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Abstract. We shall construct a periodic strong solution of the Navier-Stokes 

equations for the prescribed external force in unbounded domains.

Introduction. The purpose of this paper is to show that if the incompressible fluid 

in unbounded domains is governed by the periodic external force, the Navier-Stokes 

equations have a periodic strong solution with the same period as the external force. 

Let ƒ¶ be a domain in Rn (•¬), not necessarily bounded, with smooth boundary •Ýƒ¶. 

Consider the following Navier-Stokes equations in ƒ¶:

•¬

where u=u(x,t)=(u1(x,t),..., un(x,t)) and p=p(x,t) denote the unknown velocity 

vector and pressure of the fluid at point (x,t)•¸ƒ¶•~R, respectively; while f=

f(x,t)=(f1(x,t),..., fn(x,t)) is the given periodic external force.

Under some restrictive conditions, Serrin [20] gave a criterion for the existence of 

periodic solutions of (N-S) when ƒ¶ is a three-dimensional bounded domain whose 

boundary moves periodically in time. Kaniel-Shinbrot [11] considered a simpler case 

such as bounded domains whose boundary is fixed in time and realized the criterion 

of Serrin. Having introduced the notion of reproductive property, they showed the 

existence of periodic strong solutions with periodic small forces f. In two-dimensional 

bounded domains, Takeshita [23] obtained the same result as Kaniel-Shinbrot [11] 

without assuming the smallness of f. The original problem posed by Serrin had been 

treated by Morimoto [19] and Miyakawa-Teramoto [18] who showed the existence of 

periodic weak solutions. Later on, Teramoto [25] constructed periodic strong solutions 

in a situation such that the boundary moves slowly in time.

All of these results are obtained in two- or three-dimensional bounded domains. 

On the other hand, few results are known in unbounded domains. Recently, Maremonti

1991 Mathematics Subject Classification. Primary 35Q30.



34 H. KOZONO AND M. NAKAO

[15], [16] showed the existence of periodic strong solutions in the three-dimensional 

whole space R3 and the half space •¬, respectively. However, the result corresponding 

to exterior domains has not been obtained up to the present. The main difficulty in 

unbounded domains stems from the lack of exponential decay in time for solutions to 

the initial value problem of (N-S). Indeed, Serrin [20] and Kaniel-Shinbrot [11] made 

full use of the fact that •¬ decay exponentially in t provided the initial 

data at t =0 are prescribed. Such a decay property is due to the Poincare inequality in 

bounded domains, and invertibility of the Stokes operator in L2 makes it easy to obtain 

better asymptotic behaviour of solutions at t•¨•‡.

To overcome this difficulty, Maremonti [15], [16] first showed the algebraic decay 

rates in time of strong solutions for initial value problem of (N-S) in R3 and in •¬. 

As a by-product, he constructed periodic strong solutions for periodic small external 

forces. His method is based on the skillful energy estimates in L2 for higher derivatives 

of solutions. Although our results are not altogether new, our approach is different and 

gives more results than those by Maremonti [15], [16]. We do not employ the energy 

estimates in L2 but the LP-thoery of the Stokes operator. Making use of LP-Lr estimates 

for the semigroup generated by the Stokes operator, we shall show the existence and 

uniqueness of periodic strong solutions more directly than Maremonti [15], [16]. 

Compared with the energy estimates in L2, our LP method can cover also the higher 

dimensional cases. Unfortunately, we cannot obtain the same result in three-dimensional 

exterior domains because the corresponding LP-Lr estimate is still an open problem.

We shall first reduce our problem to an integral equation, the solution of which 

is necessarily periodic with the same period as the external force. The solution will be 

constructed in the class of functions defined on the whole interval R with values in 

Ln(ƒ¶). Then by a regularity criterion similar to Serrin's [21], we shall show that our 

solution is actually a strong solution. For that purpose, we shall estimate a time-interval 

of the existence of local strong solutions for the initial-boundary value problem to (N-S) 

in terms of the given data. Our estimate extends the result obtained by Giga [7, Theorem 

4]. The stability of periodic solutions will be discussed in a forthcoming paper.

1. Results. Before stating our results, we need to impose the following as-

sumption on the domain ƒ¶:

ASSUMPTION 1. (Case I) ƒ¶ is the whole space Rn or the half-space •¬, where 

•¬.

(Case II) ƒ¶ is an exterior domain in Rn with C2+ƒÊ(ƒÊ>0)-boundary •Ýƒ¶, where •¬.

The reason why we exclude three-dimensional exterior domains in (Case II) is due 
to the restriction on gradient bounds for the Stokes semigroup in LP (see Lemma 2.1 

(2) below).
We shall next introduce some notation and function spaces. Let •¬ a denote the 

set of all real vector C•‡-functions •¬ with compact support in ƒ¶ such



35PERIODIC SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

that div •¬ is the closure of •¬ with respect to the •¬denotes 

the duality pairing between Lr and •¬, where •¬. Lr stands for the usual 

(vector-valued) Lr-space over ƒ¶, 1<r<•‡. When X is a Banach space, its norm is 

denoted by •¬. Then •¬ is the usual Banach space, where m=0,1,2,... 

and t1 and t2 are real numbers such that ti<t2. •¬ is the set of all functions 

•¬ such that sup•¬

Let us recall the Helmholtz decomposition:

•¬

where •¬. For the proof, see Fujiwara-Morimoto [4]
, Miyakawa 

[17] and Simader-Sohr [22]. Pr denotes the projection operator from Lr onto •¬ along 

Gr. The Stokes operator Ar on •¬ is then defined by A
r=-Pr•¢ with domain •¬

. It is known that the dual space (•¬) of •¬ and the 

adjoint operator Ar* of Ar are respectively

•¬

where •¬. Moreover, we have:

PROPOSITION 1 (Giga [5], Giga-Sohr [9]). Let •¬. Then -A
r generates a 

uniformly bounded holomorphic semigroup •¬ of class C0 in •¬.

Applying the projection operator Pr to both sides of the first equation of (N-S) , 
we have

(E) •¬

The above (E) can be further transformed to the following integral equation:

(I.E.) •¬

Concerning the external force f, we impose the following assumption:

ASSUMPTION 2. Let the exponents r and q be according to the (Case I) and (Case 
II) of Assumption 1 as

(Case I) •¬

(Case II) •¬

For such r and q, we assume that f belongs to the class

(1.1) •¬

•¬

•¬, assume moreover that
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(1.2) •¬ with some •¬

for •¬ and ƒÂ>0 satisfying •¬ and for •¬

Our result now reads:

THEOREM 1. Let ƒ¶ and f satisfy Assumption 1 and Assumption 2, respectively. 

Suppose that •¬ for all t•¸R with some ƒÖ>0. Then there is a constant 

,•¬ such that if

•¬•¬

we have a periodic solution u of (I.E.) with the same period •¬ as f in the class BC(R; •¬) 

with •¬

Such a solution u is unique within this class provided •¬ 

is sufficiently small.

Concerning the existence of solutions to (E), we have:

THEOREM 2. In addition to the hypotheses of Theorem 1, let us assume furthermore 
that f is a Holder continuous function on R with values in Ln. Then the periodic solution 
u eiven by Theorem 1 has the followine additional nroverties:

(i) •¬

(ii) •¬

(iii) •¬

REMARKS. (1) Taking n=3, 2<r<3 and q=2 in (Case I), our theorems include 
Maremonti [15, Theorem 1] and [16, Theorem 2].

(2) The first condition of (1.2) seems to be artificial, but it may be replaced by 

•¬ with some •¬

(3) When ƒ¶ is a bounded domain in Rn (n•¬2), the above results also hold and 

we can relax the assumption on the external force. Indeed, it suffices to assume that 

•¬ with •¬, small for r>n/2. Under such a hypothesis, there is a 

periodic solution u of (I.E.) in the class •¬

2. Preliminaries. Throughout this paper, we shall denote by C various constants. 

In particular, C= C(*,¥¥¥,*) will denote the constants which depend only on the 

quantities appearing in parentheses. Since Pru=Pqu for all •¬ and since •¬ 

for all •¬, for simplicity, we shall abbreviate •¬ 

respectively. Let us first recall the following
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LP-Lr estimates for the semigroup •¬

LEMMA 2.1 (Kato [12], Ukai [26], Giga-Sohr [9], Iwashita [10], Borchers-
Miyakawa [1], [2]).

(1) Let ƒ¶ be as in (Case I) of Assumption 1. Then there holds

•¬•¬

for all •¬

(2) Let ƒ¶ be as in (Case II) of Assumption 1. Then there holds

•¬•¬

for all •¬

Using this lemma, we shall estimate the nonlinear term of (I.E.) .

LEMMA 2.2. Let r and q be as in Theorem 1 according to the (Case I) and (Case 

II) of Assumption 1. Define a function space Y and a bilinear operator G (•¬) on Y by

•¬•¬

respectively. Then we have G(u ,v)•¸Y with

(2.1) •¬

(2.2) •¬

PROOF. Set

•¬

(2.3)

•¬

By integration by parts and. Lemma 2.1 we have
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•¬•¬•¬•¬•¬

for all •¬ and all t•¸R, where C=C(n,r). Note that, in (Case II), on account of 

such restriction as Lemma 2.2 (2), we need •¬. By duality there holds

(2.4) •¬

where C=C(n,r). Similarly, Lemma 2.1 and the Holder inequality yield

•¬

(2.5) •¬

•¬

for all t•¸R with C=C(n,r,q). Now (2.1) follows from (2.3)-(2.5).

To show (2.2), we make use of the following inequality of the Sobolev type due 
to Giga-Sohr [9, Corollary 2.2 (ii)] :

(2.6) •¬

where C=C(n,q). It should be noted that (2.6) holds even though ƒÓ does not vanish 

on the boundary •Ýƒ¶. Now it follows from Lemma 2.1 and (2.6) that

•¬•¬
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•¬•¬•¬•¬

for all t•¸R with C=C(n,r,q), which yields (2.2). This completes the proof of Lemma 2.2.

We shall next show bounds for the external force.

LEMMA 2.3. Let f be as in (1.1) and (1.2) of Assumption 2. Let

•¬

Then we have F•¸Y and the following estimates hold:

•¬

with C=C(n,r,q,p,l) provided f satisfies (1.1);

•¬

with C=C(n,r,q,p,l,ƒÂ) provided f satisfies (1.2).

PROOF. If f satisfies (1.1), we have by Lemma 2.1

•¬•¬•¬

for all t•¸R, where C=C(n,r,q,p,l). Since n/2<q and r<n, we have by hypothesis on
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l that 1/l<2/n+1/r and hence the second integral above converges. So does the first 

integral by hypothesis on p and we obtain (2.7) for •¬. Similarly, we have 

by Lemma 2.1

•¬•¬

for all t•¸R with C=C(n,r,q,p,l). Since •¬, the first integral 

above converges and we obtain (2.7) for •¬

To show (2.8), we shall make use of the estimate

(2.9) •¬

with C=C(p,ƒÂ). This is an immediate consequence of Proposition 1. Therefore, if f 

satisfies (1.2), it follows from Lemma 2.1 and (2.9) that

•¬•¬•¬•¬•¬•¬

for all t•¸R with C=C(n,r,q,p,1,ƒÂ). This yields (2.8) for •¬ . Similarly, we 

can deal with •¬F to show (2.8) for •¬ and the proof of Lemma 2 .3 is 

complete.

3. Existence of periodic solution; Proof of Theorem 1. Using Lemmas 2 .2 and 

2.3, we shall prove the existence and uniqueness of solution to the integral equation 

(I.E.) by successive approximation. Let us recall the function space Y and the bilinear 

operator G(•,•) on Y introduced in Lemma 2 .2. Equipped with the norm •¬ defined 

by



41PERIODIC SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

•¬

Y is a Banach space. We construct a periodic solution of (I.E.) according to the scheme

(3.1) •¬

(3.2) •¬

By Lemma 2.3, we have uo•¸Y with

(3.3) •¬

provided f satisfies (1.1);

(3.4) •¬

provided f satisfies (1.2). Since f is a periodic function with period ƒÖ, we can easily 

verify that uo is also periodic with the same period ƒÖ. By induction and Lemma 2.2, 

so is um for all m=0,1,.... Moreover, it follows from (2.1) and (2.2) that

•¬

where C*=2C1. Hence if

(3.5) •¬

then there holds

(3.6) •¬

By (3.3) and (3.4), we can take the constant •¬ in Theorem 1 so that the condition (3.5) 

is satisfied.

Now assume (3.5). Setting •¬, we have

•¬

and Lemma 2.2 and (3.6) yield

•¬

(3.7) •¬

•¬
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for all •¬, we see by (3.6) and (3.7) that there exists 

a function u•¸Y such that

(3.8) •¬

Clearly, such a limit u(t) is also periodic in t with the same period co as f. As in (3.7), 
we have by (3.6) that

•¬•¬•¬

for all m, from which follows that

(3.10) •¬

Now letting m•¨•‡ in (3.2), we see by (3.8) and (3.10) that u is a desired periodic 

solution of the integral equation (I.E.).

It remains to show the uniqueness. Suppose that v•¸Y is another solution of (I.E.) 

with •¬, where K is the same constant as in (3.6). Then we have as in (3.9) that

•¬

Since 2C*K<1, there holds u=v and the assertion on uniqueness follows. This proves 

Theorem 1.

4. Regularity of solutions to (I.E.); Proof of Theorem 2. In this section, we shall 
show that the periodic solution u constructed in the preceding section is actually a 
solution of the differential equation (E). To this end, we need the local existence of 
strong solutions to the initial-boundary value problem for (N-S). In particular, it is 
important to give the time-interval of existence in terms of the prescribed data. Here 
we follow the argument of Kato [12] and Giga [7].

Let us first define the strong solution of the initial value problem for (N-S).

DEFINITION. Let •¬ and let •¬, where •¬. Then a measurable 

function v on ƒ¶•~(t0,t1) is called a strong solution of (N-S) on (t0, t1) with the initial 

data a at t0 if

(i) •¬

(ii) •¬

(iii)

•¬

Our result on the local existence of strong solutions now reads:
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LEMMA 4.1. Let n/2<q<n and let 1<1<•‡ satisfy 1/q<l/l<l/q+1/n. Assume 

that •¬ with •¬ and that Pf (•) is a Holder continuous 

function on R with values in •¬. Then there exists T>0 such that for every •¬, we 

have a unique strong solution v of (N-S) on (t0,t0+T) with the initial data a at t0. More-

over, v has the additional property •¬ with

(4.1) •¬

where •¬ is independent of t0. Here T is estimated as

(4.2) •¬

with C3=C3(n,q,1) independent of a, f and t0.

REMARK. When •¬, Giga [7, Theorem 4] obtained (4.2) by making use of the 

fact that •¬ is a bounded operator from Lr into •¬ for 1<r<•‡. 

Our proof below seems to be rather elementary; we use Lemma 2.1 and integration by 

parts.

PROOF OF LEMMA 4.1. The proof is similar to that of Kato [12] and Giga [7]. 

However, we give it for completeness. It suffices only to construct the solution v of the 
integral equation:

•¬

in the class

(4.4) •¬

Indeed, with the aid of Kozono-Ogawa [13, Lemma A.4], the assumption on Pf and 
a general theory of holomorphic semigroup guarantee that the solution v of (4.3) in 
the class (4.4) satisfies the properties (i), (ii) and (iii) of Lemma 4.1 (see, e.g., Tanabe 

[24, Theorem 3.3.4]).
Since this lemma deals with only local existence of solutions, we may assume that 

•¬. Let us solve (4.3) by successive approximation:

(4.5) •¬

(4.6) •¬

Taking •¬, we have by assumption 0<a<1 and q*=n/a. Let us first show

(4.7) •¬
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with some constant Km. In fact, by Lemma 2.1 and the Sobolev inequality (2.6), we have

•¬•¬•¬•¬

for all t0<t<t0+T with C=C(n,q,l) independent of t0. Since •¬, we have 

•¬ and hence the above estimate yields

•¬

Then K0 may be chosen as

(4.8) •¬

where C4=C4(n,q,l) is independent of t0. Suppose that (4.7) is true. By Lemma 2.1 

and integration by parts there holds

•¬•¬•¬•¬

for all •¬ and all •¬, where B(¥,¥ ) denotes the beta function and 

C=C(n,q). By duality we have

•¬

and hence we may define Km+1 as

(4.9) •¬

where C5=C5(n,q) is independent of t0. An elementary consideration shows that if
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(4.10) •¬

then there holds

(4.11) •¬

Assume (4.10) for a moment. Then in the same way as in (3 .8), the uniform estimate 

(4.11) with respect to m yields a function v with •¬ 

such that

(4.12) •¬

We shall next show that if K0 is sufficiently small
, then the limit v also satisfies 

•¬ with

(4.13) •¬

To this end, let us prove that

(4.14) •¬

By Lemma 2.1, there holds

•¬

and hence we may take L0 as

•¬

where C=C(n) is independent of t0. Moreover, it follows from (4.7), (4.11) and (4.14) that

•¬•¬•¬

for all t0<t<t0+T, where C6=C6(n,q) is independent of t0. Hence we may take Lm+i 
as

•¬

which shows that •¬ is a linear recurrence. If
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(4.15) •¬

then we have a uniform bound of •¬ as

•¬

Assume (4.15) for a moment. Then it is easy to see that the limit v satisfies (4.13).

To prove •¬, we need to show

(4.16) •¬

Calculation similar to (4.7) and (4.14) yields Mu,0 as

•¬

where C=C(n,l,p) is independent of t0. Notice that •¬. Suppose that (4.16) is 

true. Then by Lemma 2.1, (4.11) and integration by parts, we have

•¬•¬•¬•¬•¬

for all •¬ and all t0<t<t0+T, where C=C(n,q,p). By duality we may take MƒÊ,m+1 

as

•¬

where C7= C7(n,q,ƒÊ) is independent of t0. If

(4.17) •¬

then there holds

•¬

which yields •¬ with
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(4.18) •¬

In particular, the constant C2 in (4.1) can be given as •¬. Now we see 

that under the conditions (4.10), (4.15) and (4.17), the limit v belongs to the class in 

(4.4). Moreover, there holds

(4.19) •¬

uniformly in •¬. Indeed, by Lemma 2.1, (4.11) and (4.14) we have

•¬•¬•¬•¬•¬•¬

for all t0<t<t0+T, from which and (4.12-13) we obtain (4.19). Now, letting m•¨•‡ 

in (4.6), we see by (4.18) and (4.19) that visa solution of (4.3). The proof for uniqueness 

is standard, so we may omit it (see [3], [8]).

It remains to estimate the time-interval T of existence in terms of the prescribed 

data. Since k is determined by (4.11), there exists a constant k=k(n,q,1) independent 

of to such that if •¬, then all conditions (4.10), (4.15) and (4.17) are satisfied. Now 

from (4.8) we see that T may be chosen as

•¬

which shows (4.2) and proves Lemma 4.1.

PROOF OF THEOREM 2. Let u be the periodic solution of the integral equation 

(I.E.) given by Theorem 1. Since u•¸Y, we have by (2.6) that •¬, where •¬

. Let
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•¬

where C3 is the same constant as in (4.2). Then by Lemma 4.1, for every t0•¸R there 

exists a unique strong solution v of (N-S) on (t0,t0+T) with the initial data u(t0). By 

(3.6) and (4.1). we have

(4.20) •¬

where C8 is independent of t0. By (4.3) with a replaced by u(t0) and by (I.E.), it is easy to 
see

•¬•¬•¬

By Lemma 2.1 there holds

•¬

(4.22)

•¬

for all t0<t<t0+T, whereC=C(n,q) is independent of t0. By integration by parts we 
have

•¬•¬•¬•¬

for all •¬ and all t0<t<t0+T, where C=C(n,q). By duality,

(4.23) •¬

for all t0<t<t0+T. Now it follows from (4.20-23) that
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•¬

with C9 independent of t0. Defining •¬, we obtain from the 

above estimate that

•¬•¬

for all •¬, which yields

•¬

Since ƒÑ can be taken independently of t0, we have

•¬.

Now, since t0 is arbitrary, it follows from Lemma 4.1 that u has the desired properties 

(i), (ii) and (iii) in Theorem 2.•¬
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