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PERIODIC SOLUTIONS OF STOCHASTIC DELAY

DIFFERENTIAL EQUATIONS AND APPLICATIONS TO

LOGISTIC EQUATION AND NEURAL NETWORKS

Dingshi Li and Daoyi Xu

Abstract. In this paper, we consider a class of periodic Itô stochastic
delay differential equations by using the properties of periodic Markov
processes, and some sufficient conditions for the existence of periodic so-
lution of the delay equations are given. These existence theorems improve
the results obtained by Itô et al. [6], Bainov et al. [1] and Xu et al. [15].
As applications, we study the existence of periodic solution of periodic
stochastic logistic equation and periodic stochastic neural networks with
infinite delays, respectively. The theorem for the existence of periodic so-
lution of periodic stochastic logistic equation improve the result obtained
by Jiang et al. [7].

1. Introduction

Since Itô introduced his stochastic calculus about 50 years ago, the theory of
stochastic differential equations has been developed very quickly [1–15, 17]. It
is now being recognized to be not only richer than the corresponding theory of
differential equations without stochastic perturbation but also represent a more
natural framework for mathematical modeling of many real-world phenomena.
Now there also exists a well-developed qualitative theory of stochastic differ-
ential equations [6, 10, 12]. However, not so much has been developed in the
direction of the periodically stochastic differential equations. Till now only a
few papers have been published on this topic [1,3,4,15,17]. In papers [3,6], the
authors got the conditions for the existence of periodic solution of differential
equations with random right sides. Hasminskii in [4] gave some basic results
on the existence of periodic solution of stochastic differential equations without
delays. But, the above results can not be used to check the existence of peri-
odic solution of general stochastic delay differential equations. In [15], Xu et
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al. showed that stochastic differential equations with finite delay (SFDE) has a
periodic solution if its solutions are uniformly bounded and point dissipativity.
Motivated by the above discussions, we will generalize the existence theorem of
the periodic solution for SFDE to stochastic differential equations with infinite
delay (ISFDE) at phase space BC((−∞, 0];Rn). The obtained results improve
the results obtained by Itô et al. [6], Bainov et al. [1] and Xu et al. [15]. As
applications, we study the existence of periodic solution of periodic stochastic
logistic equation and periodic stochastic neural networks with infinite delays,
respectively. The theorem for the existence of periodic solution of periodic
stochastic logistic equation improve the result obtained by Jiang et al. [7]

2. Preliminaries

For convenience, we introduce several notations and recall some basic defi-
nitions.
C[X,Y ] denotes the space of continuous mappings from the topological space

X to the topological space Y . Let R+ = (0,+∞) and R+ = [0,+∞). Espe-

cially, let BC
∆
= C ([−τ, 0] , Rn) is the space of all bounded continuous Rn-value

functions φ defined on [−τ, 0] with the norm ‖φ‖ = sup−τ≤s≤0 |φ (s)|, where
|·| is any norm in Rn and τ is a fixed number or τ = ∞. When τ = ∞ we

mean, of course, thatBC
∆
= C ((−∞, 0] , Rn) . Let (Ω,F , {Ft}t≥0, P ) be a com-

plete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e., it is right continuous and F0 contains all P -null sets). If x(t) is an Rn-
valued stochastic process on t ∈ [−τ,∞), we let xt = x (t+ s) : −τ ≤ s ≤ 0,
which is regarded as a BC-valued stochastic process for t ≥ 0. Denote by
BCb

F0
([−τ, 0] , Rn) the family of all bounded F0-measurable, BC-valued ran-

dom variables φ, satisfying E [‖φ‖] < ∞, where E [f ] mean the mathematical
expectation of f .

Definition 2.1. A stochastic process xt(̟) with values in Banach space BC,
defined for t ≥ 0 on a probability space (Ω,F , {Ft}t≥0, P ) is called a Markov
process if, for all A ∈ B, 0 ≤ v < t,

P {xt (̟) ∈ A |Fv } = P {xt (̟) ∈ A |xv (̟)} ,
where Fv is the σ-algebra of events generated by all events of the form {xu (̟)
∈ A, u ≤ v} and B denotes the σ-algebra of Borel sets in BC.

Definition 2.2. A stochastic process xt(̟) is said to be periodic with period
ω if its finite dimensional distributions are periodic with periodic ω, i.e., for any
positive integer m and any moments of time t1, . . . , tm, the joint distributions
of the random variables xt1+kω

(̟), . . . , xtm+kω
(̟) are independent of k (k =

±1,±2, . . .).

Remark 2.1. By the definition of periodicity, if x(t) is a ω-periodic stochastic
process, then its mathematic expectation and variance are ω-periodic [4, p. 49].
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The transition function of a Markov process, p (v, xv, t, A) = P (xt ∈ A |xv ),
a.s., is called periodic if p (v, xv, t+ v,A) is periodic in v.

Later on we shall often denote a family of Markov processes by x
(t0,φ)
t (̟)

for all t0 ∈ R+ and xt0 = x (t0 + s) = φ (s) ∈ BCb
F0

([−τ, 0] , Rn) .

Definition 2.3. The Markov families x
(t0,φ)
t (̟) are said to be uniformly

bounded, if for each α > 0, t0 ∈ R+, there exists a positive constant θ = θ (α)
which is independent of t0 such that E ‖xt0‖ ≤ α implies E [‖xt (t0, xt0)‖] ≤ θ,

t ≥ t0. In a general way, the Markov families x
(t0,φ)
t (̟) are said to be p-

uniformly bounded if E [‖·‖] is replaced by E [‖·‖p].

Denote Ur = {φ ∈ BC : ‖φ‖ < r} by U r = {φ ∈ BC : ‖φ‖ ≥ r} .

Lemma 2.1. A sufficient condition for the existence of an ω-periodic Markov

process with a given ω-periodic transition function p (v, xv, t, A) is that for some

t0, φ, x
(t0,φ)
t (̟) are uniformly stochastically continuous and

(1) lim
r→∞

lim
T→∞

1

T

∫ t0+T

t0

p
(

t0, φ, t, U r

)

dt = 0,

provided the transition function p (v, xv, t, A) satisfies the following not very

restrictive assumption that

(2) α (r) = sup
φ∈Uβ(r),0<t0,t−t0<ω

p
(

t0, φ, t, U r

)

→ 0 as r → ∞,

for some function β(r) which tends to infinity as r → ∞.

The proof of Lemma 2.1 is essentially the same as that of Lemma 2.3 in [15],
Theorem 2.1 including Remark 2.1 in [1] and [9, Theorem 2.1, p. 491] except
one chooses φ ∈ BCb

F0
([−τ, 0] , Rn). But, in fact, the conditions of Lemma

2.1 are of little use for stochastic differential equations, since the properties of
transition functions of such processes are usually not expressible in terms of
the coefficients of the equation. So, in the following, we will give some new
useful sufficient conditions.

Lemma 2.2. If Markov families x
(t0,φ)
t (̟) with ω-periodic transition functions

are uniformly bounded and uniformly stochastically continuous, then there is an

ω-periodic Markov process.

Proof. Using Markov inequality, Xu et al. [15, p. 1009] gave that

p
(

t0, φ, t, Ur

)

≤ 1

rP (xt0 = φ)
E [‖xt‖] .

From the definition of uniform boundedness, for each α > 0, there exists a
positive constant θ = θ (α) such that E ‖φ‖ ≤ α implies E [‖xt (t0, xt0)‖] ≤ θ,
t ≥ t0.
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So, we get

lim
r→∞

lim
T→∞

1

T

∫ t0+T

t0

p
(

t0, φ, t, U r

)

dt

≤ lim
r→∞

1

rP (φ)
lim

T→∞

1

T

∫ t0+T

t0

E [‖xt‖]dt

≤ lim
r→∞

θ (α)

rP (φ)
= 0,

that is, (1) is true. The proof of (2) is similar to the remainder of the proof of
Theorem 2.4 in [15], so we omit it. �

Lemma 2.3 ([16]). If

(A1) u : R+ → Rn is uniformly continuous,

(A2) g : Rn → R is continuous and g (x) = 0 if and only if x = 0,

(A3) h : R+ → R+ satisfies inf
t≥0

∫ t+δ

t
h (s) ds > 0 for any δ > 0,

(A4) lim
t→∞

∫ t

0 h (s) g (u (s))ds exists and is finite.

Then lim
t→∞

u (t) = 0.

3. Periodic solution of ISFDE

In this section, we consider the following periodic ISFDE

(3)

{

dx (t) = f (t, xt) dt+ g (t, xt) dW (t) , t ≥ t0 ≥ 0,
xt0 = x (t0 + s) = φ (s) , s ∈ [−τ, 0] ,

on the probability space (Ω,F , {Ft}t≥0, P ). The equation (3) has a Borel
measurable ω-periodic drift coefficient function f : [t0,∞) × BC → Rn and a
Borel measurable ω-periodic diffusion coefficient function g : [t0,∞) × BC →
Rn×m driven by m-dimensional Brownian motion W . We assume that Ft is
the completion of the σ-algebra σ {W (u) : t0 ≤ u ≤ t} for each t ≥ t0. The
initial condition φ(s) ∈ BCb

F0
([−τ, 0], Rn) is independent of W (t), t ≥ t0, and

E [‖φ‖] <∞.
In this section, we always assume that system (3) has a unique global solution

(see [13, 14]).

Theorem 3.1. Assume that the solutions of periodic system (3) are p-uniform-

ly bounded for p > 2 and f (t, xt) and g (t, xt) satisfy

(4) |f (t, xt)|p + |g (t, xt)|p ≤ ϕ (‖xt‖p) , p > 2,

where ϕ is a concave non-decreasing function, then there is an ω-periodic
Markov process.

Proof. As the proof of Lemma 3.2 in [15], we have that the unique solution
xt of (3) is a Markov process with its transition function p (v, xv, t, A) =
P (xt ∈ A |xv ). Moreover, the transition function p(v, xv, t, A) of (3) is ω-
periodic since the coefficients of (3) are ω-periodic in t.
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Since ϕ is a concave non-decreasing function, we get

Eϕ (‖xt‖p) ≤ ϕ (E‖xt‖p) .
From the p-boundedness of xt and the condition (4), we can get that there
exists a constant µ > 0 such that

E|f (t, xt)|p + E|g (t, xt)|p ≤ µ, p > 2.

By Lemma 3.4 in [15], the solutions of periodic system (3) are uniformly
stochastically continuous.

In the view of above, all conditions of Lemma 2.2 are satisfied. The proof is
complete. �

Suppose (3) is the autonomous system, that is, f (t, xt) and g (t, xt) do not
depend on t. We have the following corollary:

Corollary 3.1. Assume that the solutions of autonomous system (3) are p-
uniformly bounded for p > 2 and f (xt) and g (xt) satisfy Condition (4), then
there is a stationary Markov process.

Remark 3.1. Itô et al. [6, Theorem 2, p. 19] (Bainov et al. [1, Theorem 5.3,
p. 23]) gave that there is a stationary (periodic) Markov process of autonomous
(periodic) system (3) if the uniformly bounded in 4-th moment and

(5)

{

|f (t, xt)|4 ≤ q1 +
∫ 0

−∞
|x (s)|4dk1 (s) ,

|g (t, xt)|4 ≤ q2 +
∫ 0

−∞ |x (s)|4dk2 (s) ,

where q1, q2 are some positive constants and ki (s), i = 1, 2, are scalar non-
decreasing bounded functions on (−∞, 0]. Clearly, Conditions (5) is a special
case of Conditions (4) by taking p = 4 and ϕ to be linear. Therefore, Corollary
3.1 and Theorem 3.1 is a generation of Th.2 in [6] and Th.5.3 in [1], respectively.

Let V ∈ C1,2
(

[−τ,+∞)×BC,R+

)

denote the family of all non-negative
real-value functions V (t, xt) on [−τ,+∞)×BC which are continuously twice dif-
ferentiable in the first term and once in the second term. If V ∈ C1,2 ([−τ,+∞)
×BC,R+

)

, define an operator LV from [−τ,+∞)×BC to R by

LV (t, xt) = Vt (t, xt)+Vx (t, xt) f (t, xt)+
1

2
trace

[

gT (t, xt)Vxx (t, xt) g (t, xt)
]

,

where Vt (t, xt) = ∂V (t,xt)
∂t

, Vx (t, xt) =
(

∂V (t,xt)
∂x1

, . . . , ∂V (t,xt)
∂xn

)

, Vxx (t, xt) =
(

∂2V (t,xt)
∂xi∂xj

)

n×n
.

Theorem 3.2. Assume that the solutions of (3) are uniformly stochastically

continuous. Let V ∈ C1,2
(

[−τ,+∞)×BC,R+

)

and satisfy that there exists a

constant M such that

(6) LV (t, xt) ≤ 0, ‖xt‖ ≥M,
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(7) inf
‖xt‖∈UR

V (t, xt) → ∞ as R→ ∞.

Then Eq.(3) has a ω-periodic solution.

Proof. Without loss of generality, fix the initial value xt0 ∈ UM arbitrarily. We
write xt = xt (t0, xt0) and set Vr = infxt∈Ur

V (t, xt), where r > M . Let τ be

the first enter time of xt into UM , that is

τ = inf {t ≥ t0 : xt ∈ UM} .
By Itô’s formula, for any t ≥ t0,

V (τ ∧ t, xτ∧t) = V (t0, xt0) +

∫ τ∧t

t0

LV (s, xs) ds

+

∫ τ∧t

t0

Vx (s, xs) g (s, xs) dW (s).

Taking the expectation on both sides and making use of the condition (6), we
obtain that

(8) EV (τ ∧ t, xτ∧t) ≤ V (t0, xt0) .

Using this and Čebyšev’s inequality, we get

P (‖xt‖ ≥ r) ≤ EV (τ ∧ t, xτ∧t)

Vr

≤ V (t0, xt0)

Vr
.

This yields

p
(

t0, φ, t, U r

)

= P
(

xt ∈ U r |xt0 = φ
)

=
P {(‖xt‖ ≥ r) ∩ (xt0 = φ)}

P (xt0 = φ)

≤ P ((‖xt‖ ≥ r))

P (xt0 = φ)
→ 0 as r → ∞.

Clearly, the condition (1) of Lemma (2.1) holds.
Further, it follows from the condition (6) that LV (t, xt) ≤ K, xt ∈ BC,

whereK is a sufficiently large constant. Using this inequality and Itô’s formula,
we easily obtain that

EV (t, xt) ≤ V (t0, xt0) +K(t− t0).

Together with Čebyšev’s inequality, this implies

p
(

t0, xt0 , t, UR

)

≤ K(t− t0) + V (t0, xt0)

inf
‖xt‖∈UR

V (t, xt)
.
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Thus the condition (2) of Lemma 2.1 will hold if β(R) is chosen so that

sup
‖xt‖∈Uβ(R)

V (t, xt)

inf
‖xt‖∈UR

V (t, xt)
→ 0 as R → ∞.

This is possible because (7) holds. The proof is completed. �

Remark 3.2. The uniform stochastic continuity is required to guarantee the
compactness of stochastic sequences defined a infinite dimensional space BC.
For the stochastic ODE defined the finite dimensional space Rn, the uniform
stochastic continuity is not required. Therefore, we have the following corollary.

Corollary 3.2. Assume that system (3) without delays exists the global solu-

tions. Let V ∈ C1,2
(

R+ ×Rn, R+

)

and satisfy that there exists a constant M
such that

(9) LV (t, x) ≤ 0, |x| ≥M,

(10) inf
|x|>R

V (t, x) → ∞ as R→ ∞.

Then Eq.(3) without delays has a ω-periodic solution.

4. Periodic solution of nonautonomous stochastic logistic equation

In this section, we consider the following nonautonomous stochastic logistic
equation [7]

(11) dN (t) = N (t) [a (t)− b (t)N (t)] dt+ σ (t)N (t) dB (t) ,

on t ≥ 0 with initial valueN(0) = N0 > 0, and a(t), b(t) and σ(t) are continuous
functions. B(t) is a Brownian motion defined on (Ω,F , {Ft}t≥0, P ).

As N(t) in Eq.(11) is population size at time t, it should be nonnegative.
Moreover, in order for a stochastic differential equation to have a unique global
(i.e., no explosion in a finite time) solution for any given initial data, the
coefficients of the equation are generally required to satisfy the linear growth
condition and local Lipschitz condition. However, the coefficients of Eq.(11)
do not satisfy the linear growth condition, though they are locally Lipschitz
continuous, so the solution of Eq.(11) may explode at a finite time. In this
section we shall show that under simple hypothesis the solution of Eq.(11) is
not only positive but will also not explode at any finite time by using the global
existence theorem in [13, 14].

Theorem 4.1. Assume

(H1) There exist constants σ1, σ2, a1, a2, b1 > 0, b2 > 0 and continuous

bounded function h(t) ≥ 0 such that

σ1h (t) ≤ σ2 (t) ≤ σ2h (t) , a1h (t) ≤ a (t) ≤ a2h (t) , b1h (t) ≤ b (t) ≤ b2h (t) .
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Then for any initial conditions N0 > 0, there is a unique solution x(t) to

Eq.(11) on t ≥ 0, and the solution will remain in R+ almost surely, i.e., x(t) ∈
R+ for any t ≥ 0 with probability 1.

Proof. First consider the equation

(12) du (t) =

(

a (t)− b (t) eu(t) − 1

2
σ2 (t)

)

dt+ σ (t) dB (t)

on t ≥ 0 with initial value u (0) = lnN (0) . Obviously, the coefficients of
Eq.(12) satisfy the local Lipschitz condition, then there is a unique non-continu-
able solution u (t) on t ∈ [0, τe), where τe is the right endpoint of the maximum
existing interval of u(t) (see [13, 14]). Therefore, by Itô’s formula, it is easy to
see N (t) = eu(t), is the unique positive solution to Eq.(11) with initial value
N(0) ∈ R+.

Next, we will show this non-continuable solution is global, i.e., τe = ∞, a.s.
To show this statement, let us define a C1,2-function V : R+ → R+ by

V (N) =
[√
N − 1− 0.5 log (N)

]

.

The nonnegativity of this function can be seen from
√
u− 1− 0.5 log (u) ≥ 0, u > 0.

Note that

(13) lim
N→∞

V (N) = ∞.

Moreover, we estimate operator LV . Since

LV (N) = − 0.5b (t)N1.5 + 0.5b (t)N + 0.5a (t)N0.5 − 0.5a (t)

+ 0.25σ2 (t)− 0.125σ2 (t)N0.5,

by hypothesis (H1), we obtain

LV (N)

≤
(

−0.5b1N
1.5 + 0.5b2N + 0.5a2N

0.5 − 0.5a1 − 0.125σ2
1N

0.5 + 0.25σ2
2

)

h (t) .

Since the coefficient of highest-degree term of the right side is negative and h(t)
is bounded, there is a constant K > 0 such that

ELV (x) ≤ K.

It follows from Theorem 5.1 in [14] that τe = ∞, a.s. The proof is complete. �

Theorem 4.2. Assume that a(t), b(t) and σ(t) are continuous T -periodic func-
tions, (H1) and

(H2) B =
∫ T

0
[a (s)− 1

2σ
2 (s)]ds > 0

hold. Then Eq.(11) has a positive T -periodic solution. Moreover, if

(H3) inf
t≥0

∫ t+δ

t
h (s) ds > 0, for any δ > 0
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hold. Then Eq.(11) has a unique positive T -periodic solution, which attracts all

other positive solutions of Eq.(11).

Proof. From Theorem 4.1, we know that for any initial conditions N0 ∈ R+,
there is a unique positive solution N(t) to Eq.(11) on t ≥ 0 under Condition
(H1). Taking the transformation of the form

u = lnN.

By Itô’s formula, we have

(14) du (t) =

(

a (t)− b (t) eu(t) − 1

2
σ2 (t)

)

dt+ σ (t) dB (t)

on t ≥ 0 with initial value u (0) = lnN (0) .
For any initial value u (0) ∈ R, we denote by u (t) = u (t, 0, u (0)) the solution

of (14). Define

p (t) = −
∫ t

0

(

a (s)− 1

2
σ2(s)−Bh(s)

)

ds,

where B is defined in (H2). It is to see that p(t) is T -periodic continuous
functions. Set

v (t) = u (t) + p (t) .

By Itô’s formula, we have

(15) dv (t) =
(

Bh(t)− b (t) ev(t)−p(t)
)

+ σ (t) dB (t) .

For (15), we define a Lyapunov function

V (v) = |v|,
which satisfies (10).
Then we have

LV (v) = sgnv
{

Bh(t)− b (t) ev(t)−p(t)
}

Condition (H1) implies that

(16) LV (v) ≤ h(t)(B − b1e
v(t)−p(t)) ≤ 0 as v → ∞.

We consider the case v → −∞. For the above B > 0, there exists l > 0 such
that

(17) b2e
v(t)−p(t) < B, v < −l.

Thus,

(18)
LV (v) =

{

−Bh(t) + b (t) ev(t)−p(t)
}

≤h(t)(−B + b2e
v(t)−p(t)) ≤ 0.

From (16) and (18), we get that there exists a positive constantM such that

(19) LV ≤ 0, |v| ≥M.
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Thus, the condition (9) of Corollary 3.2 is satisfied, and there is a periodic
solution of (14) or (15). From N(t) = eu(t), Eq.(11) has a positive periodic
solution.

In order to prove the uniqueness of periodic solution N∗(t) of Eq.(11), we
will prove the global attractivity of N∗(t) by Lemma 2.3. To this end, we need
that sample path of the solution N(t) of Eq.(11) is uniformly continuous. This
conclusion has been proved by Lemma 3.2 in [8] under b(t) > 0⇒ ENp(t) <∞.
So, we only need prove that b(t) ≥ 0 with (H1) ⇒ ENp(t) <∞. Define

V (N(t)) = e
∫

t

0
h(s)dsNp (t) ,

where p > 0. By Itô’s formula, we have that

dV (N(t)) = e
∫

t

0
h(s)dsNp (t)

[

h(t) + pa(t) +
1

2
p (p− 1)σ2 (t)− pb (t)N (t)

]

dt

+ pe
∫

t

0
h(s)dsNp (t) dB (t) .(20)

Integrating (20) from 0 to t and taking expectation on both sides, we obtain
from (H1) that

e
∫

t

0
h(s)dsENp (t)

= Np (0)+E

∫ t

0

e
∫

s

0
h(u)duNp (s)

[

h(s)+pa(s)+
1

2
p (p−1)σ2 (s)−pb (s)N (s)

]

ds

≤ Np (0)+E

∫ t

0

e
∫

s

0
h(u)duNp (s)h(s)

[

1 + pa2 +
1

2
p |p− 1|σ2 − pb1N (s)

]

ds

≤ Np (0)+K

∫ t

0

e
∫

s

0
h(u)duh(s)ds

= Np (0)+K
(

e
∫

t

0
h(s)ds − 1

)

,

where K is the maximum of the function Np
[

1 + pa2 +
1
2p |p− 1|σ2 − pb1N

]

.
Then we have

ENp (t) ≤ Np(0) +K <∞.

Following Lemma 3.2 in [8], this yields that almost every sample path of the
solution N(t) of Eq.(11) is uniformly continuous on t ≥ 0.

In order to apply Lemma 2.3, we consider a Lyapunov function V (t) defined
by

V (t) = |logN (t)− logN∗ (t)| , t ≥ 0.

By Itô’s formula, we have that

d (logN (t)− logN∗ (t)) = −b (t) (N (t)−N∗ (t)) dt.

Thus, a direct calculation of the right differential d+V (t) of V (t) along the
solutions leads to

d+V (t) = sgn (N (t)−N∗ (t)) d (N (t)−N∗ (t))

= −sgn (N (t)−N∗ (t)) [b (t) (N (t)−N∗ (t))] dt(21)
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= −b (t) |N (t)−N∗ (t)| dt.

Integrating (21) from 0 to t, we have

V (t) +

∫ t

0

b (s) |N (s)−N∗ (s)| ds ≤ V (0) <∞.

which leads to

(22)

∫ ∞

0

b1h (s) |N (s)−N∗ (s)| ds ≤ V (0).

Therefore from Lemma 2.3 and (H3), we obtain

lim
t→+∞

|N (s)−N∗ (s)| = 0 for almost all ω ∈ Ω,

which shows that N∗(t) attracts all other positive solutions of Eq.(11). This
implies that Eq.(11) has a unique positive T -periodic solution. �

Remark 4.1. In [7], the authors showed that E [1/N (t)] has a unique positive
T -periodic solution E [1/Np (t)] provided the condition (H2), a(t) > 0 and
b(t) > 0. From Theorem 4.2, Eq.(11) has a unique positive T -periodic solution.
So is 1/Np(t) or E[1/Np(t)] with periodic T by Remark 2.1. But, under the
condition (H2) we need not a(t) > 0 and admit b(t) ≥ 0 with (H1) and (H3).
The improvement is in effect since the usual periodic functions sin t, cos t etc.
are admitted. However, a benefit of the results in [7] is to get the representation
of global solution.

5. Application in the stochastic neural networks with infinite

delays

For convenience, we introduce several notations and recall some basic defi-
nitions. Let I denote an n× n unit matrix. For A, B ∈ Rm×n or A, B ∈ Rn,
the notation A ≥ B (A > B) means that each pair of corresponding elements
of A and B satisfies the inequality “ ≥ (>)”. Especially, A ∈ Rm×n is called a
nonnegative matrix if A ≥ 0, and z ∈ Rn is called a positive vector if z > 0.

℘ =
{

ψ(t) : R+ → R | ψ(t) is continuous and
∫ ∞

0

ψ(s) ds <∞
}

.

For ϕ ∈ C[J ⊂ R,Rn], we define

[ϕ(t)]τ = {[ϕ1(t)]τ , . . . , [ϕn(t)]τ}, [ϕi(t)]τ = sup
−τ≤θ≤0

{ϕi(t+ θ)}.
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In this section, the periodic stochastic neural networks with infinite delays
is described by the following model
(23)






















dxi (t) =



−ai (t)xi (t) +
n
∑

j=1

aij (t) fj (xj (t)) +
n
∑

j=1

bij (t)

∫ t

−∞

pij (t− s) gj (xj (s)) ds+ Ii (t)



dt

+
n
∑

j=1

σij (t, xi (t)) dwj (t) , t ≥ t0 ≥ 0,

xi (t0 + s) = φi (s) , s ∈ (−∞, 0] , i = 1, 2, . . . , n,

where n corresponds to the number of units in a neural network; xi(t) cor-
responds to the state of the ith unit at time t; fj(xj(t)) and gj(xj(t)) de-
note the activation functions of the jth unit at time t; ai(t) ≥ 0 repre-
sents the rate with which the ith unit will reset its potential to the rest-
ing state in isolation when disconnected from the network and external in-
puts; (aij(t))n×n and (bij(t))n×n are connection matrices; the delay kernel
pij(t) ∈ ℘; Ii(t) is the external bias on the ith unit; We assume that func-
tions ai(t), aij(t), bij(t) and Ii(t) are periodic continuous functions with periodic
ω > 0 for t ≥ t0, i, j = 1, . . . , n; σ (·, ·) = (σ1 (·, ·) , . . . , σn (·, ·)) : [t0,∞)×Rn →
Rn×n is the ω-periodic diffusion coefficient matrix; w(t) = (w1(t), . . . , wn(t))

T

is an n-dimensional Brownian motion defined on (Ω,F , {Ft}t≥0, P ). The ini-
tial condition φ(s) ∈ BCb

F0
((−∞, 0], Rn) .

For convenience, we will introduce the following assumptions.
(A1) All fj and gj satisfy the Lipschitz condition, that is, there exist lj > 0

and kj > 0 such that

|fj (u)−fj (v)| ≤ lj |u− v| , |gj (u)−gj (v)| ≤ kj |u− v| , ∀u, v∈R, j=1, . . . , n.

(A2) There exist constants ci ≥ 0, di ≥ 0 such that for u1, u2,∈ R, i =
1, . . . , n,

∣

∣

∣(σi (t, u1)− σi (t, u2)) (σi (t, u1)− σi (t, u2))
T
∣

∣

∣ ≤ cih (t) |u1 − u2|2.

where h(t) ≥ 0 and sup0≤t<∞ h(t) <∞.
(A3) There exist constants ai, aij ≥ 0, bij ≥ 0, Ii > 0 such that

ai (t) ≥ aih (t) , |aij (t)| ≤ aijh (t) , |bij (t)| ≤ bijh (t) ,
|Ii (t)| ≤ I1h (t) , ∀i, j = 1, 2, . . . , n.

(A4) There exists an integral p > 2 such that S = −(P +Q) is anM -matrix,
where P = (pij)n×n, Q = (qij)n×n,

pii = − pai +

n
∑

j=1

aij lj (p− 1) +

n
∑

j=1

bijkj (p− 1)

∫ ∞

0

|pij (s)| ds+ (p− 1)

+
1

2
cip (p− 1) + aiili,

pij = aij lj, i 6= j, qij = bijkj

∫ ∞

0

|pij (s)| ds.
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For the sake of simplicity, we use x(t) to denote the solutions x(t0, φ)(t) of
(23). In order to obtain the boundedness of the stochastic system (23), we first
show the following theorem.

Theorem 5.1. Let P = (pij)n×n with pij ≥ 0(i 6= j) and Q(t) = (qij(t))n×n

with 0 ≤ qij(t) ∈ ℘. Denote Q = (qij)n×n
∆
=

( ∫∞

0
qij(t) dt

)

n×n
and I =

(I1, . . . , In) > 0. Let D = −(P +Q) be an M -matrix, and u(t) = (u1(t), u2(t),
. . . , un(t))

T a nonnegative continuous vector function satisfies the following

differential inequality

(24) D+u(t) ≤ h(t)[Pu(t) +

∫ ∞

0

Q(s)u(t− s) ds+ I], t ≥ t0,

with the initial condition u(t0 + s) = φ(s) ∈ BC+, s ∈ (−∞, 0], where BC+ =
{φ ∈ BC |φ ≥ 0} and h(t) ≥ 0, then all solutions of the inequality (24) are

uniformly bounded.

Proof. Since D = −(P +Q) is an M -matrix, from the properties of M -matrix
[16, Lemma 2.1], D−1I > 0. For any given initial function φ ∈ BC+, there is
a d ≥ 0 such that φ ≤ −d(P +Q)−1I. We will prove that

(25) u(t) ≤ −d(P +Q)−1I, t ≥ t0,

that is, all solutions of the inequality (24) are uniformly bounded.

We set that −(P +Q)
−1
I = N . So, we have (P +Q)N + I = 0, or,

(26)

n
∑

j=1

pijNj +

n
∑

j=1

qijNj + Ii = 0, i = 1, 2, . . . , n.

If (25) is not true, then there must exist a positive constant t1 > t0 and some
integer m such that

um (t1) = dNm, D+um (t1) > 0,(27)

ui (t) ≤ dNi, t ∈ (−∞, t1] , i = 1, 2, . . . , n.(28)

By using (24), (25), (26), (28) and pij ≥ 0(i 6= j), qij ≥ 0, noting d ≥ 1, we
have

D+um (t1) ≤





n
∑

j=1

pmjuj (t1) +

n
∑

j=1

qmj [uj (t1)]∞ + Ii



h (t)

≤





n
∑

j=1

(pmj + qmj) dNj + Ii



h (t)

= (1− d) Imh (t) ≤ 0,

which contradicts the inequality in (25). That implies that u(t) is uniformly
bounded. �
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Theorem 5.2. Suppose that (A1)-(A4) hold, then the system (23) must have

a ω-periodic Markov process.

Proof. Let Vi(x(t)) = |xi(t)|p, i = 1, . . . , n, where x(t) = (x1(t), . . . , xn(t))
T is

the solution of Eq.(23). By the conditions (A1)-(A4), we obtain

LVi (x (t)) ≤ p|xi (t)|p−1







−ai (t) |xi (t)|+
n
∑

j=1

|aij (t)| |fj (xj (t))|

+
n
∑

j=1

|bij (t)|
∫ t

−∞

|pij (t− s)| |gj (xj (s))| ds+ |Ii (t)|







+
1

2
p (p− 1) |xi (t)|p−2

σT
i (t, xi (t))σi (t, xi (t))

≤



−pai|xi (t)|p +
n
∑

j=1

aij ljp|xi (t)|p−1 |xj (t)|

+

n
∑

j=1

bijkjp|xi (t)|p−1
∫ ∞

0

|pij (s)| |xj (t− s)| ds+ Iip|xi (t)|p−1

+
1

2
p (p− 1) |xi (t)|p−2cix

2
i

)

h (t)

≤



−pai|xi (t)|p +
n
∑

j=1

aij lj (|xj (t)|p + (p− 1) |xi (t)|p)

+

n
∑

j=1

bijkj

∫ ∞

0

|pij (s)| (|xj (t− s)|p + (p− 1) |xi (t)|p) ds

+(p− 1) |xi (t)|p + Ipi +
1

2
cip (p− 1) |xi (t)|p

)

h (t)

=











−pai +
n
∑

j=1

aij lj (p− 1) +

n
∑

j=1

bijkj (p− 1)

∫ ∞

0

|pij (s)| ds

+(p− 1) +
1

2
cip (p− 1)

}

|xi (t)|p +
n
∑

j=1

aij lj |xj (t)|p

+

n
∑

j=1

bijkj

∫ ∞

0

|pij (s)| |xj (t− s)|pds+ Ipi



 h (t)

=





n
∑

j=1

pijVj (x)+

n
∑

j=1

∫ ∞

0

qij (s)Vj (x (t− s)) ds+Ipi



h (t) , t≥ t0.(29)
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By Itô’s formula, we obtain

Vi (x (t)) = Vi (x (t0)) +

∫ t

t0

LVi (x (s))ds+

∫ t

t0

∂Vi (x (s))

∂x
σij (s, x (s)) dw (s) .

Then we have

(30) EVi (x (t)) = Vi (x (t0)) +

∫ t

t0

ELVi (x (s))ds,

and for small enough ∆t > 0,

(31) EVi (x (t+∆t)) = Vi (x (t0)) +

∫ t+∆t

t0

ELVi (x (s))ds,

Thus, from (29), (30) and (31), we have

EVi (x (t+∆t))− EVi (x (t))

(32)

=

∫ t+∆t

t

ELVi (x (s))ds

≤
∫ t+∆t

t





n
∑

j=1

pijEVj (x(s))+

n
∑

j=1

∫ ∞

0

qij (u)EVj (x (s− u)) du+ Ipi



 h (t)ds,

Then from (32), we obtain that

D+EVi (x (t))≤





n
∑

j=1

pijEVj (x(t))+

n
∑

j=1

∫ ∞

0

qij (s)EVj (x (t−s)) ds+Ipi



h (t) .

Since −(P +Q) is an M -matrix, then from Theorem 5.1, the solutions of (23)
are uniformly bounded. By simply computing, Condition (4) is satisfied by
Condition (A1)-(A3). From Theorem 3.1, then there must exist an ω-periodic
Markov process. The proof is complete.

�

6. Conclusion

In this paper, we discuss a class of periodic Itô stochastic delay differential
equations by using the properties of periodic Markov processes, and some suffi-
cient conditions for the existence of periodic solution of the delay equations are
given. As applications, we study the existence of periodic solution of periodic
stochastic logistic equation and periodic stochastic neural networks with infi-
nite delays, respectively. In our following papers, we will apply the existence
theorem of periodic solution obtained in this paper to study the existence of
periodic solution of periodic stochastic population system.
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