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INTRODUCTION

Since 1965 a number of authors has investigated the existence of the periodic solu-
tions to abstract differential equations of the type

m j
(0.1) Lu=Ya %;4(:) + Auli) = g(i) + F(t, u)
=t
(see Taam [1], [2], Browder [3], [4], [5], Zend [6], Dezin [7], Simon&nko [8],
Masuda [97], Dubinskij [10]). The papers [1]—[8] deal with such a first order equa-
tion (m = 1) which, roughly speaking, keeps the properties of the diffusion equation.
In [9] a generalization of a telegraph equation (m = 2) is studied while in [10] m is
an arbitrary natural number. In papers [1]—[9] the noncritical case is examined, i.e.
there exists a sufficiently regular L™! on the convenient space of the functions u
periodic in ¢. The paper [10] is devoted also to some critical cases but only under the
condition that L is an elliptic parabolic operator.

In this paper, some necessary and sufficient conditions for the existence of a periodie
solution to (0.1) with m = 1, 2 are derived even under more general hypotheses on
the operator L so that for m = 1 besides the diffusion equation also the Schrédinger
equation is included and for m = 2 besides the telegraph equation also its generaliza-
tion involving the term Au(r) (representing the inner damping) and the wave and the
beam equations (these special cases were studied earlier [11]—[15]) are included.
We make use of the Poincaré method i.e. we investigate if in the problem (.#) given
by (0.1) and '

(0.2) u0)=¢;, j=01,..,m~—1,

the initial data ¢; may be chosen in such a way that the corresponding solution to
() is periodic in t. We write the solution to (.#) by means of a semigroup generated
by the operator — A4 or with the aid of the spectral resolution of 4 which is equivalent
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in special cases to the eigenfunction expansion. This leads to some nonintrinsic
requirements on g and F in (0.1) which have to belong to the domain of 4” for some v
which means that g and F have to fulfil (to some extent) the boundary conditions
imposed on u. The uszd procedure enables us to formulate the theorems on the
stability or instability of the found solution. (The direct method of expanding of the
sought periodic solution in a serics of the form

has neither the advantage nor the disadvantage of our method mentioned above.)

In paragraph 1 we list some rules of the operational calculus and in the second
section we prove a Jemma on the normal solvability of the operator defined by (1.2.1).
In paragraph 2 in Theorems 1.2.1 and 1.2.2 we derive necessary and sufficient con-
ditions for the existence of a pzriodic solution to the first order linear equation while
the solutions are looked for with values in a Banach or in a Hilbert space. In para-
graph 3 an analogous problem for the second order linear equation of the type (3.1 1)
and (3.2.1) respectively is investigated while we restrict ourselves to the solution with
values in a Hilbert space only. In paragraph 4 one proves the existence of pzriodic
solutions with small nonlinear perturbations of rather general type, while in the critical
cases one indicates how to treat them. As an example of the resolution of a problem of
the last type, in paragraph 5, the problem (5.1.1), (5.1.2) is studied rather thoroughly.
Let us note that the restriction to the equations of first or second order is not inevitable
for the used method but that the results would loose their lucidity.

1. NOTATIONS AND AUXILIARY RESULTS

1.1. Some properties of integrals in functional spaces. In this section we will intro-
duce the notation and some properties of the spectral integrals and of the integrals
of the abstract functions.

We will write R = (— o0, c0), R* = <0, 00). In the sequel H denotes a Hilbert
space with the norm induced by a scalar product (-, ) and B denotes a Banach
space with the norm ||| (both real or complex). If J = R is a compact interval,
B, < Bisa Banach space with the norm ||+||,; and k > 0is an integer then C%®(J; B,)
denotes a Banach space of all functions u : J — B, having the continuous derivatives
up to the order k with the norm |ul); 5, = max sup {u(t)];. In particular, for

1=0,1 k teJ

xeB, = @A), (v 2 0), it is [x], = x| + |4’x] and we denote [+, = [|*|o.5.
If H, < H, k=1,2,... is a sequence of the subspaces of H orthogonal each other

o]
then we denote by Y H, the direct sum of H,. For M < B, M* denotes the closure
k=1
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of M in B, #(M) the least linear subspace of B containing M and %(x,; r; B) =
= {xeB; ix — XOH < r}. Further, introduce forve R*, f=0or f#0and M = R
compact, the Banach spaces

(1L.L1)  U(M) = CY(M; 2(4) n C(M; 2(4**),
UV(R+)
UNM) = CH(M; 9(A")) n CH(M; 2(A"*112) o D(BA* 1))
N C(M; 2(A) 0 2(pA"7),
Ulz(R+) ={ue U€(<0, )); u, u’ and u” are w-periodic on R*}

{u e U,({0, w)); u and u’ are w-periodic on R*},

with the norms defined as the maximum of the norms in spaces included in the inter-
section on the right hand sides of (1.1.1). If A is an operator from the space By into
the space B, then we denote 2(A), #(A) = {Ax; x € D(A)}, N(4) = {x e D(A);
Ax = 0}, o(A4) the domain, the range, the null-space and the spectrum of A respect-
ively. Now let 4 be a selfadjoint operator in H with its corresponding resolution
of the identity E(1). Then 4 may be written in the form of the abstract Stieltjes inte-
gral Ax = [2_ ] dE(2)x for

xeY(A) = {x eH,; J’O_Owﬂvz d|E(2) x||* < oo}
(see [17] p. 313). We shall write for x € 9(f(A)), f(4) x instead of 2 f(1) dE(A) x.
It is |f(A)x]* = [7., |/ d[E@) x[* for xe2(f(4)) = {xe H, [2., |f(A)|*-

-d||E(2) x||* < co}. If A is a subset of R and C,, is its characteristic function then we
define

J S0)aE() x = f fch(z) £(4) dE(A) x

if the right hand side is defined. Clearly, the spectral measure of the set A = R defined
by E(A) = [, 1 dE(4) is a projection as soon as the right hand side is defined.

Proposition 1.1.1. Let f(A4) (where f(1), A€ R, is any real or complex valued
function) be a function of a selfadjoint operator A = <, A dE(4) (c.f. [17] p. 338).
Then ¥ (f(4)) = E(#(f)) H.

Proof. If x e E(A°(f)) H then ’
sl = [ e aleeysp? = [ oale =P = o,

On the contrary let x € A#7(f(4)). We can write x in the form x = x, + x,, where

637



x4 € E(A(f)) H and x, e (E(4(f)) H)*. Clearly
0= )=l = [ 1P a1 v, 4w =
- [, odlE@ s+ R alEe) s
H ) RNK(Sf)

hence |E(A)x,| is constant on every component of RN\ .(f). But as x, =
= [ 1AE(R) x,, it is x, = 0.

Proposition 1.1.2. (cf. [16] p. 83). Let f(t, A) be a function continuous in tye R
for any A e R and let there exist a function g(A) and a number 8 > O such that
1f(t, 1)| £ g(#) for te{ty — 8, ty + 8 and A€ R. Let g(A) be defined for a self-
adjoint operator A. Then f(t, A) x is a continuous function in t, for any x € 2(g(A)).

As a direct consequence of the preceding proposition we have’

Proposition 1.1.3. Let A be a selfadjoint operator and let f(t, %) be a function
defined on (ty — 6,1ty + 0) x R, (6 >0), having a derivative 9f[ot(ty, 2),
te(to— 0, to + 9), Ae R. Let there exist a function g(X) such that g(A) is defined
and |of[ot(t, 2)| < g(2) for te(to — 6,1 + 8), Ae R and let f(t, A) x exist for at
least one t € (ty — 8, to + 6). Then f(t, A) x exists for every t € (ty — 8, 1, + 8) and

d [ee}
HU B

-

g{(ta W) AE() x, te(to =6, 1o + ), xeD(g(A)).

At the end of paragraph we mention two propositions which are simple generaliza-
tions of the classical theorems on behaviour of integrals depending on the parameter.

Proposition 1.1.4. (cf. [18] p. 191). Let J = R be an interval and let to€ R, 6 > 0.
If f:(to — 8, 1o + 8) X J — B is a function continuous in ty for any te J and
g:J >R is such that ||[f(1,7)| £ g(v) for [t,t]e(to — b, to + &) X J and
{1 g(r) dr exists then the function F(t) = [, f(¢, t) dt is continuous in the point t,.

Proposition 1.1.5. (cf. [18] p. 191). Let a, ¢, tye R, 6 > O and let the function
fi(to — 6,19 + 8) x a,¢) = B and b:(ty — 8, 1, + 8) — <a, ¢) fulfil the fol-
lowing assumptions:

(a) The integral F(t) = [5® f(1, 1) dr exists for te (to — 6, to + O).

(b) The function f(t, t) is continuous with respect to the set {[t,7]; © < b(1)}.

(c) There exist K > 0, a function g : {a, ¢y - R* integrable over {a, ¢) and a set
Q < R of measure zero such that )

o
'5t (&)

(d) There exists b'(t,).

Sg(x) for te(to—9, t,+6), 140, a<r<b(t0)—«K|t—-t9|.
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Then
b(to)
Flto) = J Z{ (0, ©) dt + f(to, blte)) b'(tc) -

1.2. A lemma on linear operator equations

If H=H x H then for [x,,x,], [y, y2] € H we define the scalar product and
the norm in H by

(Dx1s x21, [yes 21)) = (31, 1) + (%25 2)
lll[xn x2]||| = J([x1 x2], [x1, x2])) -

Let A4;; (i,j = 1, 2) be selfadjoint bounded operators in H and Jet A: H — H be
defined by

(1.2.1) Alxy, x,] = [Ay1x; + A1Xs, Azyxy + Agax,], [x5, x,] e H.
Obviously the operator A* is defined by
A*[x, x,] = [A11xy + Agixa Apaxy + Ayax, ], [x, x2] e HL.

If A;, = A, then Ais symmetric and hence selfadjoint.

Lemma 1.2.1. Let A;; (i,j = 1,2) be selfadjoint bounded operators in H. Let
A = |2 A dE(%) and let the continuous functions a;(4) (i,j = 1,2, A€ R) be such
that

(1.2.2) A,,:j a (A)dEQR), i,j=12

and
A ={leR; a,;4(2) a,,() = a;,(2) a3 (D)} = (A} -
Then, denoting
(123) D= j :(a“(z) ara(1) — ans(A) arg(R) dE(), it is N (D) = E(A)H

and

(1.24) (A% = {[xl, x,] € H; La“(z) dE(2) x, + Lau(z) dE(J)x, =0,
JAalz(A) dE() x, + Lan(z) QE()x; = 0, xp, %, € /V(D)}.

If moreover there exists a 6, > 0 such that
(1.2.5) la;1(2) a52(2) — ai5(2) a4(A)| 2 8o, Ae€a(d)NA
then A(A) is closed.
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Proof. First, let us prove (1.2.4).
a) Let [x1, x,] € A/ (A¥) ie. let
(1.26) Allxl + Azle = O, Alle -+ A22X2 = 0.

Multiplying the first equation (1.2.6) by A,, and subtracting the second one multi-
plied by A4,; and making use of rules for calculating with spectral integrals we
obtain Dx; = 0. Quite analogously we get Dx, = 0. Hence

X1, X, € A(D) =
= {z € H; ffw(all(i) a5(2) — ay,(%) ayy(A))* d(E(A) z, z) = O} = E(A)H.
For x,, x, € E(A) H the system (1.2.6) reduces to

(1.2.6) J‘Aall(ﬂ) dE(2) x, + J; ay(1) dE(A) x, = 0,
f a;,(A) dE(A) x; + J‘ ay,(A) dE(A) x, = 0

and hence [x;, x,] belongs to the set defined by the right hand side of (1.2.4).

b) If [xy, x,] belongs to the set defined by the right hand side in (1.2.4) then
X1, X, € E(A) H and for these x,, X, the systems (1.2.6) and (1.2.6") are equivalent.
Thus [x,, x,] € #(A*). Let us prove the second part of Lemma i.e. that %(A) =
= A(A). First we find easily that in consequence of the selfadjointness of the
operator D and of (1.2.5) %(D) = %(D)* holds as if

fLA(D)=E(A)H
then putting

127) x| (@ ald) - ) () 0G) S -
= e ()~ a1 ) 0k,
Dx = fi.e. f e #(D). Furthermore
0:28) Pef7 = [ (o) onld) — ) @) > AEQ L) 5 S 11

Now, let
(1.2.9) [fi,f2]L /V(A*) .
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Show that [f;, f,] € #(A). In view of Proposition 1.1.1 and of A4 = {4}, it is
H(D) = iP,‘H where P, = E(4+) — E(4) (k=1,2,...) and the condition
[*1, x2] ;jf(A*) is equivalent to
(1.2.10) v () X1 + a33(A) Xap = 0,

apa(A) Xy + a3 (M) x2, =0,

xl,k=ka1> Xl’k=ka2, k=1,2,...
But (1.2.9) is clearly equivalent to
(L.2.11) (1> x10) + (J2 X20) = 0 for x; 4, x;,€ PH

fulfilling (1.2.10).
Choose a fixed k and write a;;(4) = a;; (i,j = 1, 2). Suppose a,, # 0. Then by
(1.2.10,) we have x, , = —(ay;[a,;) x, , and therefore (1.2.11) is equivalent to

a

(fl - _Ll'fb xl,k) =0, x,,ePH
aay

i.e. to

(1.2.12) Py(Ay,fs — Ayify) = 0.

Further, according to (1.2.12) and the equality a,,d,, = a,,d;,, it is

da

(12-13) Pk(A22f1 - Alzfz) =P, <f1»22f1 - Mﬁfz) =

a
= “zlpk(az1f1 - aufz) =0.
sy

Hence writing P = )’ P, we have immediately from (1.2.12) and (1.2.13)
k=1

(1.2.14) P(Ay1f, — Az fi) =0,
P(A22f1 - A12f2) =0.

If a,, = 0 distinguishing several further cases we proceed quite analogously. Because
of P = E(A) and of (1.2.5) we can set

(1.2.15) x, = rjw(a“(/l) a22(%) — a5(4) axy(A)) ™" dE(2) (A22f1 — A12f3)

X2 = J.iow(“l 1(2) a22(4) = a15(2) a24(2) "t dE(A) (A11f2 — 421f1) -

It may be easily verified that [x,, x,] fulfils the equation A[x;, x,] = [f1, f2] and
by (1.2.8) |[|[*1, Q||| £ ¢||[[f1 £21|l]; ¢ being a constant, which completes the proof.
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2. PERIODIC SOLUTIONS TO THE FIRST ORDER LINEAR
DIFFERENTIAL EQUATION

Let us investigate the equation
@1 wl)) + (A + 9l u()) = £(1), 1eR"

in a Banach space B, where A is a strongly positive, closed lineare operator,
(ie. J(AI + A)~*| < const./(1 + |4]), Re 1 2 0), P(4) < B— B, — A generates
a strongly continuous semigroup of linear bounded operators T(f) (¢ > 0, T(0) = I,
I being the identity operator) in B which have in consequence of the strong posi-
tiveness of A a holomorphic extension in the complex domain {z;argz < a,
0<|z] <o} (0<a=imand f:R* - B. A function u:R* — B is called
a solution to (2.1) if

1° u is continuous on R*

2° u(tye 2(A) fort > 0

3° u, is continuous on (0, o)

4° u fulfils the equation (2.1) on (0, o).

Substituting
(2.2) u(ty=e"o(t), t20
in (2.1) we get

(2.3) v 1) + Ao(t) = e f(1).

Proposition 2.1, (cf. [19] p. 170): Let A be a strongly positive operator (—A ge-
nerating a semigroup T(t)) and let A" (1) be continuous on R* for some n > 0.
Then there exists a unique solution v(t) of the equation (2.3) with the initial value

(2.4) v(0) = ¢peB

and it is given by
t

(2.5) ot) = T() ¢ +f T(t — 1) e f(r)dr, teR*.
0

Moreover if @€ D(A") and A**" f(t) is continuous on R* for some v > 0 then
u e U(J) for any compact interval J < R*.

The conditions ensuring the existence of a periodic solution in a Banach space and
in a Hilbert space respectively are clarified by the following two theorems.

Theorem 2.1. Let A be a strongly positive operator and let fe C(R*; 2(4”*"))
(v2 0,1 > 0 being arbitrary) be w-periodic on R*. Let #(e™"® T(w) — I be closed.
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Then an w-periodic solution u to (2.1) exists if and only if
(2.6) H'[ e " T(r) flw—1)dr =0,
0

where I1 is the canonical transformation of B on B|%#(e™ " T{w) — I). If the con-
dition is satisfied then ue U(R™).

Proof. Since all the solutions u(t) of the equation (2.1) are given by (2.2), where v(1)
is a solution of (2.3), (2.4) with ¢ e B arbitrary, a necessary and sufficient condition
for the existence of an w-periodic solution (2.1) reads: There exists a ¢ € B such that

) U(e) (@) — Ue) @) = 0.
where

Ue) ) = Vo) () = e T p + [0 1~ 9 s de rer”.
The equation (2.7) is evidently equivalent to
(2.8) (T (@)~ I) g = — f :e*w T(2) f(o — 7) dr.

As R(e”® T(w) — I) is closed, the solution of (2.8) exists if and only if (2.6) holds.
If (2.6) is fulfilled then (2.7) implies ¢ € 2(4"*") and hence by Proposition 2.1
ueU/(R").

Remark 2.1. If A™' is compact then T(t) is for t > 0 also compact and
R(e”7 T(w) — I) is closzd.

Theorem 2.2. Let A be a selfadjoint operator 2(A) < H — H, with inf o(4) =
= m > 0 and let —y be at most an isolated point of o(A). Let fe C(R™; 2(4”*"))
(v = 0, n > 0 arbitrary) be w-periodic on R*. Then an w-periodic solution u(t)
1o (2.1) exists iff

(2.9) J:e”“(T(T)f(a) —1),{)dt = 0 holds for (e N(A + 7I).

If the condition is satisfied then u € U(R™).

Proof. According to the Theorem 2.1 it suffices to show that #(e™ " T(w) — I) is
closed and that (2.9) is equivalent to (2.6). Since €™ T(w) — I = [ (e 7 e~ —
— 1) dE(4), where E(4) is a resolution of the identity corresponding to the operator 4,
is a selfadjoint operator, it suffices to prove that

(2.10) H(e™™ T(w) — I)* < R(e™ " T(w) — I).
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But if { € #(e”" T(w) — I)* and ¢ > 0 is sufficiently small then

f:(e“(wrl)w — )2 AER) L) = (Ly+ ry)

(e_(yu)w - 1)—2 d(E(l) L, (:) < const ”C“Z <.
Hence

(7 T(w) — I) F(e—wwﬂ) ) TAEQ)L = ¢ and Ce @l T(w) ~ 1).
Condition (2.6) is obviously equivalent to
(2.11) pﬁe—w T(®) f(@ — ) de = 0,
where P is a projection on 4 (e™7 T(w) — I). However

e 1@ = = freits [ e -y w60 - of -
=(E(-y +) — E(—=y))H = &/ (4 + 9]),

thus (2.11) is equivalent to (2.9). If (2.9) is satisfied then the smoothness of any
w-periodic solution u(r) of (2.1) follows from u(0) e 2(A***) (it suffices to use Propo-
sition 2.1).

Remark 2.2. Let the assumptions of Theorem 2.2 be fulfilled with v = 0. Define
the operators @,, @, by the equalities

Ot =u,+ (A +y)u, Ou=—u+(4d+y)u

for ue 2(0,) = 2(0,) = {u € Uy(<0, ®)); u(0) = u(w)}. It may be shown easily that
2(0,) is dense in L,(<0, w); H). Since @7 is an extension of @, we may put @ = OF
for the closed extension of @,. Further, we have A(@,) = {u e L,(<0, »); H);
u(t) = {e /(A + yI)} and H#(O*) = #(O,)°. In Theorem 2.2 we have proved
that A(0*)* n C(€0, @); D(4")) < #(O,). Now prove that H(O*)* < %(6).
Indeed, if fe #(@*)* then there exist f, € /(O*) n C({0, w); (A") such that
fa = fin Ly(0, ®); H). As f, € #(6,), we can write the solutions u, € 2(6,) of the
equations
Ot =f,, n=1,2, ...,

in the form

wli) = —e " T [(I - P) (e T(w) — 1] Kew T(w - 7) <) dv +

+ Jte“’(‘_') T(t — 1) f,(v) dr,
0
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(cf. (2.2), (2.5), (2.8)), from which follows that the sequence u, converges to some
u € Ly(€0, w>; H). In virtue of closedness of @ we have u € 9(©) and Ou = f. So
we have proved that © is normally solvable and that the necessary and suffi-
cient condition for the existence of a solution u € 2(0) of the equation Ou = f,

feLy(<0, w); H), reads:
(2.9) {5 (f(1), v(r)) dt = 0 holds for every ve A(O%).

This solution may be considered as the generalized solution to (2.1).
The stability of the found w-periodic solution is described by the following

Theorem 2.3. Let the assumptions and the condition (2.9) of Theorem 2.2 be
Sfulfilled. If y + m > 0andy + m = 0 and y + m < 0 respectively then the found
w-periodic solution is exponentially stable and stable and unstable respectively.

Proof. Consequently to the linearity of the problem the periodic solution has the
same stability property as the trivial solution of the corresponding homogenous
problem. Denote Ty(t) = e~ " T(t) the semigroup generated by —A4 — yI. If y +
+ m > 0, we have

”Tl(t) (PHZ — J‘:e—“Z(l"'y)t d(E(/{) o, q0) § e-—2(m+y)t”(p“2 , tER+ ;

if y + m = 0 we have for sufficiently small ¢ > O and re R™

ol = (|« [ ) aeiy o0 = 5= ol + ol

finally if y + m < 0 we have for sufficiently small ¢ > 0 and t e R*

—y—t feq]
ool = ([ [ )o@ o0+ Ja-14) - B ol 2
m ~y+te
2 |E(~y — &) o|* + |(E(—v+) = E(=7) ¢,
whence our assertion follows immediately.
Remark 2.3. In the case of a Banach space, provided that —(4 + yI) generates

a strongly continuous exponentially decreasing semigroup T,(¢) (if B = H and 4 is
selfadjoint it is ensured by m + y > 0) C. T. Taam in [1], [2] proved that

2.12) f:rrl(s) f(t — 5)ds

defines a unique w-periodic solution which is exponentially stable. So far we have
supposed that 4 in (2.1) si strongly positive what implies that — 4 8enerates an
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analytic semigroup. To be able to investigate e.g. the w-periodic solution of Schrédin-
ger equation we shall now suppose that — A generates a strongly continuous semi-
group not necessarily analytic and that y = 0. Of course we have to make more restric-
tive assumption on the right hand side of (2.1). The following Proposition may be
easily proved.

Proposition 2.2 (cf. [19] p. 169): Let — A generate a strongly continuous semigroup
T(t) (t e R*) and let A f(t) be continuous on R*. Then there exists a unique solution
u(t) of the equation (2.1) with the initial value

(2.13) u(0) = ¢ € 9(4)
and it is given by

(2.14) u(f) = T() @ + -[(:T(t ~ 1) f(r)dr, teR*

moreover, ut) and A u(t) are continuous functions on R*.

Similarly to the Theorem 2.1 we can derive the following one.

Theorem 2.4. Let — A generates a strongly continuous semigroup T(t) and let
feC(R*; 2(A)) be w-periodic on R*. Let #(T{w) —1) be closed. Then an
w-periodic solution to (2.1) (y = 0) exists iff (2.6) holds with y = 0.

The specialization to the Hilbert space case is rather different from that obtained
in Theorem 2.2. We restrict ourselves to the case A = iB, B being selfadjoint.

Proposition 2.3. Let A = iB, where B is a selfadjoint operator 2(B) < H - H.
If 9 € 9(A"), A’ f(t) where v > 0, is continuous on R* and u(t) is a function given
by (2.14) then u € U(J) for any compact interval J = R™.

Theorem 2.5. Let A = iB, where B is a selfadjoint operator 2(B) = H — H such,
that there exist constants ¢ > 0, ¢ = 0 that

2
(2.15) min lx Al

1=0,+1 w w

2
>, zeM=a(B)\{—kf}
A¢ k=0,%1,..
holds and that there exists some real [ in the resolvent set of B. Let fe€

e C(R*; D(B'***")) be w-periodic on R*. Then an w-periodic solution u(t) to (2.1)
(with y = 0) exists iff

¢ < 2k
(2.16) j (T() f(o = . Ddr =0, {eh = 3 ./V(B + ;’%)
0 ==
where T(t) = [, e™i* dE(2) (te R, E(2) is the resolution of the identity cor-
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responding to B) is a semigroup generated by —A. If the condition is satisfied
then u e U(R™).

Proof. It is clear that
A((B ~ p1)*(T(w) — 1)) = #(T(w) — 1) =

zkzim< (227: +> (2?))1{ _ksz_aw <B + z?1) N
Since T(w) = {2, e”"** dE(), we have for { e 4™
" ) 0 )~ 1) ] = J :[,1 - BPele*e — 1P d(E(R) () =
_4 LM — BPesin® 2 2 d(B(X) 8, 0).

But if A€ M and k(%) is such an integer that |4 — 2k(1) nfw| = min |2 — 2ir/w]
then using (2.15) we obtain 1=0,%1,..

w
2k(,l) sin? (—2-/1— k(4) n)
i — Bl2¢sin? /1~ 2 u >
i~ 2f-p ;
@ E’l—k(,l)n
_ 2
> 2 2 min 12 -8 chf, ¢ >0,
2 ieM A

and accordingly |[(B — BI)® (T(w) — I) ¢|| = 2¢,|{|. So we have proved that
A((B — BI)*(T(w) — I)) is closed. As the B belongs to the resolvent set of B, we can
write every ¢ € H in the form ¢ = (B — pI)¢ $, where ¢ = (B — BI)™¢ ¢. Writing the
solution u(#) of the equation (2.1) with the initial condition u(0) = ¢ in the form (2.14)
we see that the necessary and sufficient condition for u(t) to be w-periodic is that
the equation

(2.17) (B — B (T(w) = 1) § = — f :T(w ~ ) f(x) de

has a solution @ e 9(B?). It is easy to see in virtue of f(r) e 2(B'***") (te R") that
if (2.17) has a solution @e H then @ e Z(B'*?*"). The solution ¢ e H of (2.17)
exists iff

(2.18) J:T(w _ ) /(2) dee H((B — BI (T(w) — D)*.

But as (B — BI)?(T(w) — I))* = A4, it is obvious after simple calculations
that (2.18) is equivalent to (2.16). Finally if (2.16) is satisfied then (2.17) holds with
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@ € 2(B'*¢*") which implies u(0) e 2(B'**) for the w-periodic solution u(t) and
hence u € U (R™).

Remark 2.4. Let the assumption of Theorem 2.3 be fulfilled with v = 1. Define the
operators @,, O, by the equalities

Oou = B, + iB** 1y,
Ou = —B, — iB®* 'y, for ue2(0,) = 2(0,) =
= {ue C'(0, w); 2(B%)) n C(0, w); 2(B**")); u(0) = u(w)} .

We can similarly as in Remark 2.2 prove that any closed extension @ of @, is normal-
ly solvable and that the necessary and sufficient condition for the existence of the
solution u* to the equation

Ou=f

is the same but now it is ‘

N (O,) = {u e 2(0,); u(t) = T(f){, where (e i .M(B + g1‘«”1)}
k=-—o [0}
and of course A (O%) = A(O,)".

Theorem 2.6. Let the assumptions and the condition (2.16) of Theorem 2.5 be
fulfilled. Then the found w-periodic solution of (2.1) (with y = 0) is stable.

The proof follows immediately from the equality [[{Z, e™** dE(2) ¢|* = [|¢|?
holding for ¢ € H, te R™.

3. PERIODIC SOLUTIONS TO THE SECOND ORDER LINEAR
DIFFERENTIAL EQUATION

For the sake of uniformity of the treatment we work here only in a Hilbert space
since only some special cases we are able {o investigate in a Banach space.

3.1. Equation with a dissipative term. Let the equation
(3.1.1) u(t) + 2(o + BA) uft) + (4 + 7) u(t) = f(), teR*
with the initial data
(3.1.2) u(0) = 9 e D(4), (x + BA)u(0) + uf0) = yeH,

where 4 is a selfadjoint operator 2(4) « H > H, A = [ AdE(Z), m > 0,0, 20, y
are real numbers and f : R* — H be given. A function u(t) is called the solution of
(3.1.1),(3.1.2) if u € U,(J), for any compact interval J « R*, u(t) satisfies (3.1.1) in R*
and u(0), u,(0) satisfy (3.1.2).
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Proposition 3.1.1. If u(t) is a solution of (3.1.1)—(3.1.2) then

(313 u(t) = J(1) @ + K() ¥ + j;K(t —1)f(r)dr, teR*,
where
J(1) = J:e_(”mt cos t[ /(2 + y — (« + BA)]AE(2),
(" e SN ILJG A+ y = (o 4 BA)]
K(1) J ] @+ G dE(%) .

On the other hand if u({) is given by (3.1.3) with ¢ € 2(4) N 2(BA*), Y € (4%
A D(BA), f e C(RY, D(A"?) n D(BA)) then u(1) is a solution to (3.1.1)—(3.1.2).

Proof. Let u(f) be a solution to (3.1.1)—(3.1.2). Writing in (3.1.1) t instead of ¢
aplying the operator K(t — 7) to it integrating by parts and making use of (3.1.2)
we verify easily that u(r) satisfies (3.1.3).

On the contrary if u(t) is given by (3.1.3) with ¢ € 2(4) N 2(BA?), Y € D(A"?) A
N 2(BA), fe C(R*; D(AY?*) o D(BA)) then using Proposition 1.1.2—~1.1.5 we find
easily that u(t) is a solution to (3.1.1)—(3.1.2).

If a smoother solution is required then the following proposition the proof of which
follows from (3.1.3) and from. Propositions 1.1.2—1.1.5 may be useful.

Proposition 3.1.2. If @€ Z(A"") n D(BA**?), Y e (A3 A 9(BA*YY), fe
€ C(R*; 2(A**12)  2(BA™ 1)), (v = 0) and u(t) is a function defined by (3.1.3)
then u e U0, o)), Yo > 0.

Since a solution u(t) = U(g, ¥) () of (3.1.1)—(3.1.2) is uniquely determined by ¢
and ¥, there exists an w-periodic solution to (3.1.1) iff there exist ¢ € D(4), Y €
€ 2(A'*)  9(BA) such that

(3.1.4) Ue, ¥) (@) — Ulg, ¥)(0) =0,
U;((P, 'p) (Cl)) - U,((P, l//) (0) =0.
Inserting (3.1.3) into (3.1.4), denoting » = } if § = Oand » = 1if B # 0 and putting

(3.1.5) ¢ = A",
we have
Lo K@+ (= )6 = 4 Ko - A a

(1= J(@) ¥ + A=A + 91 — (el + BAP) K(0) & = f Jw — ©)f(c) dr .
[¢]
Applying Lemma 1.2.1 to (3.1.6) we get the following

649



Theorem 3.1.1. Let o, fe R*, o + B > 0, y, v = 1 be real numbers and let —y be
at most an isolated point of o(A). Let fe C(R*; 2(4**'*) n 2(BA*™Y)) be w-
periodic on R*. Then there exists an w-periodic solution u(t) to (3.1.1) iff

(3.1.7) f:(f(r), dr=0, l(eN(4+y]).

If the condition is satisfied then u € US(R™).

Proof. Denote

(3.1.8) Ay = J Cay(DAEQ), Lj=1,2...,
[ o rptro—n e SN A +y — (@ + BT
) T =y O

f, = fme—(”“)(""” cos [ /(4 + y - (o + B4)*)] f(x) dv,

D = A11Azz — A 45,

where

ayy(3) = —e- @y SIM o[ J(A + 7 = (« + BA)?]
J@A+y = (a + pA)?)

a(A) = any(A) =1 — e P cos o[ (A + 7 — (« + BA)],

azz(i) = ¢~ (@8N0 \/(’q' S (a + ﬁ)“)z) sin (D[\/(ﬂ. +9 - (Ot + /3).)2)] ,

lx

iedm, ).
Clearly,

d(2) = a;,(4) ay(2) — aiy(2) =
= —e 2eHENe | 2= @HEDO cos [ \JA + 7 — (o + BA)*] — 1
and ‘
A = {2em, ©); d2) =0} = {—y}.

Further

d(l) < —e 2@tBNo | gp-(@tpe _ | (1 _ e"(¢+ﬁ/1)m)2 <

< —(1 — e~ @My < g

for 1€ {m, o) such that 2 + y — (« + p4)* = 0 and
d(2)] = e = 2e7 eh o[ (e + B2 ~ 4 = 3)]| > 0

for Ae {m, o)\ A such that A +y — (¢ + pA)* < 0. As —y is an isolated point
of a(A), there exists 6, > 0 such that [d(2)] = &, for A€ o(A)\ A (it suffices to set
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8o = min [(1 — e @*#m)2_ inf {lch aw — ch w[ /(1 + 7 — (« + BAI)]|
heo(A) {AeR; A+7y —(x+ i)’ < 0} A4}].

Hence all assumptions of Lemma 1.2.1 are satisfied and a solution to (3.1.6) exists iff

(3.1.9) [f1 /2] L H(4),

where A is defined by (1.2.1). But
(3.1.10) vﬂ@={W@kH;%¢aﬂA+ﬂL¢——ﬂm }

since (D) = (E(—y+) — E(—y)) H = A#(A + yl) and the system (3.1.6) with
S =01is on A#(4 + yI) equivalent to the equation

!// a_B‘Y~
bl

1t remains to prove that (3.1.9) is equivalent to (3.1.7). But (3.1.9) may be rewritten
in the form

(for y + 0; otherwise a = 0).

(o ¥) + @) = 0, [V 3] e #(A)

ie.

(3.1.10) (fz Hﬁyf1 >_0, GeN(A+ 7).

Denoting P = E(y+) — E(y) and using (3.1.8) we have for € A(A + yI)

i [ pesin A+ p = (o4 pA)
° Uo(ﬁ[A Aty — (@t pap)

+—ﬁ%;ade01+v—(u+ﬁAY»]ﬂﬂanW>=

o — py

= (J o~ BAY [Ax sho(/((a + /514)2 - 7)) +
0 (o + pa)? — 4 - V)

+- !i'”ﬁy cho(y/((o + A — 4 y))] P /() dr, ¢,> _

= (Jwe—<a—ﬁv)r[| .___h’lxﬂ Ish Tl — By +- l i chtlot —ﬂvl] P f(7)d, !//)
& = py

o

M P, vy o
- e
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for o = Py; otherwise we proceed anologously. Expressing the solution [y, $] of
(3.1.6) similarly as in (1.2.16) and making use of Proposition 3.1.2 we find easily
that every w-periodic solution of (3.1.1) belongs to U4(R™).

Remark 3.1.1. Let the assumptions of Theorem 3.1.1 be fulfilled with v = 1. Define
the operators @, @, by the equalities

Opu = u,y + (o + BA)u, + (A + y)u
O =u, — (o + pA)u, +(A+7)u

forue 9(0,) = 2(0,) = {u e ULKO, w)), u(0) = u(w), u(0) = u w)}. If we define
the operator @ in the same way as in Remark 2.2 we can prove similarly the normal
solvability of @. A solution to the equation Qu = f exists iff (2.9’) is fulfilled. Here
N(0,) = {ue2(0,);u(t) = {e /(A + yI)} and, of course, #(OF) = #(O,)

Corollary 3.1.1. If y + m > 0 then —y ¢ o(A), (3.1.7) is fulfilled for every fe
e C(R*; 9(AY?) n D(BA)) and there exists a unique w-periodic solution to (3.1.1).
It may be easily shown that this solution is given by

u(t) =JjK(s)f(t —9ds, teR*.

This procedure may be generalized for the case of the Banach space. That will be
shown in the paper of M. Sova which is in preparation.

Theorem 3.1.2. Let the assumptions and the condition (3.1.7) of Theorem 3.1.1
be fulfilled. If y + m > 0 and y + m =2 0 and y + m < 0 respectively then every
w-periodic solution is exponentially stable and stable and unstable respectively.

The proof is analogous to that of Theorem 2.3.

3.2. Equation without a dissipative term. In this section the equation
(3:2.1) udi) + (A + 1) u()) = /), 1eR*
is dealt with.

Theorem 3.2.1. Let y, v = 0 be real numbers. Let A be a selfadjoint operator
9(A) €« H— H, infg(4) = m >0 and let there exist numbers ¢ >0, ¢ 20
such that

o fea-

2_2
z—kfgf—, Aeo(4) N 4k’m -
@ 2 w? k=0,%1,...

k=
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holds. Let fe C(R*; 2(A°**'/?)) be w-periodic on R*. Then there exists an o-
periodic solution u(t) to (3.2.1) iff

(323) jw (A”" sin (4 +90) o d/) G0 for

0 JA + 90

sin 2o( /(A + 1)) @ os 7 . . . -
yes, = W(w)L@ V(4 + D) f(z), o) dr = 0 f

peN, =N (sin %’ (VA4 + yI))).
If the condition is satisfied then u € U?(R+).

Proof. Now an w-periodic solution to (3.2.1) exists iff the system

sin w(\/A4 + yI) _
(3.2.4) — W ¥+ (1 = cos o( /(4 + y]))) ¢ =

_ [“sint({/4 + 4I) 2 de
[ e

(1 = coso(\J(4 + D)) ¥ + J(A + yI)sin o (J(4 + 7])) ¢ =
_ chos ({4 + D)) f(7) de

for the initial values u(0) = o, u,(0) = y has a solution, Retaining the notation
(3.1.8), (3.1.5) with o = B = 0, (3.2.4) is equivalent to

ALY, 3] = [f1. 2],

where A is given by (1.2.1). In the sequel we make use the following

Lemma 3.2.1. If g,, g, € 2(A°) then [g,, g,] € R(A) iff [91, 92] € & (A)-.

Proof of Lemma. Obviously

d(2) = ayy(3) azy(3) — a2,(J) = —4sin? %(\/(z +7)

and

4k2n?
A= {ieR;d(2) = 0} = { - y}
k=0,%1,..
Set [gy, 9.1 € A (A" Let P, = E(,+) — E(4,) where, J, = 4k’n*[w® — 9, k =
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=0, +1,.... Similarly as in the proof of Lemma 1.2.1 we find easily

Pk(A2191 - A11gz) =0,
Pk(A2291 - Alzgz) =0, k=0, %1,...

Hence A9, — Ay192, A329, — Ay29, are ortogonal to

PH = Y PH= (D).
k=~

Since

f d—z('{) d(E(l) (A2191 - Augz)s Azi191 — Augz) =

™ sin? ol (4 + 7)) in il
h f,,, 16 sin* %w(\/(/l +7) (dE()‘) (2 Jo(\/(A + 7)) g1 +

+ (~~A->”2 cos 3(y/(4 + 1) 92)’

A+ vl

sin 4o(J/(4 + 71)) g, + ( 4 : )”2 cos 3o(J(A + 1)) gz> <

A+ 9yl

< const. Jm/IZQ(dE(A) £,0) = const. |4%[* < 0,

where

{ = 2sin Jo(/(4 + 1)) g, + <

1/2
) " cos do(J(A + 1)) g, € D(49),
A+ 91

we may put

y= f () dE() (A2191 — A1192).
According to

'[ duz(’l) d(E(l) (Azzgl - Alzgz)a Az20, — A1292) <

we may put analogously

6= | 40 980 (t220, - i)
It may be verified easily that [, 3] satisfies the system A[, @] = [g1, 9,] and hence
[91s 2] € #(A). The necessity of the condition follows from the selfadjointness of

the operator A.
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To complete the proof of Theorem 3.2.1 it remains to show that

(3.2.5) [f1. /2] e A (A)*
is equivalent to (3.2.3). But
(3.2.6) N(A) = {[y,dleH; yeA, get,}

because A (A) < {[y, §] € H; ¥, $ € A7,}, the set on the right hand side of (3.2.6)
is a subset of A(A) and [, $] € A°(A) implies Py = 0. With respect to B*4"; =
= Ay, B*A, = A, for an arbitrary » we may rewrite (3.2.5) in the form

(lp9f1)=09 l/16'4/17
(¢3f2)=0’ (PG./V;_,

which is evidently equivalent to (3.2.3). The smoothness of the found solution may
be proved analogously as in the preceding theorems.

Remark 3.2.1. Let the assumptions of Theorem 3.2.1 be fulfilled with v = 1. Define
the operators @,, @, by the equalities

Oou = A%, + A%(A + yI)u
O = O for ue(O,) =
= {u e Uj(<0, w); u(0) = u(w), u 0) = ufw)}.
The statement of Remark 3.1.1 remains valid with the only change that now it is
H(6:) = H(O4) {u € Lo(C0, wd: H), u(t) = J(1) A™2G + K() v,
where ¢ e A (sin Jo(/(4 + 1)) N D(AY?),

o ()

The proof is analogous to that in Remark 2.2.
Theorem 3.2.2. Let the assumptions and the condition (3.2.3) of Theorem 3.2.1

be fulfilled. If m + y > 0 and m + y < 0 respectively then every w-periodic solu-
tion is stable and unstable respectively.

Proof. Ify + m > Othen [K(1)]| < 1, |[J())]| = 1//(m + 7),teR*.Tfy + m 20
then
K1) ol = |EG+) o],

”J(t)'p”gtin;‘Sh—rTHE(—Y‘i‘)lll”, o, weH, teR*.

From these inequalities our assertion follows immediately.
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4. NONLINEAR PROBLEMS

4.1. First order equation. Let us consider the equation
(4.1.1) u(t) + (A + yI)u(t) = F(t,u), t>0,

where A is a strongly positive operator 2(A4) € B — B, — A generates a strongly
continuous semigroup T(7) (fe R*) and F: R* x @, — B is a nonlinear operator
in a Banach space B w-periodic in ¢. It is known that T(z) has a holomorphic extension
in some complex domain {z; argz < a, 0 < |z| < 0}, 0 < a < Ix (see [17] p.
254). Let us note that the operator F is not necessarily a Némyckii operator and
that we write F(t, u) instead of F(t, u) (1) and e.g. [F(r, ¢ u(r)) dt instead of
[F(z, @ u(+)) (r) dr. In the following keep the definition of the solution given in
Section 1.3. Since the investigation of the existence of periodic solutions to (4.1.1)
is rather complicated in critical cases, we restrict ourselves to the case B = H. To the
study of this problem in a Banach space theory of M. Sova [20] may be used.

Theorem 4.1.1. Let A be a selfadjoint operator 2(A) < H — H with inf ¢(4) =

=m > 0 and let —y be at most an isolated point of o(A). Then an w-periodic
solution to (4.1.1) exists iff the system

@12)  u(t) = T() (01 + 92) + J ;evr T(t — 7) F(z, e u(x)) de,
Pf:e” T(w — 7) F(t, e " u(r)) dz = 0,

92 = —[(I = P)(e™ T(w) — )]~ J:e‘“‘”_’) T(w — 7) F(z, e~ u(0)) de
where P is a projection on /(A + yI), ¢y = Po, ¢, = (I — P) ¢ has a solution
(4.1.3) ¢ =0ieH, ¢,= (pé‘é.@(A), u = u* e UyR").

If the condition is satisfied then the sought w-periodic solution is u*(z).

Proof. The existence of [(I — P)(e™" T(w) — 1)]~* was shown in the proof of
Theorem 2.3. Let the system (4.1.2) have a solution (4.1.3). It may be verified easily
that u*(¢) is a solution of (4.1.1). Further by (4.1.2,) and (4.1.2;)

(o) = u0) = (7 T(6) = Do} + 9 + [ T - 9
F(r, u*(1))dt = (I — P) (™7 T(w) — I) 3 +
+(I—P) f:e-ﬂw-') T(w ~ 1) F(z, u*(x)) dt = 0,
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which proves the w-periodicity of u*(f) in consequence of a unique determination of
a solution by its initial data. On the other hand if (4.1.1) has an w-periodic solution u*
then we find easily that ¢ = @* = u*(0) and u = u*(z) satisfy the system (4.1.2).

Remark 4.1.1. Evidently, if y + m > O then P = 0, ¢, = 0, ¢, = ¢ and (4.1.2,)
may be cancelled.

Corollary 4.1.1. Let the assumptions of Theorem 4.1.1 be fulfilled withy + m > 0,
F(t,u) = ¢ F(t, u), where F(-,+) maps R* x C(K0, w>; 2(A")) into C(<0, w);
D(A”™") with some v 2 1,0 S5 < 1 and let it be

”F(I, u;) — F, uz)”v-,’ < L”ul — uznv
teR™, uy, uyeCL0, w); 2(A%).

Then there exists for sufficiently small e > 0 a unique w-periodic solution u*(e) (+) e
e U,_(R¥) to (4.1.1) and it is continuous in ¢ in the norm of U,_(R*).

Proof. Applying the Banach fixed point theorem to the system (4.1.2) for
[u, ] e C(0, wy; Z(4”)) x D(A"), we find an w-periodic function u = u*(+)e
€ C(R*; 9(A4")). But as, in virtue of the assumption, F(-, u*(+))e C(R*; 2(4"""))
and u*(t) satisfies the equation (4.1.2,), it is by the proposition 3.1.2 u* e U, _,(R™).
(Even a simpler proof follows from the existence of the fixed point to the operator

sj T(c) F(t ~ 7, u(t — 1)) dz, cf. Remark 2.3.)
4]

Now let us investigate the nonlinear counterpart of Theorem 2.5.

Theorem 4.2.1. Let A = iB, where B is a selfadjoint operator %(B) — H such
that there exist constants ¢ >0, ¢ = 0, that (2.15) holds and that there exists

a real B in the resolvent set of B and let F(-u)e C(R"; 2(B%)) for ue Uy(R").
Then there exists an w-periodic solution to (4.1.1) with y = 0 iff the system

(4.1.4) () = TO) (02 + 02) + | 10¢ = ) Fls. (o) e,
P ‘[ :T(w ) (B — BIy F(z, u(x)) dz = 0,
02 = [0 = P8 = 1 (1(0) = 1] [ 0 = ) (8 = 1 F(e w(9) ¢,
where (i) is a semigroup generated by — A, P is a projection on 10

> 2k
Y W(B+fI)H, ¢ =Pp, o=(I—-P)o,

k=—c0
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has a solution @, = ¢% e D(A), ¢, = 3 € D(A), u = u*(*) e Uy(R™). If the con-
dition is satisfied then the sought solution is u*().

The proof is quite analogous to that of the preceding theorem. The existence of
[(I = P)(B — BI)*(T(w) — I)]~* was shown in the proof of Theorem 2.5.

4.2. Second order equation with a dissipative term. Let us consider the equation
(4.2.1) u (1) + (ol + BA)ut) + (A + yI)u(t) = F(t,u), teR*,

where A is a selfadjoint operator in H, inf6{4) = m > 0 and F:R* x @, — His
a nonlinear operator in H e-periodicin tand . 2 0, 8= 0, o + 8 > 0, y are real
numbers. Let us keep the notation of paragraph 3.1 and the definition of the solution
as given there.

Theorem 4.2.1. Let —y be at most an isolated point of ¢(A). Then an w-periodic
solution to (4.2. 1) exists iff the system

(42.2) u(t) = JO) APy + G2) + K(1) (W1 + ¥,) + j(:K(t — 1) F(t, u(z)) dt,
pKF(T, u(@) dr = 0
Vs = 2[(I - P) D] J :e-<a+ﬂ4><w—f> sin (t — 30) [ (4 + 9 — (2 + pA))] »
e sin 30 /(4 + 31 — (al + PAY)] F(z, u(z) dr,
¢, = =2[(I - P)D}™! J:) JA i";(i”(’:;w:;} 4)%)

V(A A+ I = (el + BA)?)] = sin do[ (A + 9T — (d + BA)?)] F(z, u(t)) dt,

where P is a projection on A (A + 9I), ¢; = PP, ¢, =(I — P)§, Y, = (I — P) ,
Y, =Py, x=%if f=0and x = 1if B # 0, has a solution

(423) @, =9teH, ¢, =05 DA D(B4), ¥, =yteH,
Uy = Y3 e D(AY?) n 2(BA), u = u*(-)e UYR™).

cos (t — 1o).

If the condition is satisfied then the sought w-periodic solution is u*().

Proof. The existence of [(I — P) D]~! was shown in the proof of Theorem 3.1.1.
Let the system (4.2.2) have a solution (4.2.3). It may be verified easily that u*(t) is
a solution of (4.2.1). Further, the w-periodicity of u*(t) is equivalent to

(4.2.4) u¥(w) — u*(0) =0, uy(w) — uy(0) =0,
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since every solution of (4.2.1) is uniquely determined by its initial data. But (4.2.4) is
equivalent to

(4.2.5) Ay, 3] = [funfals

where A is given by (1.2.1), (3.1.8) and

Ji = JG)A”K(w — 1) F(t, u(z)) dr,

0

J2= JmJ(w — 1) F(, u(t)) dr .

0

Itis shown in the proof of Theorem 3.1.1 that (A) s closed; so (4.2.5) is equivalent to
(4.2.6) Plfi.12] =0,
[‘/’23 (7’2] = [(’ - P) A]—l [fl,fz] 5

where P is a projection on A (A), [{y, 1] = P[¥, ], [V2, 2] = (I = P) [¢, ¢].
Using (3.1.10) we obtain after simple calculations that (4.2.6) is equivalent to the
system (4.2.2,), (4.2.2;), (4.2.2,). Hence u*(1) is ow-periodic.

On the other hand, if (4.2.1) has an w-periodic solution u*(r) then we find easily
that y* = u}(0), * = A" u*(0) and u*(z) satisfy the system (4.2.2).

Theorem 4.2.2. Let y + m > 0 and F(t, u) = h(t) + ¢ F(t, u), where h e C(0, w);
(A 112)), F(-, u(+)) € C(€0, w); 2(A**1?)) for u e C(0, w); D(A**) and

(4.2.7) [F(-, ui()) = FCo ua(Dyrape S Liuy = usyss for
uy, uy € C(€0, w); 2(4*"))
if B =0 and where

he C({0, w); 2(A°*Y)), F(-, u(+)) e C(K0, w); 2(A**1))
for ue C(K0, w); Z(A**?)) and

”F( uy(+)) = F(+s “2('))Hv+1 = L”“l - ”2”v+z

for uy, u, € C(K0, w>; D(A"*?)) if B # 0, and h and F are w-periodic in t on R*.
Then there exists for sufficiently small ¢ > 0 a unique w-periodic solution u*(e) (1)
and u*(e) (+) € UY(R™), u*(e) () is continuous in the norm of UYR™).

Proof. It is clear that there exist constants ¢; > 0 and ¢, > 0 such that

(4.2.8) [ £ ey [A*K@)| S ¢y 10, 0).
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Suppose that f = 0 (for the case of 8 # 0 the procedure is quite analogous). Let
u € UY(€0, ®)). Then u e C(€0, w); P(A**")) and accordingly F(+, u(+)) e (<0, w);
D(A’* V%)), From this we find easily that [§ K(r — 7) F(z, u(t)) dv belongs to
UY(<0, w)). We see that the operator G,(e) (¥, ¢, u) defined by the right hand side
of (4.2.2,) (where in virtue of P =0 itis Y, = ¢; =0, ¥, =, §, = ¢) maps
R* x @(A1%) x (A" *11?) x U0, )) into U0, w)). Further, according
to the (4.2.7) and (4.2.8) G, fulfils the Lipschitz condition

“Gl(ﬁ) (lﬁ, P, Ul) - GI(E) (l//, P, u2)“v+l = ﬂwch““l - ”2”v+1

for every ¥, ¢ € H, uy, u, € U0, w}). According to the Banach fixed point theorem
there exists an g > 0 such that for ¢ e {0, ¢,) there exists a unique solution
u*(e) (¥, @) e UY(<0, w)) for every fixed ¥, ¢ € B(A**'/?) and this solution clearly
satisfies the condition

(4.2.9)  u(e) (W1, @1) — u(e) (Yz @2)|v+1 £ (1 + 8c,L)™ m™  max (¢, ¢;) x
+ (W = Valvire + 181 = Balerpn) s Vi Gie (A1) (i=1,2).

It is clear that the operator G,(¢) (y, @) from H x H into itself defined by the right
hand sides of (4.2.2;), (4.2.2,) maps (A" V%) x P(A**!/?) into itself. We obtain
easily from (4.2.7), (4.2.9) that the assumptions of Banach fixed point theorem are
satisfied in B(Yo, Go, &5 (A" V?) x D(A**1/?)), where

Axe~(al+/lA)(a)—r)

Yo = 2[(I_P)D]_1fo \/(A 4yl — ((ZI + ﬁA)Z)Sin(T - %(D)
(A + 9T = (af + BAY)] * sin Jo[ (A + yI — (ol + A)?)] h(z) dr,
Ake—(af‘l‘ﬂ/{)(ﬂ)—t)

e L B ey
VA A+ = (al + BA)*)] # sin do[ /(A4 + yI — (aI + BA)*)] h(z) de

&, is sufficiently small and so there exists a unique pair [{*(e), ¢*(e)] € 2(4**1/?) x
x HA*1?) (e €0, ¢,)) satisfying the system (4.2.2,), (4.2.2,). Because of the
continuity of Y*(g), $*(¢) in € € €0, &, in the norm of Z(A4**'/?) and of the continuity
of u*(e) (¥, @) in ¢, ¥ and @, u* is continuous in & € <0, £*) where ¢* = min (¢, &,),
in the norm of UY(<0, w)). The assertion of Theorem in the full generality follows
from the w-periodicity of u*(e) (*(e), 3*(¢)) (). (Even a simpler proof follows from
the existence of the fixed point to the operator |3 K(s) F(t — s, u(t — s)) ds (cf.
Corollary 3.1.1).)

cos (t — jw) .

4.3. Second order equation without a dissipative term. Now let us consider the
equation

(4.3.1) u (1) + (A + yI) u(t) = F(t,u), teR*,
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with 4, y and F as in Section 4.2, We still keep the notation of Section 3.1. Besides, let
us introduce the projections P and Q respectively on A (sin w(\/(4 + yI))/\/(A4 + 1))
and on A (sin o(\/(4 + yI))) respectively.

Theorem 4.3.1. Let there exist ¢ > 0 and ¢ = 0 such that (3.2.2) holds and let
F(-,u)e C(R*; 9(A%) for ue Ug(R*"). Then an w-periodic solution to (4.3.1)
exists iff the system

(432) ult) = J(O) A~VHG, + ) + K() (b, + b5) + jo'K(r ~ ) Flz, u(®) de,

. wa sin d((4 + 1), sop(z, u(e)) de = 0,

0 N(CE )
QJ:cos 1(J(4 + yI)) * A°F(z, u(z)) dr = 0,

o =24l = P) 4op] [ in (e — 40 (4 + 1)
wsin J(y/(A + 1) » A%F(z, u(2) dr
32 = — 20— o) aen) [ ) (c = 10) (/4 + o1) +
* sin 3o(y/(4 + y1)) » A°F(z, u(c)) de ,

Where l:bl = P'lj’ 11/2 =(I'— P)\[/’ (pl = Q(f)’ @2 = (I - Q)(:b’ (lp,(ﬁEH)» has
a solution

A+ 9yl

(4.3.3) Lorea(4'?), (i=1,2), u*eUYyR").
If the condition is satisfied then the sought w-periodic solution is u*(t).

Proof. The existence of [(I — P) A°D]~" and [(I — Q) A°D]™ " was shown in the
proof of Theorem 3.2.1. Let the system (4.3.2) have the solution (4.3.3). It is clear
that u*(t) is a solution of (4.3.1) and that it is w-periodic iff the system

A[‘//a (ﬁ] = [flafZ] ’
where A is given by (1.2.1), (3.1.8) (with & = § = 0) and

fi = ij”ZK(w — 1) F(z, u¥(x)) dr,
0
fa = J “Hw = <) F(r, w(2)) de ,
0
has a solution [y*, $*] e H.
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1t follows from (3.2.6) that AT, $1] = 0. As Y, @7 (i = 1,2) satisfy (4.3.2,_5)
we have A[A%y¥, A°3%] = [A%,, A%,] and hence

A[l//*a (ﬁ*] = [f]:fZ] .

On the contrary if there exists an w-periodic solution u*(z) then it is easy that ¥, ¢
(i = 1,2), u(t) given by y* = u;(0), $* = A2 u*(0), YT = Py*, y} = (I — P)y*,
@1 = Pg*, ¢35 = (I — P) ¢* satisfy the system (4.3.2).

At the end of the paragraph we introduce one special procedure of solving of the
system (4.3.2). This procedure is used in paragraph 5, where an example is given.

Theorem 4.3.2. Let the assumption of Theorem 4.3.1 be fulfilled and let F(t, u) =
¢ F(t, u). Suppose that the operator F has the continuous Gdteaux derivative
Fi(+, u) : C(K0, w); D(A* 1)) = C(K0, w>; (A" *¢* %)) (v = 1) and that the equa-
tion

W A41/2 o
(434) G, ¢) = [PJ A sin 1(\/(4 + 7))
0 V(A + D)

+ K(7) ;) dr,

0 j:cos t(J(A + yI)) * A°F(x, J(1) A™?@, + K(7) ¢,) d‘t] =[0,0],

A°F(t, J(r) A™12¢, +

have a solution Y$e P G(A*'?), ¢Ye Q D(A*'?) such that there exists
[Gly, 5V, 09)]" continuous as the mapping P D(A**'?) x Q D(A**11?) into
itself. Then there exists ¢y > 0 such that for e£e€<0,¢,) there exists a unique
w-periodic solution u*(z) (1) of (4.1.1) such that u*(0) (1) = J(t) A='* ¢% + K(1) ¥§
and moreover

w(-) (+) € C(€0, 2o); UAR™)) .

Proof. It is clear that for the existence of an w-periodic solution u* € UY(R™) it is
sufficient to show that the system (4.3.2) have the solution u, = u*e C(<0, w);
@(Av-!fl‘)) = Bl’

Uy = Yy GP@(Av+l/2) =B,, uy=¢,€QPA"?) = By,
Uy = ./,25([ _P)@(Av-%l/Z) =B, us= (/326(1 - Q)@(A"“/z) = By,

where B, B,, B3, B,, Bs respectively are the Banach spaces with the norms defined

by Jusfey = [uslvars fuzlay = [ulvesses usay = fualars luall ey = [uallcar

us sy = ||us||czy respectively for u; € By, i = 1, ..., 5 respectively. Let us investigate

the system (4.3.2) in the Banach space B = B, x B, x By x B, x Bs (u]; =
5

=x;1 4]l ¢iy» where u = [uy, u,, us, us, us]). Define the operator 5
G(e) (u) = [Gi(e) (), Gale) (u), ... Gs(e) ()],
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where u = [uy, u,, .. ys|€B,
Go(e) () (1) — ua(t) — () A~ 2wy + us) — K(1) (1 + ) —

o [ K = ) P ) o

F(r, uy (7)) dr,

o) (u) — © AY? sin1(JA + yI)
R R R

Gy(e) (u) = QJ':cos (4 + 1) F(e, uy(2)) dr,

Gule) (u) = u, — 26[(I — P) 42D]"* f :sin (1 — 40) (JA + 9) »

x sin Jo(/A + yI) * A%F(z, u (7)) dr,
Gs(e) (u) = us + 2¢[(I — Q) AgD]_lf:<—i-)1/2 .

A+l
% cos (v — 3w) (VA + 7I) = sin (/A4 + yI) x A°F(z, uy(7)) dr .
Clearly we have G(s) (u) € B for u € Band for any ¢ 2 0. Further it is obvious that for
u=u®=[J(-) AL + K(*) §1, ¥1, 39,0, 0]
it is
G(0) () =0

and that the operator G(e) (u) have the continuous Fréchet derivative G,(e) (u) in B
for any ¢ > 0. Prove that there exists [G,(0)(u°)]"':B — B continuous. Let
h = [hy, h,, ..., hs] € B be arbitrary. Solve the equation

G(0) (u®) T = h.

As GJ(0) (v°) U = [, — J(*) A~ 2(ut5 + iis) — K(*) (i, + 1’4"4)

p f " A sin (A + D) goprte gy 4120 + 32) + K(5) (6 + w2)) () die

o J(A4 + y1)
0 j :cos (4 + yD) x A%F,(x, J(1) A7V2(3] + #3) + K(2) (U9 + ¥3)) ii,(7) dr,

174, "—‘5] and [Gflﬁx,(px](tp?’ {ﬁ(l))]ﬁ !

is a continuous mapping B, x B; into itself we may express easily ¥ by means of h.
Besides, we find that
¢ [hls 2 @]
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with a constant ¢ > 0 independent of h and u. We see that all the assumptions of the
implicit function theorem for the equation

(4.3.5) G(e) (u) = 0

are fulfilled (see e.g. [21] p. 305) and so there exists for sufficiently small ¢ > 0
a unique solution u*(e) e B to (4.3.5) such that u*(0) = u® and u*(g) is continuous
in &.

5.1. An example. Let Q be a parallelepiped, Q = (0, 7a,) x (0, na,) x ...
. x (0, ma,), a; > 0(i = 1,...,n)and H = L,(Q). Let the operator 4 be defined
by

n 2
(5.1.0) Av=-Y% ‘l’f for ve P(A) = W(Q) n W,(Q)
0x
(in the sense of distributions).

Lemma 5.1.1. The operator A is selfadjoint.

Proof. By the Neumann theorem (see [22] p. 121) it suffices to show that #(4) =
= H. Let g € H and write it in the form

kyx,

. kyx . kx
sin =222 | sjn -
Shj<oo a, a, a,

=1,.. .

k=[ky,...k], x=[x;,%5...,x]eQ.

It is clear that the relation

"o\ T! k k
(5.1.1) ux)= 3% (Z -—‘5) gesin = x;...sin"x,, xeQ
1 i a

Skj<oo i a, a,
=1

j=1.,

defines such an element of W}(Q) that Av = g. Since every finite sum in (5.1.1)
vanishes on 8Q, v = 0 in L,(0Q) with g arbitrary and we have v e W3(Q) (see [23],
pp. 86—87, Th. 4.6, 4.7, 4.10).
Lemma 5.1.2. The spectrum o(A) of the operator A consists of the point spectrum
0(A) = (N =Y kilal; k = [ky, kyy .. k,), 1 S k; < o0 (j=1,...,n) integers}
=1

and to the eigenvalue ), there corresponds the eigenfunction vk(x)=
= sin (kyx,/a;) ... sin (k,x,/a,).

Proof. The discreteness of o(A4) follows from [24] (p. 250, Th. 14.6) and the
remaining facts may be verified easily by a straitforward calculation.
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Lemma 5.1.3. Let o = 27TP0/‘]07 a; = pj/qj (J =1,..., n), where P4 (] =
=0, ..., n)are relatively prime positive integers. Then for A€ o(A)~ {4k*n? [0},
the relation
1

2 - ,
3p? /2

(5.1.2) min

- where p =[] p;
w j=0
holds.

Proof. Indeed, if k = [k, ..., k,], and I, is such an integer that

n 2 n 2
min Y k_l — ?‘E Z .k_l_ — %I_QE
1=0,1,,.. i=1 ajz. w i=1 af w

n k2 Z_IOqO
=1

then

2

U

in 4
S0 VA _ Ly, = sin o ) =
JA

. kyx . kyx
= ({uk(x) =sin L. sin=""; xeQ thereexists a positive integer | such

Lemma 5.14. It is /" =4 = ./V(

Proof. The assertion is clear by Proposition 1.1.1.

Theorem 5.1.1. Let the equation (3.2.1) be given with A defined by (5.1.0), (y = 0)
and let fe C(R*; 2(4**")), (v 2 0), be w-periodic on R*. Let w and a; (j =
= 1,...,n) fulfil the assumption of Lemma 5.1.3. Then an w-periodic solution u(t)
of the equation (3.2.1) exists iff

[
(5.1.3) J Jf(t, x)v(x)dxdt = O holds for every ve A .
oJa

If the condition is satisfied then u € US(R™).

Proof. Let us verify that all the assumptions of Theorem 3.2.1 are satisfied. The
selfadjointness of A is guaranteed by Lemma 5.1.1. The assumption (3.2.2) follows
from (5.1.2) with ¢ = 4. The condition (5.1.3) is evidently equivalent do (3.2.3) in
virtue of Lemma 5.1.4.
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Remark 5.1.1. Since 2(A*) = W;*(Q), the found solution is a classical one as soon
as v > 1 + 1n by the Sobolev imbedding theorem.

Lemma 5.1.5. Let n = 2, 3 and let f = f(1, x, u) be a function which is continuous
on 0, T) x Q° x (—o0, ), (T > 0), together with its derivatives

/AT B |

ox; ou’ ox;0x;  ox;ou out’
1Si,jEn andlet f(t,%x,0)=0 for 1e0,T), xedQ.

Then for any o+, *)e C(KO, T); W3(Q) n W3(Q)), f(-, -, 0(+,*)) belongs to
C(<0, Ty; W2(Q) N W,(Q)). Moreover, if

of of o o f ’f ’f  of

"Ox; du’ Ox;0x; Ox;0u Qu’ 0x;0x; 0%, 0x;0x;0u  Ox; u? ou’

(I=ijk<n)

are continuous in all the variables then f(+, «, u(-, -)) fulfils the Lipschitz condition
(314) 70, e ) = £C w9 S Lule, ) = ua(s )]s

where uy(+, +), uy(+, *) € C(0, TY; WZ(Q) n W,;(R)) and it has continuous Gdteaux
derivative fy(+, -, u(+, *)) as the mapping from C(<0, T>; WZ(Q) n W,(Q)) into
itself for any u e C(<0, T); W(Q) n W;(Q)).

The proof follows readily from [25] Lemma 1.2, from the Sobolev imbedding
theorem and from the lemma on traces (see [23] pp. 86 —87).

Lemma 5.1.6. Let n = 4, and let f = f(1, x, u) be a function defined on <0, T) x
x Q° x (=00, w), (T > 0), such that f(t, x,0) = 0, te <0, T), x € dQ. Suppose
that for any u = u(-, *) € C(<0, Ty; W3 (Q) n W,(Q)) the following inclusions are
valid:

g(,, wu), 2L weco, TY; Ly9),

0x; 0x;

62
a_f.('a ) U) s —“iz(" s u) € C(<0’ T>’ Lw(Q)) >
Ju ou ‘
(5, u) e CO. T); Ly(Q)), ij=1,234.
0x; du

Then f(-, -, u) € C(K0, T); WZ(Q) n W3(Q)).
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Moreover, if all the derivatives mentioned above fulfil the Lipschitz condition in
the corresponding spaces and if they have as the operators from C(<0, TY; W3(Q) n
8 WZI(Q)) into corresponding spaces the continuous Gdteaux derivatives then
S+, -, u) fulfils the Lipschitz condition (5.1.4) and there exists a continuous Gdieaux
derivative f)(+, +,u) as the mapping from C(K0, T »; W3(Q) \ Wi(Q)) into itself
for any ue C(K0, T>; WH(Q) n W,(Q)).

The proof follows from the papers mentioned in Lemma 5.1.5.

Theorem 5.1.2. Let the equation
(5.1.5) u(t, x) + Au(t, x) = e[u — h(t, x) + ¢f(t, x,u)], teR*, xeQ

be given with A defined by (5.1.1) and with a; fulfilling the assumption of Lemma
5.1.3. Let n = 2,3 and n = 4 respectively. Suppose that h(+, *) € C(<0, ); W;(Q) n
N W5(Q)) and that f(1, x, u) fulfils the assumptions of Lemma 5.1.5 and Lemma
5.1.6 respectively with T = w. Let h and f be w-periodic in t with @ = 27p,/q,,
where pg, gy are relatively prime positive integers. Then for sufficiently small
¢ > 0 there exists a unique w-periodic solution to (5.1.5) which is continuous in &
in the norm of U(€0, w)).

Proof. Denote

Po J

g5 _ ¢ k; :
&L =1k = [ky, kyy oo ky s - = Y = for some integer I} .
=1 a%
j

Obviously it is sufficient to verify the assumptions of Theorem 4.3.2. Here we set
F(t,u) = u — h(t, ) + ¢ f(t, -, u). The existence of the continuous Gateaux deriva-
tive of F is guaranteed by Lemma 5.1.5 and Lemma 5.1.6 respectively (forn=2,3
and for n = 4 respectively). After some arrangements the equation (4.3.4) may be
now written in the form '

(5.1.6) GO 50 =Y, [\yk — Jh (j.:sinz e S dr)"l .

. (f:hk(f) sin © /2, dr)] b = 0,

600016 = 5, [ Vi ([[eovt o ymen)

ke
(2]
J‘ h (7) cos T /A dr]vk =0,
0

667



which yields immediately the solution

Yy = 2 Z\/%J () sin © /4, dr v,
W ke 0

S
u

50— = z Jhe 'f hy(z) €08 T \/ 2y d vy .

(Here ., ¢, and hy(1) respectively are Fourier coefficients of the functions ¥, ¢ and
h(t, -) respectively.) Finally, because of (5.1.6), [Gy,, (3, ¢7)] 7" is the identity
operator, which completes the proof.

Remark 5.1.2. Evidently, we may require that the function f(1, -, u) fulfils the
assumptions of Theorem 5.1.2 only in the neighbourhood of u = u(t, *) =
= J(t) A7 3Y(-) + K(1) ¥(-) (cf. Theorem 4.3.2).

Remark 5.1.3. We are not able to surpass n = 4 for the number of space dimensions
according to the term (0°f/6u?)(¢%*f/ox; 6x,) in the total derivative 8%f/0x>. We
could overcome this limitation Jooking for less smooth solutions putting 2(4) =
= W;(Q). On the other hand the restriction on f to depend only on u and not on its
derivatives is unavoidable in the frames of the present theory.
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