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PERIODIC SPLINES AND SPECTRAL ESTIMATION

By RoBERT COGBURN AND HERBERT T. DAVIS
University of New Mexico

The theory of periodic smoothing splines is presented, with application
to the estimation of periodic functions. Several theorems relating the order
of the differential operator defining the spline to the saturation (order of
bias) of the estimator are proven. The linear operator which maps a func-
tion to its periodic continuous smoothing spline approximation is repre-
sented as a convolution operator with a given convolution kernel. This
operator is shown to be the limit of a sequence of operators which map a
function into the periodic version of the usual lattice smoothing spline.
The convolution kernel above appears as the kernel in a kernel type estimate
of the spectral density. Thus, it is shown that, a smoothing spline spectral
density estimate, is also asymptotically a kernel type spectral density esti-
mate. Some numerical results are presented.

1. Introduction. While the use of interpolatory splines has recently become
quite common, still little is known about the use of smoothing splines with sta-
tistical data. In this paper the problem of estimating a periodic [27] function
f(x), where h(x) = f(x) + &(x) (Ee(x) = 0) is observed either on a lattice of points,
or continuously in x, using periodic smoothing splines, is discussed.

There exists a variety of types of smoothing splines, so in this paper a “smooth-
ing spline” is taken to be an “L spline” which is not constrained to go through
the data points, but is, however, penalized for lack of fidelity to the data as well
as roughness. The periodic version is defined in Section 2 of this paper, while
a definition of non-periodic smoothing splines can be found in Kimeldorf and
Wahba [3] and [4]. Spline functions are found to be a very flexible technique
in that given an “order of smoothness” (i.e. order of saturation which is defined
in Section 4), the appropriate spline gives the “smoothest” possible fit for that
order. This is contrasted with the classical estimators where the order of smooth-
ness of the estimate is fixed by the estimator. Conditions for matching the order
of saturation of the spline to the smoothness of the function are also discussed.

Throughout the paper, the norm ||4|| denotes the usual supremum norm

|2l = SUP zcass [A(X)] -
2. Lattice smoothing splines. We begin by recalling a few standard results
from Fourier analysis and introducing some notation as we do so.
Let .7° be the class of all real-valued functions in (— oo, co) of period 2z, and
let & be the set of all Borel measurable g in & such that {*_(g(x))*dx < oo.
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For g in &%, let

1

a, = — \"_ e ™ g(x)dx.
27

Then g coincides in L,(—x, z) with the series

€8] . a,em .
Moreover, the series (1) is real if, and only if, a_, = @, for each n (where the
“bar” denotes complex conjugate), and this series is in & if, and only if, it is
real and 37 . |a,/’ < oo.

Now, for k =1,2, ..., let

G ={g(x) = 08,8 e F v |a,|'n* < oo} .

Clearly A o S o F o ... It follows from Holder’s inequality that, for
g(x) = X a,e™ in F, Y |a,|n*! < co. In fact, g is in & if, and only if, g is
in &, has k — 1 continuous derivatives, and the kth derivative of g, ¢'®, is in
G- :

Letting C'® denote the set of all g in &7 such that g has k continuous deriva-
tives, we have

G, ={geFP: geC*P and ¢ e F}.

The space & is a periodic Sobolov space.

Also, note that, for any g in &%, the series (1) converges pointwise and uni-
formly to g.

Let L be a linear differentjal operator

du—-l
dx*—!

) L=2 4 + ot
dx*
Throughout this paper v is used to denote the order of L and y,, - - -, r, to denote its
coefficients. (The value v = 0 is not allowed, so L is at least first order.)
We consider approximating a function % in & by a “smooth” function g ¢ &,
and introduce the following measure of closeness, which balances the accuracy
of the approximation with the smoothness of the approximating function:

Bonste B = 2 Zie e (0 (B5) = (B0 4 oL 5 oty ar.

n

A function ¢ in & minimizing A, LL'(g, k) will be called a periodic lattice
smoothing spline (LSS) to k. To specify a particular LSS the operator L and
constants n, 2 must be given (always n > 1, 4 > 0). These will be stated when
necessary, and omitted otherwise, in order to simplify notation.

Of course, A, ; (9, k) depends on £ only through its values on the lattice

y :{O,il’ izﬂ,"'}-
n

= m/n
n

The ensuing discussion, through Theorem 1, will show that a minimizing g always
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exists, that the solution is unique for n sufficiently large, and that it is a linear
function of the values of & restricted to &7, ,,.

Any ke & coincides on %, with a function h(x) = ;. _,., &.e**. To see
this, first note that

() g Tt = 1 ke {0, 20, dn, )
n
=0 otherwise.
Let
) 1, = o Tt eoh ()
2n n

h(x) = > hean a, et .

Then, for every j, using (3) and the fact that % is in &,
h <E> = Dhecan erITN = a1 <i DI A— eTikin/mh <l—ﬂ>> etkir/n
n 2n

n
= Z?:—n+1 h <%> <21_n Z;::—n+1 ei(j_l)k”/"> = h <‘]—T£> .

n
If h = Y a,e™ and Y, |a,| < oo, then it follows from (3) and (4) that

(5 G, = 2ie pgamt
Thus the g, are sometimes called the “folded back” coefficients of the Fourier
expansion of k. The superscript tilde added to any function h € &° will hereafter be
used to denote the function h obtained from h by (4) (and h may be replaced by f, g,
etc.). Similarly, the tilde added to coefficients of a Fourier expansion denotes the
coefficients defined by (5).
Let
Px)=x+7nx7 4+
be the characteristic polynomial of L and let
6) Q(k) = FA(ik)F(—ik) = |\ (k)|
for integers k. When L = d*/dx*, we have Q(k) = k™. In any case, Q(k) is a
nonnegative polynomial in even powers of k with leading term k*, so Q(k) ~ k*
as |k] — co. Now let ‘
N, = {k: Q(k) = 0},
and, if N, is not empty, let n, be the largest integer in N,. (For example, if
L = d*/dx*, then N, = {0} and n, = 0.) If N,is empty let n, = 0.
Now let f(x) = 3] a,e™ and g(x) = X b, e"™* be two functions in &. Then
the usual inner product is

<f’g> = Zami)m'
If fand g are in &, let
<f’ g>L = Z amBmQ(m) ¢
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This quantity is of interest in our problem since, for any g in &,
1
— 2. (Lg(x)) dx =<9, 9> .
2r

But (., -, is not quite an inner product on .2, since { f, />, = 0 does not imply
f=0when N, +# @.
Let
PO ={feF: flx) = Yimen, a,, e’}
G =Afe T () = Lnew, 9ne™ -

Then Z® and .7, provide an orthogonal decomposition of &, under (., «>,
and (., -), is an inner product on & . Moreover, (&, , »,)isa Hilbert
space, and this space has the reproducing kernel

1
* Q(m)

since &(x, +) is in " for each x, and for any g € &, (g, &(x, +)), = g(x).
Let

eim(y—z)

E(X, .y) = Zmel\'

§(y) =¢ <5”— ; y)

n
and let & be the space spanned by the 2» functions {§_,.,,, - - -, ,}.

LemMma 1. The functions{&_, ., - - -, §,} are linearly independent. Moreover, for
every he 7 there is a unique & € E such that £ = hon &~,,.

ProoF. Letd,(x) = 1if x = kx/n (mod 27) and 0 otherwise. Then there exists
an f, ¢ ' such that f, = J,. To see this, let

JX) = Zimen, @™
ﬁc(x) = Zz:—n—i-l dk,meimz .

The @, ,, must be chosen to match the expansion (4) of §,. Clearly it is then
possible to choose the g, , to satisfy (5) and so that @, , = 0 if |m] < n, or
|m| > n, + 2n, and so @, _,, = 4, . But then f, is in /4" as required.

Now let 317 _,.,a.&, = 0. Then
0= <f5’ Dihmmnis W) = ZZ=~n+1dk<fj’ 5k>L = d;
for each j, and it follows that {¢_,,, - -, &,} are linearly independent. Let
M: [<$js$k>L;j;k = —n '+' 15 "'an]

be the matrix of inner products of the £,’s. Since the §,’sare linearly independent,
M is nonsingular. Now, given k¢ .57, let § = }17._, ., a,§; satisfy

{(2) = (1) = (2)
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in every k. This is equivalent to

- k
) (& & = Do 4y 601 = #(-2)
mk=—n+1,...,n Lettinga = (a_,,y, ---,a,) and y be the vector whose
kth component is h(kx/n) for k = —n + 1, ..., n, (7) becomes
aM = 7

and has the unique solution & = yM-1.

The last part of this lemma corresponds to Lemma 3.1 of Kimeldorf and
Wahba [3]. From that paper we also obtain the next result (corresponding to
their Lemma 3.2).

LEMMA 2. Let M be the matrix [{§;, §,>,] of inner products of the §; for | =
—n 4 1, ..., n. Then there is a unique element §, of E which minimizes

Lmn (e () () 2
forall § in B, and
(8) So= Ooarnr 27 (M + 20 0) a0 6

where n, = h(kn[n) fork = —n 41, ..., n.
THEOREM 1. The solution &, given by (8) is a LSS to h. Forn > n, this solution

is unique.

Proor. Let ge.% and let § € E besuchthatg = éon.~,,. Letf=g — &.

Then
<f’$k>L:g<kﬂ>'— E<ﬁ>=0

n n
for every k, so {(f, &), = 0. Then
Bl B = - B (6 (X5 = 0 (KN 4 <6 00+ <00

For g to minimize A, ; ;, necessarily § = §,and (f, f), = 0. In particular £,
is a minimizing solution. For the uniqueness, note that f on &, equals O,
hence f = 0. But fe A, and it follows by (5) that f = 0 if n > n,.

While (8) gives an explicit solution for the LSS it can be obtained in a more
convenient form by noting that the problem of finding a LSS ¢ to 4 is invariant
under shifts of the function g and % by kz/n for an integer k. Thus the problem
can be reduced to finding the spline which best fits the impulse function.

dx)=1 if x=0
=0 if x+0.
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Let s, ; denote the LSS to d for given values of n, 1 and call it the lattice impulse
spline (LIS).

Then, for any & in &, the LSS is given by 2 ®" s, , where " is the discrete
convolution defined by

k k
fl @nfz(x) = ZZ=—n+1f1 <Tﬂ‘>fz (x — —nl> .
Note that this operation has the properties of a convolution on the lattice .~

T/n
but is not commutative for other values of x.
Now let

sn,l(x) = Z:=—w an,l,meimx
Sn,l(x) = Z?n=—n+1 a'n,l,meimz

be the expressions (1) and (4) for s, ;. Actually s, ; is an even function and can
be expressed as a cosine series, but it is easier to handle in exponential form.
Using (8), it is possible to obtain an explicit solution for s, ;, but it is easier to
proceed directly. (We use (8) and Theorem 1 only to establish that the LSS is
linear and unique for n > n,.)

Substituting the expressions for s, ; in the expression for A, ; ,,

1 k 2 2 1
A(sn,l’ 5) = — ZZ:—n+l <sn,1 <i>> - —sn,l(o) + -
n n n n
9 F 2 G n
F n,A% “n, A/ L
- 2 1
=2 ZZ:—%—H agb,l,ka - Zf:—oo an,l,k + —
n n
2 o
+ }5; D Ak Q(k) .

The a, , , must minimize this expression. Setting partial derivatives, for each
a, . equal to 0 and solving, it is found that there is a unique solution for
n > n,. To describe this solution it is convenient to introduce the quantities

(10) Gn; =1+ QUNZit-w 1/Q( + 20k) + X7, 1/Q() + 2nk))

defined for n > n, and |j| < n. Since Q(k) is a polynomial of order 2v with
leading term k®, it follows that there exist constants 0 < C; < C;, < oo such
that

(11) O(ky < C,k»  forall |k| =1
Q(k) = C,k»  forall |k| > n,.

Then, for j + 0,

C‘Zp .
(12) 1§%,;§1+-E¥] <1+—+i+--->:1+ﬁf

2v
ol
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for some finite 3. Similarly, for some finite 5,

(13)

I<go<l+?P .
’ n2v

ROBERT COGBURN AND HERBERT T. DAVIS

Returning to the solution of (9) for the minimizing a, ,,, straightforward

calculations yield

Gpag = i _M;u for
2n Q(j) + 24, ;

Q,,; = i L for
2n Q()) + 245

yre = %aw‘j for

—nl<j<n
jl < n

ke{j+2n,j+ 4n,

-+--} and

ljl=n.

The polynomial Q is even and ¢, ; = ¢, _;, so the a, ; , are symmetric around
0 and s, ; is even, as remarked above. Moreover, a, ,, = O(k™*) as |k] — oo,
hence s, ;¢ &, , C & (recall v = 1) and s, ; € C*~. In fact, s, , is the “in-
terpolatory L spline” to the values of d on L_,, since it minimizes the second

termof A, ; , among all functions in.2%, coinciding with s, ; on

(/7

== xz/n

It follows

from the theory of linear differential equations that, when L = dldx, s, ,isa
piecewise polynomial of degree 2u — 1 between the successive lattice points.
As n — oo, the shape of the s, ;, suitably normalized, converges to a limit s,.

Let

a;, = lim,na,, , =

1

12»
©2(Q(k) + )

s;(x) = - Direw @y e

The order of approximation of ns, ; and its derivatives to ns, will be useful in

the theory to follow.

First note that, since ¢, ; = 1 and Q(k)q,;/Q(j) = 1 for k =j + 2nland | =

+1, £2, .- and |j] < n by (10), we have
(14) na, ;. < a,,
for all k, while, for [k| < n

(15) a;, < nd,,,.

LEMMA 3. ForO0<m< 2v — 2,

TS (m) __ ns(m) — O 'VIZV
i n,4

as n — oo, uniformly in A.

n2p—’m—l

Moreover, if 4 = O(n'*), then ns™ converges to ns,**V in L(—=, ) and
’ n,A i 2

L(—m, ).

Proor. From (14) and (15) we have

D G lk|™ = R na, ; |k|™ = 2" na, ; Jk|™ = Xt a; k™
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when m = 0 interpret O° = 1). But then

[|Zs;™ — nsim|| < Deew (@16 — 14,5 0 K|™

Zvam
< a, n" w G ulk|™ ~ o2 " __ds
= "2, + ZJkJ> Z,k] | s X + A%
om - ym _ 1214
= Am+l sn/zy2,, T ld)’ = 0(,72,,—-7—’{) ’

To prove the second assertion, observe that, by (12), for 1 < |k| < n and
n .z n,

1 22» 22»
Qe — Ny 0 < —{ w % 2 [t }
2 ot + 7~ 0 T (1 ¥ B
24y‘8k2» < —‘B_ 22»

= 2(0(k) + ) = 2C, n®

sO
1414

v

Dihen (@rp — na, 3 kYT < <—ﬁ-—>

e 14)1
2 D=0 (2).

n

The convergence in L,(—=, x) follows from this and

- . - e - 2vx2v—1
o (1K) S T @k ~ 47 (L5 ) dx

xz» _+_ 2211
2v—1 24»

= a1 <»__y >a’ :0<_>,
$oa 7 1 'y .

and the convergence in L,(—=, x) is an immediate consequence of this.
This lemma shows that zs, may be used as an approximation to ns, ; when
2 & n; however, its most important implication is the result in the next section.

3. Continuous smoothing splines. If % is known for all values of x, it is natural
to define a smoothing spline to # as a function g minimizing

1
A

8,000, 1) = — §5 (03) — hCOYdx + —— 5% (Lo()) d .

We call such a g € &% a periodic continuous smoothing spline (CSS) to h. It is
completely specified by stating the value of 2 and the operator L.

Provided k€ L(—=, x), A, ,(g, k) is finite for all g € & and is strictly con-
vex in g, so at most one minimizing solution exists. The solution is again a
convolution.

THEOREM 2. Let he L,(—m, «), then the convolution defined by
h® s,(x) = V2 h()s:i(x — y) dy
minimizes A, ,(+, k) and is the CSS to h.

Proor. First assume k£ is continuous on [—=x, z], hence bounded. The
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assertion of the theorem then results from the following relations valid for any
geA:

A; (9, k) =1lim, A, ; (9, k) = lim, A n(h®" 8,55 R)
— lim, A, , , (l E@" s, h) — lim, A, . 1(h @ 5,1, F)
n

=8, (k@ $n20 h) .
The first and last equalities result from the definition of the Riemann integral
since g, h, h ® s, are continuous. The inequality follows from the definition of
the LSS. The next equality follows from Lemma 3 since, using the triangle
equality in the definition of ®”,
< 2| - ns,,, — wsll = 0 ()

nZ»—l

|h @ s~ @rs,

as n — oo (note 1 is fixed), and, for v > 1,

HL(}’ ®" s, — L <—7:l‘ h® sx)

i
< 2|H|| - ||nLsy; — 7LS;]| = O <nv_1> ,

while for v = 1 we have L(k ®" s,;) — L(zh ®" 5;/n) in L,(—=, x). To establish
the penultimate equality observe first that i(y)s,(x — y) is uniformly continuous
in x and y, so, as n — oo,

—0.

Th@ s, — h® s
n

Similarly, for v > 1,
HL (1 h @ s1> — L ® s)
n

—0.

T h®"Ls, — h® Ls,
n

For v = 1, it follows from Theorems 1, 3, 4 of Chapter 4, Section 3, of Tolstov
[7] that Ls, is continuous except at 0, +-2x, - - and is in L,(—=, x), and it fol-
lows that the convergence of L(zh ® s;/n) to L(h ® s;) holds pointwise. Since
s; is also in L,(—=, ) and

—Tr‘h@nsz
n

,, = 2lAll sl

where ||+||;, denotes the L, norm, we have that L(zh ®" s;n) — L(A ® s;) in
Ly(—m=, 7). ‘
This proves the theorem for 4 continuous. For any / € Ly(—m=, x) there exist
continuous £, corresponding to % in L,. Then &, ® s; — & @ s, and
Lh, ® 5;) = h, ® Ls;, > h® Ls; = L(h ® ;)
in L, since s, and Ls, are in L,, and it follows that
Ay(g, b) = lim, Ay(g, h,) = lim, Ay(h, ® s;, h,) = By(h ® 53 F)

for all g ¢ &, and the proof is completed.
On the basis of this result we call s, a continuous impulse spline (CIS).
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It is interesting to note that, as 2 — oo, the shape of 5, will depend on L only
through its order v. When L = d*/dx*,

s(x)—_l_z_i__
A T k> 4 2

ihz

We will denote this spline 7, in the following discussion. The difference between
r,; and the continuous impulse spline for any L of order v is uniformly bounded
by

—1_ Z ZZ» _ 22» _ —1_ Z 22u]k2v —_ Q(k)|

2 kv + A ’ Q(k) 4 A 27 (ka + P")(Q(k) a4 12)1) :
But k* — Q(k) is a polynomial of order 2v — 2 or lower, so the above difference
is of order

s 22vx2u—2 dx _ 0 <i> ]
(x2y + 22)1)2 2

The result of Kimeldorf and Wahba [3] suggests that the general form of L
may be of interest in some applications, but this requires quite specific informa-
tion in order to choose L. Lacking this, the choice L = d*/dx* is natural, and
the shape of r, will yield further insight into the nature of our splines.

Let
1

e dy |
1 +y2y y

Hx) = %r 13

and
1

1211
t = A (Ax)y = —\~» "~
i) = () = 0§
f(x) = X5 ti(x + 2k7) .
The “folded back” function 7, has period 2z, and for any function % of period
2z and in L,(—=, w), clearly

§2 . (x)Fy(x) dx = §=,, h(x)1,(x) dx .

e* dy

Taking h(x) = e**/2n, we see that the Fourier coefficients of the expansion of
f, are piecewise A*/(2z)(4* + k*). Thus f{, = z,. Moreover, k ® r, becomes
the convolution on the real line, 4 % ¢;,. That is,

@ (x) = h® L(x) = 2. ()L(x — ) dy -

Thus the CSS ¢, of order v is the real line convolution of & with a kernel ¢,,
which is obtained from the kernel ¢ by a change of scale x — Ax.
For v = 1, t(x) = e~"*/2, while for v > 1

Hx) = i > exp[—|x| sin E] {sin lcf cos(x cos kl:)
2v 2y

VYV 1sk<y-—1 v
k odd

kx . k77:>} 1 .
COsS — sIn { X COS — — e
+ 5 < ) + Zoaa(¥) 2

v v
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where y,44(v) = 1 or 0 according as v is odd or even. As vy — oo, (1 4 y*)7!
converges to 1 for |y| < 1and 0 for |[y| > 1 and the ¢ kernels converge to the
Dirichlet kernel sin x/zx. For each fixed v #(x) = O[exp(—|x|sin (z/2v))] as
x — oo, and it follows that

l|s; — &|| = ||fx — ]| = O[4 exp(— 4= sin (z/2v))] as A-— oo .

4. Saturation. Let g be a LSS or CSS to a function k. The question is, as
2 — oo, how well does g approximate 2? In the application to spectral estimation
(Section 5) the difference between the LSS or CSS to % and # itself measures
the bias of the estimating spline.

Saturation is a measure of the order of approximation of the spline g to the
function #, expressed as a power of 1/, as 4 — oo for a given value of v. (Recall
that v is the order of the linear differential operator L used to measure smooth-
ness of the spline.)

We begin with the most clear-cut result. The notion of saturation of a kernel
t is given in Shapiro [6] and may be defined as follows: let § #(x)dx = 1 and
§ |t(x)x™| dx < co. Lett,(x) = At(Ax). If for every he C_™ (that is, k having a
bounded, continuous mth derivative on the entire real line), Ax 1, = & + O(2™™),
then ¢ has saturation m. The following is Shapiro’s Theorem 2:

THEOREM 3. Let § t(x)dx = 1 and § |t(x)x™| dx < co. Then t has saturation m
iff §{ t(x)x*dx =0fork=1,..--,m — land § t(x)x™dx = ¢ + 0. Moreover, for
any he C,™

B = ko) + 50 Lo ().
A m! A

We have seen that, when L = d*/dx*, h ® v, = h » t, where ¢, is defined as in

Section 3. Moreover, ¢t has moments of all orders and by a standard theorem
of Fourier Transforms,

§ t(x)x* dx = (—i)* a1 )
dyk 1+ y2» y=0
Elementary calculations show that § #(x)x* dx equals 0 except for k = 0, 2,
4y, ..., and that § #(x)x* dx = (—1)**(2v)! From this, Shapiro’s theorem and

an argument like that given by Shapiro, the following theorem follows by a
straightforward argument.
THEOREM 4. Let L = d*|dx*. Then for he C*
yay B 1
"+ 0(5).
For other choices of L and for the LSS’s similar results hold, based on Fourier
analysis, but they are not quite as sharp. We will detail these results now.
First let h,(x) = e***. We then have that
(16) hj ®" Sp,a = Z}f:—oo 2nan,1,j+2nkhj+2nk
(17 by ® s, = 2a, ;h

(h ® s:)(x) = h(x) + (= 1)

i
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In the next theorem we establish an approximation of order A~ when # =
2 b;h; where 3 |b;|/* < oco. This condition implies that 4 has 2v continuous
derivatives and is periodic 2z, of course. Conversely, if # has a 2vth derivative
satisfying any one of the following three conditions,

(1) & is of bounded variation and Lipschitz () for any &« > 0,

(2) A is Lipschitz () for any-a > 4,

(3) A is absolutely continuous and 2™+ ¢ L,,
then 33 |b;|/» < oo (see page 32 in [2]).

THEOREM 5. Let h(x) = 3, b,e*=. Then there exists a universal constant C such
that

n y 1
1A — 2@ 5,0 < C(lbg| + 20wz [0ul6™) <2’”> .

Moreover,
1
Ik — 2@ 5| = (QO)bo| + Ci Zperan |bk|k2”)7{
where C, is the constant in (11).

Proor. The second inequality follows from (17) since

1k — £ ® sl = (QO)&| + Ci Zierzn [bel™) 1;
and Q(k) < C k% for k = 0.

To establish the first equality observe first that, for 1 < |j| < n,
[|B; — by ®" s, 2l £ 1 — 2na, 35 + Fieizs 218, 32,5420
= G < Ly —1—>

221} n2u

for some finite C, since

| na,,, = Q0) + PGy = 1) o G + P
()) + #q.,; 7
1
<@+ AP (m+3)
and for some finite C,
] C,
ngl 2na,,,1,j+2nk = Z|k|g1 a—%% —C— LZ—
j2u
X (14 gt gt ) =Gl
Similarly,
By — By ®" 8,5 = 1 — 2na, ;0 + Xikiz1 214, 3 20
Q) , B GO
= A +n2“+ lnz" < +ﬁ+§;+ )

IIA

1 1
(3 )
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Finally, for |j| > n,
1B, — b ®" 5,0l £ 14 34204, ; ;400 = Cs .
Combining these estimates and using the inequality
1h— k@ suull < 20 165] [|h; — by ®" 5,.,4]]
completes the proof.

CoroLLARY 1. If h(x) = X 5._. b€ and Y |j7b;| < oo, where 0 < r < 2v,
then, as A — oo

1
(18) le® s — Hl =0 ()
while, for 2 = O(n) as n, A — oo,

1
(19) 1 ® s, — #l = 0 ().

Proor. We have

1 . 1
r— Zica b5l £ Zijiza 165 = I;ngz |j7b; = O (T)

1
12 ® s5; — (Ziji<a 058;) ® sl £ Zijiza 05124, = O (-;)
1
1B ®" 82 — (Zijica b)) ®™ suill £ 2 352205 = O (-) .

The corollary then follows from the estimates in the theorem applied to
2iiii<a bjh; since

1 221;—1-
Y2 e

w Ziai<a [0 =

, 1
2 |7l = 0 (7,) :

The results of this section show that, for sufficiently smooth functions 4, the
order of approximation will depend on the choice of v. Furthermore, the larger
v the better the order. This suggests choosing v large, but then the impulse
splines will resemble the Dirichlet kernel which is known to have bad properties
as a smoothing kernel. The situation is paradoxical. A better understanding
will be gained by observing that the error of the approximation at x will be
asymptotically 2®(x)/2*, but even this value may apply only for extremely large
4. Anupper bound on the error that does not depend on x is ||#®”||/4*. Typically
||| will increase very rapidly (if it remains finite at all) with ». This suggests
that, even for large 4, v should not be too large if # has rugged features. In the
statistical problem # is unknown and may be relatively smooth or rugged. In
this situation the appropriate procedure seems to be to fit several splines to &
with different v and 2 values. This will be discussed further in Section 5 for the
problem of spectral estimation.
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5. Estimation of the spectral density of a second order stationary random
sequence. Let X, X;, ... be a second order stationary random sequence with
EX, =0, EX; X;,, = p,. Then the p,’s are Fourier coefficients of a symmetric
distribution function on [—7z.-, z]:

py = L gw ¢ dF(w) = L {7 cos ko dF() .
T

(See [1].) When F is absolutely continuous, it is completely determined by the
spectral density, f(0) = dF(w)/dw.
flo) = 2%, e
The statistical problem is to estimate f(w) on the basis of observations X;, - - -,
X,. Let f() denote the periodogram:

f(w) D r nin P = Py + 2 31721 B cOs ko

where

bo=p= LY X, X, k=0 ....,n—1.
n

Under very general conditions (see Walker [8]),

J(@) = flw)l(o) + 7.(o)
where ||7,|| — 0 in probability as n — co and I(jz/n), j =0, ...,(n — 1)/2,
are uncorrelated and have a mean and variance of 1. Also, if the process is
Gaussian, then /(jz/n) will be independent and have exponential distributions
(see Grenander and Rosenblatt [1].) Since the periodogram is an inconsistent
estimator of f, some modification is required. ‘“‘Smoothed” (consistent) estimators
of f(w) are obtained either by smoothing the periodogram

[*(@) = ¥, f()K(w — 1) dA
or by the equivalent method of weighting the covariances by a “lag window”
ky(r), r=0,1, --., M,

[Hw) = Z,_-M ky(r)etrp,
where

1
K({w) = 5 e imoky(r).

While the advent of the Fast Fourier Transform (FFT) has made the former
method more popular, the advantages of the latter method, also using the FFT,
have recently been noted (Parzen [5]) and will be discussed further in the next
section.

We may consider estimating f by a LSS or CSS to f: f®"s, , or f®rc, =
[ *t,. We will consider only L = d*/dx* for various v.

Based on the properties of the periodogram stated above, it follows that as
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n, A — co with 12 = o(n), the bias of either estimator is asymptotically f*/3*.
Similarly, the variance is asymptotically f*As */n, where

for either estimator. (See[1].) This gives asymptotic mean squared error (MSE)
of

2i R (f(2u))2
f o)+ S

For a fixed v, the standard deviation and bias are of the same order, when 4 =
O(nv/**1), and the MSE is then O(n~*/*+1),

This asymptotic expression may be valid only for extremely large values of n,
but the corresponding estimate of integrated MSE

§7. MSE (f(x) dx = 2 0.2 47, i) dx 4 - §7, (F* ()" dx
n v
should apply for much smaller n. The value of 2 minimizing the right-hand
side is

b= (g e defse, £ dn)

g

v

and the resulting MSE is

4
n

o (M) g P ax
4y

While this result may be of some interest in comparing estimators, it can be
very misleading. The values of 2 and v minimizing this expression for integrated
MSE, even if they were known or could be estimated, might lead to unsatisfactory
estimators of f. Thus if f has one or several sharp peaks but is predominantly
smooth then an estimator minimizing integrated MSE may smooth the period-
ogram so much that these peaks fail to appear in the estimate. From the stand-
point of spectral analysis this would be a serious failing. -

In practice it is desirable to compute several estimators from the data, cor-
responding to different 4 and v values. One advantage of the spline function
approach is that it provides a highly flexible family of estimators that can be
built into a single program with the coefficients 4 and v to be specified.

Empirical studies suggest that the best resolution of extremely sharp peaks (on
the order of 5 to 10 times x/n wide) is obtained when v = 2 and 4 is about n/20.
Such an estimator will contain much spurious oscillation. For the estimation
of less rugged features of f, values of v = 3 and 4 = n/100 or v =4 and A =
n/1000 may be tried. An important consideration is that the width of the smooth-
ing function s, (roughly 9/4 between the first minima—see Table 1) should be
smaller than the width of the sharpest peak of f; otherwise the familiar side lobe
phenomena will appear in the estimate.
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TABLE 1
Zeros, minima and maxima of (x) and values of ¢.?
7lst minimum Ist maxima 2nd minimum

v xt(0) l1st zero X ri(x) 2nd zero x zt(x) 3rd zero x t(x) g2

2 1.111 3.332 4.443 —.048 7.775 8.886 .002 — — — 1.666

3 1.047 3.143 4.300 —.102 6.628 7.848 .018 10.282 11.489 —.003 1.746

4 1.026 3.116 4.318 —.138 6.392 7.660 .038 9.771 11.049 —.011 1.796

5 1.017 3.114 4.352 —.161 6.314 7.618 .056 9.583 10.903 —.020 1.830
10 1.004 3.130 4.444 —.201 6.269 7.656 .102 9.420 10.833 —.059 1.908
20 1.001 3.138 4.480 —.213 6.278 7.703 .121 9.418 10.876 —.081 1.942
oo 1.000 3.1416 4.493 —.217 6.283 7.725 .128 9.425 10.904 —.091 2.000

6. Numerical algorithms. Two alternative methods of spectral estimation
were discussed in the last section: smoothing the periodogram and weighting
the covariances. Both approaches, using periodic splines, are discussed in this
section.

The first method of smoothing the periodogram is given by

[H(w) = §5, f(X)K(o — x)dx,
for a given smoothing kernel K(+). Since the periodogram is typically computed

on a lattice {f(rz/n), —n < r < n}, the actual spectral estimator used is the
Riemann approximation

o (2) = Bt () K54 0) — 05 (2)

where r = 0,1, ---,n— 1 and f,* is periodic (27) and symmetric about the
origin.

Three asymptotically equivalent smoothing kernels have been presented in this
paper: The Lattice Impulse Spline (LIS) s, ;(+), the Continuous Impulse Spline
(CI8) 5;(+), and the function #(+). The first two may be evaluated on the desired
lattice {rz/n, —n < r < n} by using the Fast Fourier Transform (FFT) on either
a, ;. (for s, ,(+)) or a; , (for s;,(+)). Since both kernels are symmetric, a real
cosine transformation is needed, and can be programmed quite efficiently.

The above two kernels require order n log n operations, while the third window,
t(+), requires only order n operations in practice, and hence is asymptotically
superior from the point of view of computation time. This estimator is given

by
2 (2) = B (42)1(3n 255)

In practice, it has been found that #(-) needs to be computed from the origin
to the second zero (see Table 1) for v = 2 and 3, and to the third zero forv = 4
and 5. Ifv = 2, for example, then #(irz/n) is needed for r = 0, 1, ..., v where
v = [7.775n/x], hence an order of n operations.
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The alternative approach of covariance weighting is given by
1 —irw s
f2*(w) = ’2_# Zn=—n ki(r)e Pr .
T

The principal difference between spline smoothing and the classical smoothing
methods is that rather than smooth by truncation, the smoothing is done by
shaping the “lag window”. If one uses the Fast Fourier Transform, then it is
necessary even with “truncated” windows to augment the array with zeros; hence
there is no longer a real computational advantage to truncated windows. i

The weighting coefficients k,(+) are given for the Lattice Smoothing Spline
and the Continuous Smoothing Spline as the Fourier Coefficients 2a, , , of the
LIS and 2a, , of the CIS respectively. These coefficients are given in Sections 2
and 3. The two splines are asymptotically equivalent, and for samples of n =
500 were found to give highly similar results. So in numerical studies, the com-
putationally simpler

2214
2(0(k) + )

was used. Also, since Q(k) is asymptotically dominated by the leading term
(which is equivalent to L = D*),

ky(r) = 2a;,, = 1/(1 + (r/4)™)

a;.k

was used.

The advent of the FFT has made smoothing the periodogram quite popular.
However, recent results (e.g., see Parzen [5]) are noting that by using the
FFT in covariance weighting, there is no clearcut advantage to smoothing the
periodogram. For small n, the method of smoothing the periodogram is prefer-
able but asymptotically requires n* operations as opposed to z log n for covariance
weighting. The deciding factor in the authors’ numerical studies was the ease
with which a general program could be written using the covariance weighting
technique.

The data for the numerical study was generated as a first order autoregression
(a = .5) with a Gaussian innovation process and with two moderate peaks super-
imposed in the frequency near .4z and .87 radians. A sample of size 500 was
used.

While several spectral estimators were studied, we present the results of only
two—the Parzen spectral estimator, and the CIS estimator with » = 3. These
two estimators were selected as they provide the greatest contrast, the Parzen
window with saturation of order 2 and the spline with saturation of order 6 (v = 3).
From this comparison, a better understanding of saturation can be obtained.

The Parzen spectral estimate was made with M = 35 lags to have a variance
of .377 and a bandwidth of .23. For comparison, the CIS estimate used 4 =
10.75 (v = 3) to have a variance of .376 and a bandwidth of .28.

Even though the two estimators have comparable statistical properties (i.¢. the
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same variance and similar bandwidth), the spline estimate is seen to be much
smoother (a higher correlation between adjacent frequencies). The spline gives
a better picture of the autoregressive part where infinite saturation is perhaps
appropriate. However, the higher saturation tends to lose resolution about the
peaks at .4x and .8z.

From this the intuitive meaning of saturation and the smoothness properties
of splines can be seen. Also the role of splines as a step intermediate to the
classical estimators with fixed saturation of order 2 or 4, and the revived auto-
regressive spectral estimators with infinite saturation (see Parzen [5]) is better
understood. The greatest advantage of spline estimators seems to be the flexibility
in selecting order of saturation (from v = 1 with saturation of order 2 on up)
as a tool for better understanding the spectrum being estimated.

10
e PARZEN M =35
—— CIS A =10.75
8 TRUE SPECTRUM

0 .2n W .6n .8x 7
Fic. 1.
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