)=\exp [\alpha(t, 0, u) L][u]+\int_{0}^{t} \alpha^{\alpha(t, s, u) L}[\bar{\varphi}(\eta(s, u) b(\eta(s, u))] d s
$$

and it is not difficult (cf. [13]) to verify that (b) and (c) are satisfied with

$$
\begin{aligned}
U(u) & =\exp [\alpha(t, 0, u) L][u] \\
b(u) & =\int_{0}^{t} \exp [\alpha(t, s, u) L[\bar{\varphi}(\eta(t, u)) b(\eta(t, u))] d s
\end{aligned}
$$

Appendix 2.

The proof of Theorem 3.4 is based on two lemmas.
Lemma 1. - Let $V, W, Z \subset E$ be G-invariant, finite dimensional subspaces (V, $W \subset Z)$, and Ω be a bounded G-invariant neighborhood of 0 . Given a G-equivariant bounded continuous map $h: E \rightarrow E$, we suppose that
(i) Fix $G \subset W$;
(ii) the index theory i satisfies the d-dimension property;
(iii) $h(\partial \Omega \cap V) \subset Z$
then

$$
\begin{equation*}
i(h(\partial \Omega \cap V) \cap W) \geqslant \frac{\operatorname{dim}(V \cap W)-\operatorname{codim}_{z}(V+W)}{d} \tag{A2.1}
\end{equation*}
$$

Proof. - We set $S=\partial \Omega$. We distinguish two cases
Case I $\quad V \cap \operatorname{Fix} G \nexists\{0\}$
Case II $\quad V \cap \operatorname{Fix} G=\{0\}$.
In the Case I we have that

$$
V \cap S \cap \operatorname{Fix} G \neq \emptyset
$$

Since $h($ Fix $G) \subset$ Fix G,

$$
h(S \cap V) \cap \operatorname{Fix} G \supset h(V \cap S \cap \operatorname{Fix} G) \cap \operatorname{Fix} G \neq \emptyset
$$

Using assumption (i) and the above formula we have

$$
h(S \cap V) \cap \operatorname{Fix} G \cap W \neq \emptyset
$$

Then by Theorem 2.4 (i), it follows that

$$
i(h(V \cap S) \cap W)=+\infty
$$

Therefore, in the Case I, (A2.1) holds.
We now consider the Case II. Since W is finite dimensional, $h(S \cap V) \cap W \in \Pi$ is compact. Then, by (2.1) (d), there exists $N=N_{\varepsilon}(h(S \cap V) \cap W)$ such that

$$
\begin{equation*}
i(N)=i(h(S \cap V) \cap W) \tag{A2.2}
\end{equation*}
$$

We set
(A2.3)

$$
A_{1}=h(S \cap V) \cap N, \quad A_{2}=\overline{h(S \cap V)-N}
$$

Obviously $A_{1}, A_{2} \in \Pi$ and
(A2.4)

$$
h(S \cap V)=A_{1} \cup A_{2}
$$

Since $V \cap \operatorname{Fix}(G)=\{0\}$, then
(A2.5) $\frac{\operatorname{dim} V}{d}=i(S \cap V) \quad$ (by the dimension property, cf. Definition 2.2)

$$
\leqslant i(h(S \cap V)) \quad(\mathrm{by}(2.1)(e))
$$

$$
=i\left(A_{1} \cup A_{2}\right) \quad(\mathrm{by}(\mathrm{~A} 2.4))
$$

$$
\leqslant i\left(A_{1}\right)+i\left(A_{2}\right) \quad(\text { by }(2.1)(o))
$$

By (A2.3), (2.1) (b) and (A2.2) we have

$$
\begin{equation*}
i\left(A_{1}\right) \leqslant i(N)=i(h(S \cap V) \cap W) \tag{A2.6}
\end{equation*}
$$

Let W^{\perp} denote the orthogonal complement of W is Z and let P_{W}^{\perp} denote the relative orthogonal projection. $P_{ \pm}^{\perp}$ is a G-equivariant map, then, by (2.1) (c)

$$
\begin{equation*}
i\left(A_{2}\right) \leqslant i\left(P_{W}^{\perp} A_{2}\right) \tag{A2.7}
\end{equation*}
$$

By the construction of $N,\left(P_{\bar{W}}^{\frac{1}{2}} A_{2}\right) \subset W^{\perp}-\{0\}$, then since Fix $G \subset W$,

$$
\left(P_{\bar{W}}^{\perp} A_{2}\right) \subset W^{\perp}-\{0\}=W^{\perp}-\operatorname{Fix}(G)
$$

Therefore, by Theorem 2.4 (ii)

$$
\begin{equation*}
i\left(P_{\bar{W}}^{\perp} A_{2}\right) \leqslant \frac{\operatorname{dim} W^{\perp}}{d} \tag{A2.8}
\end{equation*}
$$

By (A2.5), (A2.6), (A2.7) and (A2.8), we get

$$
\frac{\operatorname{dim} V}{d} \leqslant i(h(S \cap V) \cap W)+\frac{\operatorname{dim} W^{\perp}}{d}
$$

By the above formula we have:

$$
i(h(\mathcal{S} \cap V) \cap W) \geqslant \frac{\operatorname{dim} V-\operatorname{dim} W^{\perp}}{d}=\frac{\operatorname{dim} V-\operatorname{cod}_{z} W}{d}
$$

Lemma 2. - Let the hypotheses of Lemma 4.2 be satisfied with (i) and (iii) replaced by
(i) Fix $G \subset V \oplus Z^{\perp}$;
(iii') (a) h is a bounded homeomorphism,
(b) $h(\Omega \cap Z) \subset Z$,
(c) $h(0)=0$.

Then
(A2.9) $\quad i(h(\partial \Omega \cap V) \cap W) \geqslant \frac{\operatorname{dim}(V \cap W)-\operatorname{codim}_{Z}(V+W)}{d}$.
Proof. - To shorten the notation, we set $S=\partial \Omega$. Since $h(S \cap V) \cap W \in \Pi$ is compact, by (2.1) (d) there exists $N=N_{\varepsilon_{1}}(h(S \cap V) \cap W)$ such that

$$
\begin{equation*}
i(N)=i(h(S \cap V) \cap W) \tag{A2.10}
\end{equation*}
$$

There exist constants $\varepsilon_{2}, \varepsilon_{3}, \varepsilon>0$ such that
$(\mathrm{A} 2.11) \quad N \supset N_{\varepsilon_{2}}(h(S \cap V) \cap W) \supset h\left(N_{\varepsilon_{8}}(S \cap V)\right) \cap W \supset h\left(S \cap V_{\varepsilon}\right) \cap$

$$
\cap W \supset h(S \cap V) \cap W
$$

where $V_{\varepsilon}=N_{\varepsilon}(V) \cap Z$. By the above formula and. (2.1) (b) it follows that

$$
i(N) \geqslant i\left(h\left(S \cap V_{\varepsilon}\right) \cap W\right) \geqslant i(\hbar(S \cap V) \cap W)
$$

Then, by (A2.10),

$$
\begin{equation*}
i\left(h\left(S \cap V_{\varepsilon}\right) \cap W\right)=i(h(S \cap V) \cap W) \tag{A2.12}
\end{equation*}
$$

We now set

$$
R={\overline{Z-V_{\varepsilon}}}_{\varepsilon}
$$

Then $Z=V_{\varepsilon} \cup R$ and

$$
h(S \cap Z) \cap W=\left[h\left(S \cap V_{\varepsilon}\right) \cap W\right] \cup[h(S \cap R) \cap W]
$$

By the above formula and (2.1) (c), we have:

$$
i(h(S \cap Z) \cap W) \leqslant i\left(h\left(S \cap V_{\varepsilon}\right) \cap W\right)+i(h(S \cap R) \cap W)
$$

Comparing this inequality with (A2.12), we get

$$
\begin{equation*}
i(h(S \cap V) \cap W) \geqslant i(h(S \cap Z) \cap W)-i(h(S \cap R) \cap W) \tag{A2.13}
\end{equation*}
$$

Now we shall give an estimate to the terms on the right hand side of (A2.13). Let V^{\perp} denote the orthogonal complement of V in Z and P_{V}^{\perp} the relative projection. Obviously P_{∇}^{\perp} is equivariant. Moreover, by (i'), $P_{\bar{\nabla}}^{\perp} R \subset V^{\perp}$ - Fix (G). Then by (2.1) (e) and Theorem 2.4 (ii), we have

$$
\begin{equation*}
i(R) \leqslant i\left(P_{\bar{V}}^{\perp} R\right) \leqslant \frac{\operatorname{dim} V^{\perp}}{d} \tag{A2.14}
\end{equation*}
$$

Now
(A2.15) $\quad i(h(S \cap R) \cap W) \leqslant i(h(S \cap R)) \quad($ by $(2.1)(b))$

$$
\begin{array}{ll}
=i(S \cap R) & (\text { by Theorem } 2.4 \text { (iv) and (iii') }(a)) \\
\leqslant i(R) & (\text { by }(2.1)(b)) \\
\leqslant \frac{\operatorname{dim} V^{\perp}}{d} & (\text { by }(\mathrm{A} 2.14)) .
\end{array}
$$

By (iii') (b) and (c), $h(\Omega \cap Z)$ is a bounded neighborbood of 0 in Z. Then the set

$$
\tilde{\Omega}=\left\{z+\tilde{z}: z \in h(\Omega \cap Z), \tilde{z} \in Z^{\perp},|z|<1\right\}
$$

is a neighborhood of 0 in E. It is easy to check that

$$
h(\partial \Omega \cap Z)=\partial \tilde{\Omega} \cap Z
$$

Then

$$
h(S \cap Z) \cap W=h(\partial \Omega \cap Z) \cap W=\partial \tilde{\Omega} \cap Z \cap W=\partial \tilde{\Omega} \cap W
$$

So, by the above inequality and the dimension property it follows that

$$
\begin{equation*}
i(h(S \cap Z) \cap W)=i(\partial \tilde{\Omega} \cap W) \geqslant \frac{\operatorname{dim} W}{d} \tag{A2.16}
\end{equation*}
$$

(In the above formula we have to use the inequality because it might happen that $\partial \widetilde{\Omega} \cap W \cap \mathrm{Fix} G \neq \emptyset$; cf. Theorem 2.4 (ii).)

Finally, by (A2.13), (A2.16) and (A2.15) we conclude the proof:

$$
i(h(S \cap V) \cap W) \geqslant \frac{\operatorname{dim} W}{d}-\frac{\operatorname{dim} V^{\perp}}{d}=\frac{\operatorname{dim} W}{d}-\frac{\operatorname{cod}_{z} V}{d}
$$

Proof of Theorem 3.4. - We set $S=\partial \Omega$ and

$$
\begin{align*}
& E_{2}=V \cap W \\
& E_{1}=\text { orthogonal complement of } E_{2} \text { in } V \tag{A2.17}\\
& E_{3}=\text { orthogonal complement of } E_{2} \text { in } W \\
& E_{4}=\text { orthogonal complement of } E_{1} \oplus E_{2} \oplus E_{3} \text { in } E .
\end{align*}
$$

We have, obviously, that $V=E_{1} \oplus E_{2}, W=E_{2} \oplus E_{3}, E=E_{1} \oplus E_{2} \oplus E_{3} \oplus E_{4}$. We observe, also, that the subspaces $E_{1}, E_{2}, E_{3}, E_{4}$, defined by (A2.17) are G-invariant. Let $h=U+b \in H^{*}$ and $Z \subset E$ be a G-invariant, finite-dimensional subspace such that

$$
E_{2} \subset Z, \quad E_{4} \subset Z, \quad b(\Omega) \subset Z
$$

Then
(A2.18)

$$
h(\Omega \cap Z) \subset Z
$$

If we set $Z_{1}=E_{1} \cap Z, Z_{3}=E_{3} \cap Z$, we have that
$(A 2.19) \quad h(S \cap V) \cap W \supset h(S \cap V \cap Z) \cap W \cap Z=h\left(S \cap\left(Z_{1} \oplus E_{2}\right)\right) \cap\left(E_{2} \oplus Z_{3}\right)$.
If we set $\tilde{V}=Z_{1} \oplus E_{2}, \tilde{W}=E_{2} \oplus Z_{3}$, we have that \tilde{V} and \tilde{W} satisfy the assumption of Lemma 1 or Lemma 2 depending on the fact that Fix $G \subset V$ or Fix $G \subset W$. Then by (A2.18), (A2.19), Lemma 1 and Lemma, 2 we have that

$$
i(h(S \cap V) \cap W) \geqslant \frac{\operatorname{dim} E_{2}-\operatorname{dim} E_{4}}{d}=\frac{\operatorname{dim}(V \cap W)-\operatorname{codim}(V+W)}{d}
$$

By the above formula it easily follows that

$$
l^{*}(S \cap V, W) \geqslant \frac{\operatorname{dim}(V \cap W)-\operatorname{codim}(V+W)}{d}
$$

REFERENCES

[1] H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), pp. 127-166.
[2] H. Amann - E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa, 7 (1980), pp. 539-603.
[3] H. Amann - E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math., 32 (1980), pp. 149-189.
[4] A. Ambrosetti - G. Mancini, Solutions of minimal period for a class of conves Hamiltonian systems, Math. Ann., 255 (1981), pp. 405-421.
[5] A. Ambrosetti - P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 44 (1973), pp. 349-381.
[6] A. Bahri - H. Berestycki, Forced vibrations for superquadratio Hamiltonian systems, Acta Math., 152 (1984), pp. 143-197.
[7] P. Bartolo, An extension of Krasnoselskii genus, Boll. Un. Mat. Ital. (e), 1 (1982), pp. 347-356.
[8] P. Bartolo - V. Benci - D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, J. of Nonlinear Anal., 9 (1983), pp. 981-1012.
[9] N. Basile - M. Mininni, Multiple periodic solutions for a semilinear wave equation with nonmonotone nonlinearity, J. of Nonlinear Anal., 9 (1985), pp. 837-848.
[10] V. Benci, A geometrical index for the group S^{1} and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math., 34 (1981), pp. 393-432.
[11] V. Benci, On the critical point theary for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), pp. 533-572.
[12] V. Bencl - A. Capozzi - D. Fortunato, Periodic solutions for a class of Hamiltonian systems, Springer Verlag Lecture Notes in Mathematics, 964 (1982), pp. 86-94.
[13] V. Benci - A. Capozzi - D. Fortunato, Periodic solutions of Hamiltonian systems of prescribed period, Math. Res. Center, University of Wisconsin-Madison, Technical Summary Report n. 2508 (1983).
[14] V. Benci - A. Capozzi - D. Fortunato, On asymptotically quadratic Hamiltonian systems, J. of Nonlinear Anal., 8 (1983), pp. 929-931.
[15] V. Benci - A. Capozzi - D. Fortunato, On asymptotically quadratic Hamiltonian systems, Lectures Notes in Mathematics, Springer-Verlag, 1017 (1983), pp. 83-92.
[16] V. Benci - D. Fortunato, Un teorema di molteplicità per un'equazione ellittica non lineare su varietà simmetriche, Proceedings of the Symposium «Metodi asintotici e topologici in problemi diff. non lineari», L'Aquila, 1981.
[17] V. Benci - D. Fortunato, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., 32 (1982), pp. 215-242.
[18] V. Benci - D. Fortunato, Soluzioni periodiche multiple per equazioni differenziali non lineari relative a sistemi conservativi, Proceedings of the Symposium "Metodi asintotici e topologici in problemi diff. non lineari», L'Aquila, 1981.
[19] V. Benci - P. H. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math., 52 (1979), pp. 336-352.
[20] A. Capozzi, On subquadratic Hamiltonian systems, J. of Nonlinear Anal., 8 (1984), pp. 553-562.
[21] A. Capozzi, Remarks on periodic solutions of subquadratic not-autonomous Hamiltonian systems, Boll. Un. Mat. Ital., (6), 4-B (1985), pp. 113-124.
[22] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rendiconti dell'Accademia di Sc. e Lettere dell'Istituto Lombardo, 112 (1978), pp. 332-336.
[23] B. C. Clark, A variant of Ljiusternik Schnirelmann theory, Ind. Univ. J., 22 (1972), pp. 65-74.
[24] F. H. Clarke, Periodic solutions to Hamiltonian inclusion, J. Diff. Eq., 40 (1981), pp. 1-6.
[25] F. H. Clarke - I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., 33 (1980), pp. 103-116.
[26] I. Ekeland, Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Eq., 34 (1979), pp. 523-534.
[27] E. R. Fadell - S. Husseini - P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary \mathbb{S}^{1} actions and applications, Trans. Amer. Math. Soc., 274 (1982), pp. 345-360.
[28] E. R. Fadell - P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45 (1978), pp. 139-174.
[29] F. Giannone, Soluzioni periodiche di sistemi Hamiltoniani in presenza di vincoli, Rapporti del Dipartimento di Matematica di Pisa, 11 (1982).
[30] H. Hofer, On strongly indefinite functionals with applications, Trans. Amer. Math. Soc. 275 (1983), pp. 185-214.
[31] M. A. Krasnoselskit, Topological methods in the theory of nonlinear integral equations, MacMillan, New York, 1964.
[32] R. Pisani - M. Tucci, Existence of infinitely many periodic solutions for a perturbed Hamiltonian system, J. of Nonlinear Anal., 8 (1984), pp. 873-891.
[33] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, (G. Prodi Editor), Edizioni Cremonese Roma, (1974), pp. 141-195.
[34] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), pp. 157-184.
[35] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems: a survey, SIAM J. Math. Anal., 13 (1982), pp. 343-352.
[36] P. H. Rabinowitz, Periodic solutions of large norm of Hamiltonian systems, J. Diff. Eq., 50 (1983), pp. 33-48.
[37] A. Salvatore, Periodic solutions of Hamiltonian systems with a subquadratic potential, Boll. Un. Mat. Ital. (Sez. C), I (1984), pp. 393-406.
[38] M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden Day, 1964.

[^0]: (*) Entrata in Redazione il 17 dicembre 1984.
 (**) Sponsored by Ministero della Pubblica Istruzione ($60 \%=$ «Problemi differenziali non lineari e teoria dei punti critici"; $40 \%=$ "Equazioni differenziali e calcolo delle variazioni") and by G.N.A.F.A. of C.N.R.

 Indirizzo degli AA.: Dipartimento di Matem., Università di Bari, Via Nicolai 2, 70122 Bari.

