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INTRODUCTION AND NOTATION

1. Introduction. We shall investigate the existence of time periodic solutions of
wave equations in one spatial variable. This problem has been studied by a number
of authors in the case when the spatial variable runs through a bounded interval and
the solutions satisfy various types of boundary conditions, see e.g. J. HALE [1],
W. S. Hare [2], P. H. RaBwvowirz [3], O. Vervopa [4], [5] and numerous papers
mentioned there.

Here we shall deal with the problem when the spatial variable runs through an
unbounded interval. Transformations make it possible to treat only two cases of
unbounded intervals: [0, + c0) and (— o0, + o). The case of the interval [0, + ),
in which solutions satisfy a boundary condition at 0 and a growth condition at + oo,
seems to be more interesting and more instructive than that of the interval (— 0,
+ oo) at the ends of which solutions are to satisfy only two growth conditions both
similar to that imposed at -+ oo in the preceding case. Thus we shall deal with the case
of the interval [0, + c0).

Now we shall describe the goal of this paper. We shall look for a Banach space U,
a subspace of C2(R x R¥) and a neighbourhood of 0 given in the form [—&, &],
& > 0 such that for every ¢ € [ —#, ¢] there exists a function u € U satisfying

(0.1) uft, x) — u(t,x) = e F(u, &) (t,x) for (t,x)eR x R*,
(0.2) u(t,0) = a(t) for teR.

Denoting: this u by u(g), we shall deal with only such solutions for which the cor-
respondence ¢ — u(g) is a continuous mapping of [~ £] into U. In the described
problem the function a € Cf,,(R) is given and F is a Nemyckij operator of the form

F(u, e) (t, x) = f(t, X, u(t, x), u,(t, x), ux(t, x), 8) .
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Similarly, we shall deal with the problem described by (0.1) and
(0.3) u(t,0) + o(t) u(t, 0) = b(t) for teR

where the functions o and b are elements of CL(R).

Varying assumptions on the functions a, g, b and the operator F in the separate
cases, we shall show that the described problems have solutions which for fixed &
are elements of either a space of functions which grow at most linearly as x tends
to +oo or a space of bounded functions. Both these spaces consist of functions
whose derivatives of orderes 1 and 2 are continuous and bounded.

The restrictions on the growth of functions and their derivatives when x tends to
4 oo can be considered only as a remote analogue of the boundary conditions of the
problems in which the spatial variable runs through a bounded interval. We shall
prove that there is a continuous branch of solutions depending on &, but the local
unicity of this branch, which occurs sometimes in the case of a bounded interval,
cannot be proved. On the contrary, there are many such branches (cf. Remark 2.2).

This paper is divided into two sections. In Section 1 the problem is investigated for
a linear equation. In Section 2 the results of Section 1 are used to prove the existence
of periodic solutions to the equation (0.1) under some general assumptions. In two
examples at the end of this section some of these assumptions are shown to be
satisfied for certain functions.

The authors express their gratitude to O. Vejvoda, who proposed the present
problem.

2. Notation. Throughout the paper we shall use the following notation. We
denote by R the set of all real numbers and by Z* the set of all nonnegative integers.
Further, we put

R* =10, +0) and Q= {(r,x); teR, xeR"}.

By CZ(Q) we denote the set of all real functions u defined on @ which have conti-
nuous derivatives of the type DDlu, k, le Z*, k + 1 £ 2 on Q. By C**%(Q) we denote
the set of all real functions u defined on Q which have continuous derivatives of the
type Du, ke Z*, k < 1 on Q. Finally, by C'(R) we denote the set of all functions
defined on R which have continuous derivatives up to order I.

By C2(Q), C+°(Q) and C.(R) we denote the subspaces of the corresponding spaces
formed by the functions which are w-periodic in the variable ¢.

A function f e C%(R) is said to be Jw-antiperiodic if it satisfies

f(t—{-%)): —~f(t) for teR.

Given a Banach space X, aeX and ¢ > 0, we denote by B(a, ¢; X) the set
{5 xeX, Jx — af < b “
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1. LINEAR CASE
We begin with the following lemma.

Lemma 1.1. Let u e C3(Q) satisfy
Ou(t, x) = u{t, x) — uft. x) =0, (1,x)eQ.
Then there exist p, g € C2(R) and c e R such that
u(t,x) = p(t + x) + q(t — x) + 2ex, (L, x)eQ.

The proof is obvious.
Given u e C(Q), let us denote

a(u) = sup {Ju(t, x)| (1 + %)™ (1, x) € 0},
Bu) = sup {Ju(t, ¥); (&%) € Q) .
Wu) = sup {|DiDLu(t, x)|; (t.x)e Q, k,1eZ*, 1 <k + 1< 2},
luflv, = max (a(u), (u)).
lullu, = max (B(u), »(u)) -

Finally, let us put
Uy = {ue C(0Q); [ullu, < +oo}
and

U, = JL" € CX(Q);

u"uz < 40, u(t + %,x) = —u(t, x), (t, x)eQ}.

The spaces U, and U, endowed with the norms |||y, and |+ |y,, respectively, are
Banach spaces.

Let 6 > 0 (8 is supposed to be fixed throughout this paper). Given g € Cfl,’o(Q),
let us denote '

lale, = lale. = sup {(|a(t, x)| + Jgdt. x))) (1 + x)**% (1, x) e Q} .
Eventually, let us pht

Gy ={9eC°(Q); |gfs, < +0}.
G, :{geGl; g(t +2, x) — gt %), (t,x}eQ}.

The spaces G and G, equipped with the norms | |s, and |- |g,, respectively, are
Banach spaces.
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In the sequel we make use of the following operator H. Given g € C%(Q), an
element Hyg is assigned to g according to the formula

1 x pt+x—&
(L1) (Hg) (1, x) = — ;J‘ f ot &) drde, (,x)eQ.
i t—x+&
A straightforward calculation shows that the function Hg satisfies
(1.2) OHg=g on Q,
(1.3) (Hg)(1,0) = (Hg).(1,0) =0, teR,

(1.4) if, moreover, g € CL%(Q), then (Hg)(t + w, x) = (Hg)(t. x), (t, x)e Q.
Lemma 1.2. The operator H is a linear continuous mapping from G, into U,.

Proof. Let g € G,. We shall show that

(1.5) *(Hg) = c.lg]e,

and
(1.6) Hg) £ ¢,|g]s,

where ¢, and ¢, are independent of g. Indeed, denoting

(59) (x) = sup {|g(r, x)|: te R},

we have
016) 9]0+ 7 s @t -0 [ e g aras <
s+ x,)“r(x —- & (Z9)(©)d¢ £ |ga, F(l +&)7U 0 de .

This proves (1.5). Further,

|(Hg), (1. x)| £ %f:]g(t +x =& &) dE + éf:lg(t— x + ¢ 8lde =

< [g]le, f (1+ ¢t
Q

and

(Ha)u (1, 3)| < |a(t, )] + ; f :|g,(t +x & 8)de+

* iL lodt = x + ¢ 9} dé = g, (1 +f:(1 + 6)““%5)\;
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These estimates and the similar ones which can be easily obtained for (Hg),, (Hg),,
and (Hg),. give (1.6). Hence, the proof is complete.

Lemma 1.3. The operator H is a linear continuous mapping from G, into U ,.

Proof. The estimate

7Hg) £ ¢|g]

can be obtained similarly as in the proof of Lemma 1.2. Given g € G,, the relation

G2

(Hg)(t + (—;—), x) = —(Hg)(t,x) forall (1,x)eQ
can be proved easily. As soon as we have derived the estimate

(1.7) B(x) £ c4llg]e,

with ¢, independent of g, the lemma will be proved. To simplify the forthcoming
formulae we put

(Jo) (1) = j afn)an - | f " a)dn, ter

for an }w - antiperiodic and continuous function o. The function Je¢ is also
1w — antiperiodic and satisfies

Vo) ()] = elol reR,
where

[o] = sup {la(t)!; te R}

and ¢y is a constant independent of . We now have

(Hg) (1. x)| = ;f wag(r, £) de

t—x+¢&

X

d¢

{7AN

0

< éﬁ‘ﬂug(-, )t + x — &) + |(Ja(, ) (t = x + &} d¢ <

= CJJ. (Eg) (f) dé £ CJ“Q”G,J‘ (1 + C)_(Ha) d¢
0 0
where (Zg) (¢) is defined in the proof of Lemma 1.2. Thus, the proof is complete

Lemma 1.4. Let a € C(R).
a) Then the set of all functions u € U, satisfying

(1.8) Ou=0 on Q,
(1.9) u(r,0) = a(t)., teR
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coincides with the set of functions of the form
t+ X

(1.10) u(t, x) =f s(r)dr + a(t — x), (t,x)eQ
t—x

where s € Co(R) is arbitrary.

b) If, moreover, a is o — antiperiodic, then the set of all functlons uelU,
satisfying (1.8), (1.9) coincides with the set of all functions of the form (1.10)
where s is an arbitrary o — antiperiodic function from Ci(R).

The proof is similar to that of the following lemma and is omitted.

Lemma 1.5. Let 6, b e Co(R).

a) Then the set of all functions u € U, satisfying
(1.11) Ou=0o0n Q,
(L12) (1, 0) + o(t) u(t, 0) = b(t),

coincides with the set of functions of the form

(113)  u(t, x) = ;—J{S(t + x) + s(t — x) + jtix(b(r) — o(1) s(1)) d‘t} , (Lx)eQ

where s CX(R) is arbitrary.

b) If, moreover, o is 4w — periodic and b is o — antiperiodic, then the set of
all functions u € U, satisfying (1.11) and (1.12) coincides with the set of functions
of the form (1.13) where s is an arbitrary Yo — antiperiodic function from CX(R).

Proof. a) Let u € U, satisfy (1.11) and (1.12). By Lemma 1.1 there exist p, g €
€ C%(R) and c € R such that

(1.14) u(t,x) = p(t + x) + q(t — x) + 2cx, (t,x)eQ.
Putting this éipression into (1.12), we have
(1.15) Cp(8) = 4'(f) + 2¢ + o(t) (p(t) + q(r)) = b(t).
Setting s = p +4g and r = p — g, we obtain
u(t, x {s(r + x) + s(t — x) +J’ (r'(z) + 2¢) dt}

from (1.14) and

Nlr--

(1) = b(t) — o(t) s(t) — 2¢

from (1.15). Hence u is given by (1.13).
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Conversely, one easily verifies that u given by (1.13) satisfies (1.11) and (1.12).

b) In this case u € U, is given by (1.14) with ¢ = 0. The 4w — antiperiodicity of
the function u implies that the function s defined in part a) of the proof is o — anti-
periodic.

This completes the proof.

Remark 1.1. Lemmas 1.2—1.5 show that the problem given by

Qu(t,x) =g(t,x), (t,x)eQ

and either (1.9) or (1.12) has a solution u € U, provided a € C3(R), 0, b € C)(R) and
g € G,. The solution is not determined uniquely; it depends on an arbitrary function
from CY(R) or from C2(R), respectively. If, moreover, a, b are 4w — antiperiodic,
g is +w ~ periodic and g € G,, then the problem has a solution u € U,; it depends on
an arbitrary o — antiperiodic function from C(R) or CZ(R), respectively.

The problem on the whole space given by
Cu(t, x) = g(t, x), (t,x)eR?

can be solved in the spaces similar to U; (i = 1, 2) if they are modified in a natural
manner together with the spaces G;. The solution then depends on an arbitrary
function from CZ(R) and an arbitrary function from CL(R) (or, which is the same,
on two arbitrary functions from CZ(R) and a constant ¢ € R).

Remark 1.2. The solution of the classical Cauchy problem
Ou(t, x) = g(t, x), (t, x) e R?,
u(0, x) = o(x), uf0,x)=y(x), xeR

is given by the well-known formula

(1.16) u(t, x) = %((p(x )t ex -0+

+J w(«:)dz)+%J J g(r, ) dé de.
x—t 0 x=-t+T

If we interchange the roles of t and x, we easily obtain that the solution of the problem
Ou(t, x) = g(t,x), (t,x)eR?,

u(t,0) = a(t). uft,0)=p(t), teR
has the form

(1.17) u(t, x) = %(a(l + x) + alt — x) + Jr+xﬂ(f)dr> - éJw J‘Hrég(r, &ydrdé.

t— t—x+¢§
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The formula (1.17) forms the starting point of the present investigation. Looking for
an w-periodic solution we have noticed these facts:
i) the functions « and f are to be w-periodic;
ii) the operator (1.1) occurring on the right hand side of (1.17) has the excellent
property (1.4).
If the problem is considered for x € R we could employ also directly the formula
(1.16) and look for ¢ and ¥ for which u would be w-periodic. This approach is rather
more complicated since it requires to solve the functional equations

(1.18) m(x + w) — m(x) + %j:J\iD g(t, & — 7)drdé =

11

= const = n(x) — n(x — w) +

0

i
+_
2

-

o -1
g(r,é+r)drdé~%f J g(r, &)dédr, xeR

)dé),

w(e) d:) .

for

frx

Y(é

0

) = 3 (09 +

n(x) = ;(q»(x) -

One finds that the general solutions read

o

() = u(x) + ex P
(1.19) m(x) = p(x) + 2J‘0.
and
1=
(1.20) n(x) = v(x) + ex — E’:J;,

respectively, where u, v are w-periodic and ¢
we obtain the formula (1.17) with

ot) = w(r) + v(—1), B(r) = u'(

re
g(t, & — 1)dr dé

0

ro

g(t. & + 1)dr dé

-4

€ R. Inserting (1.19), (1.20) into (1.16),

1)+ v(~1)+ 2, 1eR.

2. WEAKLY NONLINEAR CASE

In this part we shall use the following lemma the proof of which can be obtained

directly.

Lemma 2.1. Let U be a Banach space a

nd let G be a normed space, uge U,

0>0,¢6>0and A > 0. Let &l be a continuous mapping from [ —egs8] into U

350



such that 1(0) = uo. Let H be a linear continuous mapping from G into U. Let F
be a continuous mapping from B(uo, ¢; U) x [—e&o, £0] into G satisfying

[F(uy, 6) = Fluz. e)|c £ uy — uafu

Sor all uy, u, € B(ug, 0; U) and e€[—&o, &].

Then there exists &€ (0, &] such that for every ¢e[—§, €] there is a unique
u € B(ug, 0; U) satisfying
u = i(e) + eHF(u, ¢).
Moreover, the correspondence ¢ 1— u is a continuous mapping from [ —§, &] into
B(uy, 0; U).

Now, we formulate the assumptions which guarantee that the operator F given by

(2.1) F(u, &) (t, x) = f(t, x, u(t, x), uft, x), ut, x), &)

. possesses the following two properties (i = 1, 2):
(2.2);  Fis a continuous mapping from B(il;, ¢; U;) x [—&, &] into G;;
(2.3); |F(u, &) — F(v, ¢)||g, < A|u — v|y, for all u, ve B(@, o; U,)

and ee€[—¢y &),

where #1; e U;, 0 > 0, A > 0, g, > 0 are fixed. We start by introducing three con-

ditions which characterize the properties of a function f.
A function f is said to satisfy the condition (A4;) if it is defined on

M, = {(t, x, ug, uy, u,, ¢); te R, xe R, fu(,’ S(L+x)r,

s <7, Jua| < 7, o] < o}
and
sup {|£(t, x, uo, g, uz, &) (1 + x)'*% (1, X, ug, uy, us,6) €M,} < + 0.

A function f is said to satisfy the condition (Af) if it is defined on M, and
sup {|f(t, x, uo, uy, u,, s){ (L + x)**% (1, x,up, ug, us, 8) € M,} < + 0.
A function f is said to satisfy the condition (4}) if it is defined on M, and
lim sup {|7(t, x, uo, s, uz, &) = f(1, x, o, uy, u,, Bl + x)t*e;

teR, xeR", Ju)| S (L +x)r, |u,| S 7 Ju)[S7} =0

for all Ze[—eg, &)
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Lemma 2.2, Let r > 0 and let the following assumptions be satisfied:

(i) All the functions
DiDyDRf, kleZ, k+1L +1, 2, k=1

satisfy the condition (A}).
(i1) All the functions
DIDEDIDRS, Kk lieZb, k+lo+ 1 +1, 22, b=, k<1

2
satisfy the condition (A}).
(iti) All the functions
DiDRDLDES, Kk, L,eZ', k+lo+ 1, +1,£1
satisfy the condition (A2).
(iv) The function f is w-periodic in 1.
Then the operator F satisfies (2.2), and (2.3), provided |||y, + ¢ < r.

Proof. The assumptions of the lemma imply that F(u, ¢)€ G, for every ue
€ B(ii;, ¢; Uy) and e[ —&,, 5] and

(2.4 im () — P, ), = 0

for every u € B(ii;, o; U,) and & e[ —¢o» £o].
The inequality (2.3), follows immediately from the relation

F(uy, &) (t, x) — F(u,, &) (t, x) =

PR
= (”1 - ”z)f fu(’» X, Uy + 0(“1 - “2), Upe, Upx 3) do +
0 .

1
+ (u, — uz),J Jults x, uq, tgy + o(uy — uy),, uy,, €) do +
0

1
+ (uy — uz)xf Ju(ts X, U, gy g + 0(uy — u,),, &) do .
(4]

Now (2.4) and (2.3), yield (2.2),. This completes the proof.

The following conditions define again some properties of a function f.
A function f is said to satisty the condition (B}) if it is defined on

N, =R x R* x [—r, r]® x [—e0, €]

and
sup {|f(t, x, ug, uy, up, )| (L + )% (1, x, ug, uy, 43, 8)€N,} < +60.
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A function f is said to satisfy the condition (B?) if it is defined on N, and

lim sup {|f(t, x, uos uy, us, €) — f(t, %, ug, uy, uy, B (1 + )+

teR, xeR™", |ui[ <ri=0,1,2} =0 forall §e[—ey&]-
Lemma 2.3. Let r > 0 and let the following assumptions be satisfied:
(i) All the functions
DDRDIDEf, k leZt, k+lp+ 1, +1, <2, k<1

w2/ >

satisfy the condition (B}).
(ii) All the functions

DDleDEDRf, K leZ*, k+ly+ 1 + 1, <1
satisfy the condition (B}). .

(i) f(t + 623, X, —HUg, —Uyq, —Uy, a) = —f(t, X, uo, 4y, us, &) on N,.

Then the operator F satisfies (2.2), and (2.3), provided ||, |y, + o < r.
The proof is similar to that of Lemma 2.2.
Theorem 2.1. Let r > 0 and let i, € U be a function satisfying
O, =0 on Q, #(,0)=a(t), teR

and r > “ﬁll]ul. Let a function f satisfy the assumptions of Lemma 2.2.
Then there exists a continuous mapping v : [ —8, 8] - Uy, 0 < & £ &, satisfying

(2.5) o uy—ug=cf(t,x,uu,u,€ on Q
and

(2.6) u(t,0) = a(t), teR

for every ee[—¢, &]. Moreover,

(2.7) u(e)|gmo = @, .

Proof. The relations (1.2) and (1.3) show that a function u:[—& &] » U,
satisfying

(2.8) u =ii, + eHF(u, ¢)

is a solution to (2.5) and (2.6). Hence applying Lemma 2.1 to (2.8) we obtain the
assertion of the theorem.

Similarly we obtain the next three theorems.
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Theorem 2.2. Let r > 0 and let ii; € U, be a function satisfying
Oi, =0 on Q, i,(1,0)+ o(t)a,(1,0) = b(t), teR

and r > |i,||y,. Let a function [ satisfy the assumptions of Lemma 2.2.
Then there exists a continuous mapping u :[—8,8] = U, 0 < & < g, satisfying

Uy — Uy = ef(t, X, u, U, u &) on Q

and
uy(t,0) + a(t) u(t,0) = b(r), teR

Jfor every ge[—8& ¢]. Moreover,
u(e)|,o = @iy .
Theorem 2.3. Let r > 0 and let u, € U, be a function satisfying
Oi, =0 on Q, iiy(t,0)=a(t), teR

and r > |i,||y,. Let a function f satisfy the assumptions of Lemma 2.3.
Then there exists a continuous mapping u . [—8& &] - U,, 0 < & £ ¢, satisfying

Uy — Uy = Ef(t, X, Uy Uyy Uy, 8) on Q

and
u(t,0) = a(t), teR

Jor every ee[—& &]. Moreover,
u(a)[czo =1, .
Theorem 2.4. Let r > 0 and let ii, € U, be a function satisfying
i, =0 on Q, iiy(t,0)+ o(r)iigr,0) = b(t), teR

and r > “172 ” v, Let a function f satisfy the assumptions of Lemma 2.3.
Then there exists a continuous mapping u : [—§ 8] — U,, 0 < & £ ¢, satisfying

ult Uy = Sf(t, X, u, ub u.x9 8) on Q

and
ut,0) + o(t)u(t,0) = b(r), teR

Jor every e[ —¢, &]. Moreover,
u(e)|,—o = @1, .

Remark 2.1. In Lemma 1.4 and Lemma 1.5, assumptions under which the
functions #, and #, from Theorems 2.1, 2.2, 2.3, 2.4 exist are formulated.

354



Remark 2.2. Let u, € U, be a function which does not equal zero identically and
which satisfies
Ou; =0 on Q, u(t,0)=0, teR.

Let i, be the function from Theorem 2.1. Let a function u satisfy
u=i; + euy + eHF(u, )

on an interval [—£,, ,], & > 0. Then this function satisfies (2.5), (2.6) and (2.7)
but does not coincide with that obtained from (2.8)‘ Hence the branch of solutions
guaranteed by Theorem 2.1 is not unique.

Example 2.1. Let p be a positive integer. Let

f(lx X, uo’ Uy, u2' 8) = Z bk,m,n(ta x) uguTu;
k,m,neZ*
k+m+nsp

with by, , € C.'°(Q) satisfying
Sup {(|ba,malt, X) + |DF byt ))) (1 + x4 (1, x) € Q} < + 0.
Then the assumptions of Lemma 2.2 are satisfied for an arbitrary r > 0.

Example 2.2. Let beCLf,(R), ag€R, > 0. Let ¢ be a twice continuously
differentiable function on R?.
Then the function

St x, ug, uy, uy, &) = b(t) exp (—ax + agug) @(uy, u,)
satisfies the assumptions of Lemma 2.2 provided

]aol F<o,
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