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We study the finite delay evolution equation

œB Ð>Ñ œ EBÐ>Ñ  JÐ>ß B Ñß >   !ß
B œ − GÐÒ  <ß !Óß IÑß

w
>

! :

where the linear operator  is non-densely defined and satisfies the Hille-YosidaE
condition.  First, we obtain some properties of “integral solutions" for this case

and prove the compactness of an operator determined by integral solutions.  This

allows us to apply Horn's fixed point theorem to prove the existence of periodic

integral solutions when integral solutions are bounded and ultimately bounded.

This extends the study of periodic solutions for densely defined operators to the

non-densely defined operators.  An example is given.

   Periodic Solutions, Non-Densely Defined Equations.Key words:

   34G.AMS subject classifications:

1.  Introduction

Herein, we consider finite delay evolution equation

œB Ð>Ñ œ EBÐ>Ñ  JÐ>ß B Ñß >   !ß
B œ − GÐÒ  <ß !Óß IÑß

Ð"Þ"Ñ
w

>

! :

where  is a non-densely defined linear operator in a Banach space   E Ià G œ GÐÒ  <ß !Óß IÑ
is the space of continuous functions from   is a constant) to  endowed withÒ  <ß !Ó Ð<  ! I
the super-norm; and for every , the function  is defined by>   ! B − G>

B Ð † ÑÐ Ñ œ B Ð Ñ œ BÐ>  Ñ − Ò  <ß !Óß> >) ) ) ),   

and  is a continuous function from  to , and is -periodic in .JÐ>ß Ñ ‚ G I >: ‘ =
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 It is well known that if  is the infinitesimal generator of a -semigroup of boundedE G!

linear operators, or equivalently,

  ,  means domain),Ð3Ñ HÐEÑ œ I ÐH
  there exist  and  such that , and supÐ33Ñ Q   ! − Ó ß∞Ò § ÐEÑ ÖÐ  Ñ7 ‘ 7 3 - 7 8

± Ð  EÑ ± À  ß 8 − R× Ÿ Q- - 78 ,

where  is the resolvent set of , then the classical semigroup theory ensures the well-3ÐEÑ E
posedness of Equation (1.1) [12].

 In this work, we investigate the case when the operator  satisfies only the assumptionE
Ð33Ñ E, that is, when  is non-densely defined and we are concerned with the existence of

periodic solutions for Equation (1.1).  Related studies and examples concerning non-densely

defined operators can be found in references such as [1, 3, 4, 7].  For example, in [3], the

authors prove that Equation (1.1) is well-posed in the set

G œ Ö − GÐÒ  <ß !Óß IÑÀ Ð!Ñ − HÐEÑ×Þ! : :

 The problem of finding periodic solutions is an important subject in the qualitative study

of ordinary and functional differential equations.  The famous Massera's theorem [9] on two-

dimensional periodic ordinary differential equations explains the relationship between the

bounded solutions and periodic solutions.  Using Browder's fixed point theorem, Yoshizawa

proved in [13] that, if the solutions of an -dimensional periodic ordinary differential8
equation are either uniformly bounded or uniformly ultimately bounded, then the system has

a periodic solution.  Hale and Lopes [6] used Horn's fixed point theorem to obtain the same

result for -dimensional periodic ordinary and functional differential equations with finite8
delay.  In [11], Show studies Massera's theorem for some functional differential equations in

finite dimensional spaces and proves that the existence of a bounded solution implies the

existence of a periodic solution.

 In may of those studies, the most important feature is to show that the operator

T œ B Ð † ß Ñ Ð BÑ Ð"Þ#Ñ9 9 == ,   units along 

is compact (continuous and takes a bounded set into a precompact set), where  is the period=
of the system and  is the unique solution determined by .  Then, some fixed point theoremB 9
can be used to derive periodic solutions.

 For equations in general Banach spaces (infinite dimensional), showing the compactness

of operator  is a very hard task due to the difficulty involving the abstract version of Arzela-T
Ascoli's theorem.  As can be seen in [2, 8, 14], if this difficulty can be overcome, then other

steps for equations in finite dimensional spaces can be carried over to show that operator  isT
compact, and hence to derive periodic solutions.  For example, in [8], the author shows the

compactness of  for the evolution equationT

œ          B Ð>Ñ œ EÐ>ÑBÐ>Ñ  0Ð>ß BÐ>Ñß B Ñß >   !ß
B œ − GÐÒ  <ß !Óß IÑß

w
>

! :

where  is -periodic in  and generates an evolution system  in a BanachEÐ>Ñ > ÐY Ð>ß =ÑÑ= > = !

space , and  is -periodic in .  Hence, the existence of periodic mild solutionsI 0Ð>ß † ß † Ñ >=
using the boundedness and ultimate boundedness of mild solutions when  is proven.=  <
 When operator  in Equation (1.1) satisfies only condition   is non-densely de-E Ð33Ñ ÐE
fined), the appropriate solutions  to work with will be integral solutions (see Definition 2.1).

To our knowledge, we have not seen results about periodic integral solutions, thus we would

like to provide one here.  Similar to the cases for densely defined operators mentioned above,

the most important step here is to show that   is compact, where  is theT œ B Ð † ß Ñ B9 9=

unique integral solution determined by .  After this, we are able to apply Horn's fixed point9
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theorem and prove under the boundedness and ultimate boundedness assumptions, the

existence of -periodic integral solutions for Equation (1.1) when .  This way, we can= =  <
extend the study of periodic solutions for densely defined operators to non-densely defined

operators.  Finally, we give an example of a partial functional differential equation in

continuous functions space with the super-norm.

2.  The Compactness of Operator T

In this section we make the following assumptions:

  The operator  is a Hille-Yosida operator.  That means:  there exist ÐL Ñ E Q  !"

and  such that , and sup7 ‘ 7 3 - 7 - - 7− Ó ß∞Ò § ÐEÑ ÖÐ  Ñ ± Ð  EÑ ± À  ß8 8

8 − R× Ÿ QÞ
ÐL Ñ J >#  The function  is continuous in  and is locally Lipschitz in the second variable in

the sense that, for each , there exists a constant  such that2  ! 5 Ð2Ñ  !"

± J Ð>ß Ñ  JÐ>ß Ñ ± Ÿ 5 Ð2Ñ ±  ± ß > − Ò!ß 2Ó ± ± ß ± ± Ÿ 2Þ: : : : : :" # # " # " # for  and 

 We now list the following definitions.

   Let .  A continuous function  is called an Definition 2.1: ,  ! BÀ Ò  <ß ,Ó Ä I integral

solution of Equation (1.1) if

  , for ,Ð3Ñ BÐ=Ñ.= − HÐEÑ > − Ò!ß ,Ó' >

!

  , for ,Ð33Ñ BÐ>Ñ œ Ð!Ñ  E BÐ=Ñ.=  JÐ=ß B Ñ.= > − Ò!ß ,Ó: ' '> >

! ! =

  .Ð333Ñ B œ! :
   A continuous function  is called a  ofDefinition 2.2: BÀ Ò  <ß ,Ó Ä I strict solution

Equation (1.1) if

  ,Ð3Ñ B − G ÐÒ!ß ,Óß IÑ ∩ GÐÒ!ß ,ÓßHÐEÑÑ"

   satisfies Equation (1.1) for ,Ð33Ñ B > − Ò!ß ,Ó
  .Ð333Ñ B œ! :
   From the closedness of operator , we see that if an integral solution  ofRemark 2.1: E B
Equation (1.1) is continuous differentiable, then  is a strict solution of Equation (1.1).B
 We can use methods similar to those in [3] for autonomous equations to obtain the

following existence and uniqueness results concerning integral solutions and strict solutions

for non-autonomous equations.  The details are omitted here.

 Theorem 2.1:  Assume that  and  holds.  Then for any ÐL Ñ ÐL Ñ − G œ" # !:

Ö − GÐÒ  <ß !Óß IÑÀ Ð!Ñ − HÐEÑ× BÐ † ß Ñ: : :, there exists a unique integral solution  of

Equation with its maximal interval of existence , , andÐ"Þ"Ñ Ò  <ß > Ò >  !: :

either , or lim sup> œ ∞ ± BÐ>ß Ñ ± œ ∞Þ
> Ä >

:

:

:

Moreover  is a continuous function of  in the sense that, for  and ,BÐ † ß Ñ − G > − Ò!ß > Ò: : : ! :

there exist positive constants  and  such that for any  with , we haveP − G ±  ± % < : < %!

> − Ò!ß > Ò ± BÐ=ß Ñ  BÐ=ß Ñ ± Ÿ P ±  ± ß = − Ò  <ß >ÓÞ<  and : < : <

 Theorem 2.2:  Assume that  and  hold.  Furthermore, assume that  isÐL Ñ ÐL Ñ J" #

continuous differentiable, and for each , there exist positive constants  and 2  ! 5 Ð2Ñ 5 Ð2Ñ# $

such that

± H JÐ>ß Ñ  H JÐ>ß Ñ Ÿ 5 Ð2Ñ ±  ± ß" " " # # " #: : : :
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± H JÐ>ß Ñ  H JÐ>ß Ñ ± Ÿ 5 Ð2Ñ ±  ± ß# " # # $ " #: : : :

for  and , , where  and  denote respectively the derivative of> − Ò!ß 2Ó ± ± ± ± Ÿ 2 H H: :" # " #

JÐ>ß Ñ > − G: : : with respect to  and .  Let  such that!

: : : : :w w
!− G ß Ð!Ñ − HÐEÑß Ð!Ñ œ E Ð!Ñ  JÐ!ß ÑÞ and 

Then the integral solution  of Equation  is a strict solution in .BÐ Ñ Ð"Þ"Ñ Ò!ß > Ò: :

 Remark 2.2:  If we assume that function  is continuous and Lipschitz with respectJÐ>ß Ñ:
to the second argument, then the integral solution of Equation (1.1) exists for all .>   !
Moreover, the solutions  are locally bounded in  and .  In the following, we areBÐ>ß Ñ >: :
concerned with periodic integral solutions, so we will assume that all integral solutions exist

on .Ò!ß∞Ñ

 Now, we introduce the part  of  in , defined byE E HÐEÑ!

E œ E HÐE Ñ œ ÖB − HÐEÑÀEB − HÐEÑ×Þ! ! on 

Then it is well known [1, 7] that the part  of  generates a strongly continuous semigroupE E!

X Ð † Ñ HÐEÑ − G! ! on ; and for , the integral solution of Equation (1.1) is given by:

BÐ>Ñ œ Ð#Þ"Ñ
X Ð>Ñ Ð!Ñ  X Ð>  =ÑF JÐ=ß B Ñ.=ß >   !ß

Ð>Ñß > − Ò  <ß !Óß
œ '! Ä∞ ! =

>

!:

:

lim   - -

where  and , .F œ Ð  EÑ à BÐ>Ñ − HÐEÑ >   !- - - "

 In the sequel, we need to prove the compactness of operator , so we assume:T

  The semigroup  is compact on .  That means for eachÐL Ñ ÐX Ð>ÑÑ HÐEÑ$ ! > !

>  ! X Ð>Ñ HÐEÑ, operator  is compact on .!

 Now we are ready to prove our main result in this paper, that is, the compactness of

operator .T
 Theorem 2.3:  Assume that , ,  hold and that all integral solutions ofÐL Ñ ÐL Ñ ÐL Ñ" # $

Equation  exist for  and are locally bounded that is, for any , the integralÐ"Þ"Ñ >   ! Ð >  !
solutions of Equation  are bounded on  by a constant if their initial functions areÐ"Þ"Ñ Ò!ß >Ó
bounded by a constant .  Let  be fixed.  Then the operator   on  isÑ  < T œ B Ð † ß Ñ G= : := !

compact continuous and takes a bounded set into a precompact set .Ð Ñ
 Proof:  The continuity of  follows from Theorem 2.1.  Let  be a bounded set in .T F G!

Then, as integral solutions are locally bounded, it follows that the set

[ œ ÖB Ð † ß ÑÀ − F× Ð#Þ#Ñ= : :

is bounded in .  Next, we will show that  is precompact in  by using Arzela-Ascoli'sG [ G! !

theorem.  To that end, we first prove that for every fixed ,) − Ò  <ß !Ó

ÖBÐ  ß ÑÀ − F×= ) : :

is precompact in .  From (2.1), we haveHÐEÑ

BÐ  ß Ñ œ X Ð  Ñ Ð!Ñ  X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=Þ
Ä ∞

= ) : = ) : = ) :
-

! ! =



!

lim   '         = )

-

 Since  is fixed, we can choose  such that .  Then= % = ) % <  !    !
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'        = )

-



!
! =X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.== ) :

œ X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.='             = ) %

-

 

!
! == ) :

 X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=ß'        

         

= )

= ) %
-



 
! == ) :

and

lim
-

= ) :
Ä ∞

X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.='             = ) %

-

 

!
! =

œ X Ð Ñ X Ð    =ÑF JÐ=ß B Ð † ß ÑÑ.=Þ
Ä ∞

! ! =

 

!

% = ) % :
-
  lim '               = ) %

-

Therefore, by Assumption  and the local boundedness assumption on integral solutions,ÐL Ñ$
we see that

H Ÿ'lim  
-

= ) : :
Ä ∞

X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=À − F
             = ) %

-

 

!
! =

œ X Ð Ñ X Ð    =ÑF JÐ=ß B Ð † ß ÑÑ.=À − F
Ä ∞

! ! =

 

!

% = ) % : :
-

      limH Ÿ'             = ) %

-

is precompact in  because  is applied to a bounded set.  Next, for some positiveHÐEÑ X Ð Ñ! %
constant ,+

± X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=
Ä ∞
 lim  

-
= ) :'           = )

-



!
! =

 X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.= ±
Ä ∞
lim

-
= ) :'             = ) %

-

 

!
! =

Ÿ ± X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.= ± Ÿ + Þ
Ä ∞
 lim   

-
= ) : %'           

        

= )

= ) %
-



 
! =

This implies that the set

H Ÿ'lim   
-

= ) : :
Ä ∞

X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=À − F Ð#Þ$Ñ
           = )

-



!
! =

is totally bounded, and therefore the set  is precompact in .ÖBÐ  ß ÑÀ − F× HÐEÑ= ) : :
 It remains to prove the equicontinuity of functions in set .  Let   with[ ß − Ò  <ß !Ó) )!
) ) = ) = )     !! !.  Then , and

BÐ  ß Ñ  BÐ  ß Ñ œ ÒX Ð  Ñ  X Ð  ÑÓ Ð!Ñ= ) : = ) : = ) = ) :! ! ! !
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 X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=
Ä ∞
lim   

-
= ) :'        = )

-



!
! =

 X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=Þ
Ä ∞
lim

-
= ) :'          = )

-



!
! ! =

!

Notice that

' '                  = )

- -

= )

! !
! = ! =



X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.= œ X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.== ) : = ) :
!

 X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=ß'        

      

= )

= )
-




! =

!

= ) :

so we deduce that

± BÐ  ß Ñ  BÐ  ß Ñ ± Ÿ ± X Ð  Ñ  X Ð  Ñ ± ± Ð!Ñ ±= ) : = ) : = ) = ) :! ! ! !

 ± ÒX Ð   =Ñ  X Ð   =ÑÓF JÐ=ß B Ð † ß ÑÑ.= ±
Ä ∞

  lim   
-

= ) = ) :'         = )

-



!
! ! ! =

!

 ± X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.= ± Þ
Ä ∞

  lim   
-

= ) :'         

     

= )

= )
-




! =

!

 From Assumption  and a result in [10], semigroup  is uniformly continuousÐL Ñ ÐX Ð>ÑÑ$ ! > !

for , which implies that>  !

lim
) )

= ) = )
Ä

± X Ð  Ñ  X Ð  Ñ ± œ !ß
!

! ! !

since .  Furthermore, there exists a positive constant  such that= ) = )    ! ,!

± X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.= ± Ÿ ,Ð  ÑÞ
Ä ∞
 lim

-
= ) : ) )'        

      

= )

= )
-




! = !

!

We also have

lim   
-

= ) = ) :
Ä ∞

ÒX Ð   =Ñ  X Ð   =ÑÓF JÐ=ß B Ð † ß ÑÑ.='         = )

-



!
! ! ! =

!

œ ÒX Ð  Ñ  MÓ X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.=Þ
Ä ∞

! ! ! ! =



!

) ) = ) :
-
  lim '         = )

-

!

 As in (2.3), we obtain that there is a compact set  in  such thatO HÐEÑ

lim    for all .
-

= ) : :
Ä ∞

X Ð   =ÑF JÐ=ß B Ð † ß ÑÑ.= − O − F'          = )

-



!
! ! =

!

Thus, from Banach-Stenhauss' theorem, we have
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lim    sup
) )

) )
Ä B − O

± ÐX Ð  Ñ  MÑB ± œ !Þ
!

! !

This implies that

lim , uniformly for .
) )

= ) : = ) : :
Ä

± BÐ  ß Ñ  BÐ  ß Ñ ± œ ! − F

!

!

The proof for  is similar.  This completes the proof.) ) !

3.  Boundedness and Periodicity

After showing the compactness of operator , we can follow [2, 8, 14] and derive periodicT
integral solutions for Equation (1.1).  In the sequel, we make the following assumption.

  The function  is -periodic in  with .ÐL Ñ JÐ>ß Ñ >  <% : = =
 We also need to bound certain terms involving integral solutions, so we define the

following

   We say that integral solutions of Equation (1.1) are  if for eachDefinition 3.1: bounded

F  ! F  ! ± ± Ÿ F ± BÐ>ß Ñ ± Ÿ F >   !" # " #, there is a  such that  implies  for .: :
   We say that integral solutions of Equation (1.1) are  ifDefinition 3.2: ultimate bounded

there is a bound , such that for each , there is a  such that  andF  ! F  ! 5  ! ± ± Ÿ F$ $:
>   5 ± BÐ>ß Ñ ± Ÿ F imply .:
 We also list the following result as a reference.

  [6] (Horn's Fixed Point Theorem)Lemma 3.1:   Let  be convex subsets ofI § I § I! " #

Banach space , with  and  compact subsets and  open relative to .  Let^ I I I I! # " #

T ÀI Ä ^ 7#  be a continuous map such that for some integer , one has

T ÐI Ñ § I " Ÿ 4 Ÿ 7 "4
" #, ,

T ÐI Ñ § I 7 Ÿ 4 Ÿ #7 "4
" !, ,

then  has a fixed point in .T I#

 With these preparations, we can prove:

 Theorem 3.1:  Assume that  and  hold.  Furthermore, suppose thatÐL Ñß ÐL Ñß ÐL Ñ ÐL Ñ" # $ %

integral solutions of Equation  are bounded and ultimate bounded.  Then Equation Ð"Þ"Ñ Ð"Þ"Ñ
has an -periodic integral solution.=
 Proof:  From Theorem 2.3, we know that operator  on  is compact.  LetT œ B Ð † ß Ñ G9 9= !

F be the bound in the definition of ultimate boundedness.  Then by boundedness, there is a

F  ! ± ± Ÿ F ± BÐ>ß Ñ ± Ÿ F >   !" " such that  implies  for .  Furthermore, there is a: :
F  F ± ± Ÿ F ± BÐ>ß Ñ ± Ÿ F >   !# " " # such that  implies  for .  Now, using ultimate: :
boundedness, there is a positive integer  such that  implies  for7 ± ± Ÿ F ± BÐ>ß Ñ ± Ÿ F: :"

>   Ð7  #Ñ=.

 Let  be an integral solution of Equation (1.1) and define .  Then forBÐ>Ñ CÐ>Ñ œ BÐ>  Ñ=
>   !,

CÐ>Ñ œ BÐ>  Ñ œ X Ð>  Ñ Ð!Ñ  X Ð>   2ÑF JÐ2ß B Ñ.2
Ä ∞

= = 9 =
-

! ! 2

>

!

lim '        =

-

œ X Ð>ÑX Ð Ñ Ð!Ñ  X Ð>   2ÑF JÐ2ß B Ñ.2
Ä ∞

! ! ! 2
!

= 9 =
-

lim '    = -
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 X Ð>   2ÑF JÐ2ß B Ñ.2
Ä ∞
lim

-
='         >

! 2

=

=
-

œ X Ð>Ñ X Ð Ñ Ð!Ñ  X Ð  2ÑF JÐ2ß B Ñ.2
Ä ∞

! ! ! 2
!

– —'= 9 =
-

lim
    =

-

 X Ð>  =ÑF JÐ=ß B Ñ.=
Ä ∞
lim

-
'    >
!

! =- =

œ X Ð>ÑCÐ!Ñ  X Ð>  =ÑF JÐ=ß C Ñ.=Þ Ð$Þ"Ñ
Ä ∞

! ! =

>

!

lim
-

'    -

This implies that  is also an integral solution of Equation (1.1).  Then theCÐ>Ñ œ BÐ>  Ñ=
uniqueness implies that  for .  Thus, we haveT œ B Ð † ß Ñ − G7

7 !: : :=

± T ± œ ± B Ð † ß Ñ ±  F 4 œ "ß #ßá ß7  " ± ± Ÿ F ß4"
Ð4"Ñ # ": : := ,  and 

± T ± œ ± B Ð † ß Ñ ±  F 4   7 ± ± Ÿ F Þ4"
Ð4"Ñ ": : := ,  and 

Let

L œ Ö − G À ± ±  F × I œ -9@ÞÐT ÐLÑÑß: :! # #, 

O œ Ö − G À ± ±  F ×ß I œ O ∩ I ß: :! " " # 

K œ Ö − G À ± ±  F× I œ -9@ÞÐT ÐKÑÑß: :! !,   

where  is the convex hull of the set . Then we see that ,  and  are convex-9@ÞÐJ Ñ J I I I! " #

subsets of  with  and  compact subsets and  open relative to  andG I I I I! ! # " #

T ÐI Ñ § T ÐOÑ œ TT ÐOÑ § TÐLÑ § I " Ÿ 4 Ÿ 7 "ß4 4 4"
" #, 

T ÐI Ñ § T ÐOÑ œ TT ÐOÑ § TÐKÑ § I 7 Ÿ 4 Ÿ #7 "Þ4 4 4"
" !,  

Consequently, from Horn's fixed point theorem, we know that operator  has a fixed point .T 9
Then, for the integral solution  with , we see from (3.1) thatBÐ † Ñ œ BÐ † ß Ñ B Ð † ß Ñ œ9 9 9!

CÐ>Ñ œ BÐ>  ß Ñ C œ B Ð Ñ œ T œ= 9 9 9 9 is also an integral solution with .  Thus the! =

uniqueness implies ; therefore  is an -periodic solution.BÐ>ß Ñ œ CÐ>Ñ œ BÐ>  ß Ñ BÐ>ß Ñ9 = 9 9 =
This completes the proof.

 Next, we give a criteria as in [8] to guarantee the boundedness and ultimate boundedness

of integral solutions of Equation (1.1)  The proof can be found in [8].

 Theorem 3.2:  Assume that there exist functions ,  with  [ 3 œ "ß #ß $ [ À Ò!ß∞Ò Ä3 3

Ò!ß∞Ò [ Ð!Ñ œ ! [ [ Ð>Ñ Ä ∞ > Ä ∞, ,  strictly increasing, and , as .  Further assume that3 3 "

there exists a Lyapunov function  such that for some , when  is an integralZ ÀI Ä Q  ! B‘
solution of Equation  with , thenÐ"Þ"Ñ ± BÐ>Ñ ±   Q

[ Ð ± BÐ>Ñ ± Ñ Ÿ Z ÐBÐ>ÑÑ Ÿ [ Ð ± BÐ>Ñ ± Ñ" # , and
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.
.> $ $

>

!

Z ÐBÐ>ÑÑ Ÿ [ Ð ± BÐ>Ñ ± Ñ Z ÐBÐ>ÑÑ  Z ÐBÐ!ÑÑ Ÿ  [ Ð ± BÐ=Ñ ± Ñ.=Þ or '    

Then integral solutions of Equation  are bounded and ultimate bounded.Ð"Þ"Ñ

4.  An Example

In the following, we apply our results to the partial functional differential equation

  , , , ` `
`> `B >?Ð>ß BÑ œ ?Ð>ß BÑ  0Ð>ß Bß ? Ð † ß BÑÑ ?Ð>ß !Ñ œ ?Ð>ß "Ñ œ ! >   ! B − Ò!ß "Óß Ð%Þ"Ñ

#

#

where  (not the partial derivative) is defined by ,? Ð † ß BÑ ? Ð † ß BÑÐ Ñ œ ?Ð>  ß BÑ> > ) )
) − Ò  <ß !Ó <  !,   is a constant.

 We study Equation (4.1) in , the space of all continuous functions on I œ GÒ!ß "Ó Ò!ß "Ó
with the super-norm, and define

E? œ ? HÐEÑ œ Ö? − G Ò!ß "ÓÀ ?Ð!Ñ œ ?Ð"Ñ œ !×Þ Ð%Þ#Ñww #,  

Then the closure of  isHÐEÑ

HÐEÑ œ G Ò!ß "Ó œ Ö? − GÒ!ß "ÓÀ ?Ð!Ñ œ ?Ð"Ñ œ !× Á GÒ!ß "Ó œ Ià Ð%Þ$Ñ!

thus  is not densely defined on .E I
 Now, (10.2) in [4] is true, and it implies (1.1) in [4].  Thus Hille-Yosida condition  inÐL Ñ"
our paper is satisfied.

 Let  be the closure of , that is,I HÐEÑ!

I œ HÐEÑ œ Ö? − GÒ!ß "ÓÀ ?Ð!Ñ œ ?Ð"Ñ œ !×ß!

and define the part of  asE

E ? œ E? œ ? ß Ð%Þ%Ñ!
ww

on the domain

HÐE Ñ œ Ö? − HÐEÑÀE? − I ×! !

œ Ö? − G Ò!ß "ÓÀ ?Ð!Ñ œ ?Ð"Ñ œ ? Ð!Ñ œ ? Ð"Ñ œ !×Þ Ð%Þ&Ñ# ww ww

 Lemma 4.1:   generates a compact semigroup on .E I œ HÐEÑ! !

 Proof:  Let  and consider  for , that is,0 − I Ð  E Ñ? œ 0 Â Ð ∞ß !Ó! !- -

-?Ð>Ñ  ? Ð>Ñ œ 0Ð>Ñ ?Ð!Ñ œ ?Ð"Ñ œ ? Ð!Ñ œ ? Ð"Ñ œ !Þ Ð%Þ'Ñww ww ww, 

From [5], ,  has a unique solution  (given on page-?Ð>Ñ  ? Ð>Ñ œ 0Ð>Ñ ?Ð!Ñ œ ?Ð"Ñ œ ! Aww

372 of [5]).  Now,  and , so   Thus  is also a uniqueA − I 0 − I A œ A 0 − I Þ A! ! !
ww -

solution of Equation (4.6).  Therefore  is well defined on  for .Ð  E Ñ I Â Ð ∞ß !Ó- -! !
"

 Next, similar to the argument in [5], we have

² Ð  E Ñ ² Ÿ ß Ð%Þ(Ñ- !
"

FÐI Ñ
"

± ± Ð;Î#Ñ! - cos
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where arg  and  is the Banach space of all bounded linear operators on .  Now; œ FÐI Ñ I- ! !

from [4] or [10],  generates an analytic semigroup on .  Then similar to [10], the analyticE I! !

semigroup is continuous in the uniform operator topology for  and ,>  ! Ð  E Ñ- !
"

- Â Ð ∞ß !Ó I I, maps bounded set in  into bounded set in  with a uniform bound on their! !

first derivatives.  It now follows from Arzela-Ascoli's theorem that ,Ð  E Ñ- !
"

- Â Ð ∞ß !Ó is a compact operator.  Therefore, the semigroup is compact according to [10].

 For this example, conditions -  can be met, so that results here can be applied.ÐL Ñ ÐL Ñ" %

Details are left to the reader.
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