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Periodic Structures  for  Integrated  Optics 

AMNON YARN AND MICHIHARU  NAKAMURA 

Abstract-This paper deals  with the theory and device applications 

of periodic  thin-film waveguides. Topics  treated  include  mode solu- 

tions,  optical fiiters, distributed  feedback lasers (DFB), distzibuted 

B r a g  reflector (DBR) lasers, grating  couplers, and phase matching  in 
nonlinear interactions. 

I. INTRODUCTION 

T HE  phenomenon of  wave propagation  in  periodic  struc- 

tures  or  media recurs in  many  branches of physics and 

technology. As examples,  consider  the  phenomena  of  X-ray 

and  electron  diffraction in crystals,  the  diffraction of light 

from  the  periodic  strain  variation  accompanying a  sound  wave, 

and  the  band  structures  and energy gaps of  the  phonon 

spectrum  and  the energy  of  electrons in a  crystal.  Among 
practical devices making use of this phenomenon we may 
mention  the traveling wave tube,  the  linear  particle acceler- 
ator,  diffraction gratings, and  holograms. 
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With the  intense pace of  recent research in  dielectric wave- 

guiding  phenomena  and devices, a  field  sometimes  referred to 
as “Integrated  Optics,”  a  new  generation of optical devices 

was born,  one utilizing  periodic  thin-film  dielectric  wave- 

guides. Some  of  the devices in  this  family  which  have already 
been  demonstrated  include  thin-film  optical  filters,  distributed 

feedback lasers (DFB), distributed Bragg reflector lasers 
(DBR), and  input  and  output grating  couplers  for  dielectric 

waveguides. 
This  paper  attempts  to  summarize  and review the  theoretical 

and  experimental progress in  periodic  thin-film devices with a 

special effort  devoted to bringing out  the underlying  unifying 

concepts. 

11. WAVEGUIDE MODES 

Before  embarking on an analysis of periodic waveguides 

devices it is important  to understand the basic  modes  which 
can  be supported  in a uniform  (unperturbed) waveguide. We 

will limit  our  attention to slab  planar waveguides such  as that 

sketched  in  Fig. 1. The  extension to channel waveguides  is 
straightforward [ 11 , [ 2 ]  but  introduces considerable math- 

ematical  complexity  without,  for  the  most  part,  modifying in 
a  qualitative  fashion  any of the basic phenomena. 
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Fig. 1. Slab (a/a,, = 0) dielectric waveguide. 

We need to solve the wave equation 

02E(r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt k2n2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r)E(r) = 0 (1) 

where k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ' ~ E ~  = (2n/A)' and n is the  index  of  refraction. 

The  solutions  are  subject to  the  continuity of the  tangential 

components of E and H at  the  dielectric  interfaces.  In (1) 

the form  of  the field is taken as 

E(r, t )  = E(r)  exp i (wt - Pz) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 1 

so that it becomes 

Putting a/ay = 0 in (3) and writing  it  separately  for  regions I ,  
11, and 111 yields: 
Region I :  

(44  

Region 11: 

a2 
ax2 
- E ( x ,   y )  t (k2n; - /3')E(x, y )  = 0 (4b 1 

Region 111: 

a2 
ax2 
__ ~ ( x ,   y )  t (k2n;  - 

where E ( x ,  y )  is a  Cartesian component  of E ( x ,   y ) .  Before 

embarking  on a  formal  solution of (4) we may  learn  a  great 

deal about  the physical nature  of  the  solutions  by simple 

arguments.  Let us consider the  nature  of  the  solutions as a 

function of the  propagation  constant f i  at a fixed frequency c3. 

Let  us assume that n2 > n3 > n l ,  For /3 > kn, (that is, regime 

a in Fig. 2) it follows  directly  from (4) that ( l /E)(a2E/ax2)  > 
0 everywhere,  and E(x)  is exponential  in all three layers (I, 11, 

111) of the waveguides.  Because of  the need to  match  both 

E(x)  and  its derivatives at  the  two  interfaces,  the resulting 
field distribution is  as shown  in  Fig. 2(a). The field  increases 

without  bound away  from the waveguide so that  the  solution 
is not physically realizable and  thus does not correspond to a 
real wave. 

For kn3 < /3 < k n 2 ,  as in  points b and e, it  follows  from (4) 
that  the solution is sinusoidal in region 11, since (1/E) 

(d2E/ax2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0 ,  but is exponential  in regions I and 111. This 
makes it possible to have  a  solution E ( x )  that satisfies the 
boundary  conditions while decaying exponentially  in regions 
I and 111. Two  such  solutions  are  shown  in b and c ,  Fig. 2. 
The  energy  carried by these  modes is confined to the vicinity 
of  the guiding  layer 11, and we will, consequently, refer to 

them as confined,  or  guided,  modes.  From  the above discus- 
sion i t  follows that a  necessary  condition for  their  existence is 

that knl , kn3 < /3 < kn2 so that  confined  modes are possible 

only  when n2 > n l  , n 3  ; that is, the  inner layer possesses the 

highest index  of  refraction. 

Mode  solutions  for kn,  < < kn3, regime d ,  correspond 

according to (4) to exponential behavior in region I and to 

sinusoidal  behavior  in  regions I1 and I11 as illustrated  in d ,  Fig. 

2. We will refer to these  modes as substrate  radiation  modes. 

For 0 < /3 < knl ,  as  in e ,  the  solution  for E(x)  becomes  sinus- 

oidal  in all three regions.  These  are the so-called  radiation 

modes of the waveguides. 

A solution  of (4) subject to the  boundary  conditions  at  the 

interfaces given below  shows that while in regimes d and e,  /3 is 

a continuous variable, the values  of  allowed /3 in the  propaga- 

tion regime kn3 < < kn, are discrete. The  number  of  con- 

fined  modes  depends  on  the  width t ,  the  frequency,  and  the 

indices of refraction n l ,  n 2 ,   n 3 .  At  a given wavelength the 
number  of  confined  modes increases  from 0 with  increasing 
t .  At  some t ,  the  mode  TE1  becomes  confined.  Further 

increases in  twill allow TE2 to exist as well, and so on. 

A useful point of view  is one of considering the wave 
propagation  in  the  inner  layer 2 as that  of a  plane wave 

propagating at some angle 8 to the  horizontal axis and under- 

going a series of  total  internal reflections at  the  interfaces 11-1 

and 11-111. This is based on (4b). Assuming a  solution  in  the 

form  of E 0: sin (hx + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY) exp (- ipz), we obtain 

P 2  t h2 = k2n$.  (5 1 

The  resulting  right-angle  triangles with sides /3, h,  and kn, are 

shown  in  Fig. 2. Note  that since the  frequency is constant, 

kn2 f (w/c)n2 is the same for cases b ,  c ,  d ,  and e. The prop- 

agation  can  thus  be  considered  formally as that  of a  plane 

wave along the  direction of the  hypotenuse  with a constant 
propagation  constant kn, . As P decreases, 0 increases until,  at 

p = k n 3 ,  the wave  ceases to be  totally  internally  reflected at 

the  interface 111-11. This  follows  from the fact that  the 

guiding condition 0 > kn3 leads,  using /3 = kn2 cos 0 ,  to 8 < 
c0s-l (n3/n2)  = 8,, where 8, is the  total  internal reflection 

angle at  the  interface  between layers 11-111. Since n3 > n l ,  
total  reflection at  the 11-111 interface  guarantees total  internal 

reflection at  the 1-11 interface. 

We are  now  ready to derive the  mode  solutions  for  the 
general  slab  waveguide shown  in Fig. 1 .  We limit  the deriva- 

tion  to  the guided  modes which, according to Fig. 2 ,  have 
propagation  constants /3 

kn3 < 0 < kn2 

where n3 > n l .  

TE Modes 

The TE modes possess field components Ey , H,, Hz only. 
The field component Ey of  the  mode  obeys  the wave equation 

8 2 E y i ( ~ , y , z ) + ~ 2 ~ ~ o n i 2 E y i = 0 ,  i =  1 , 2 , 3  (6) 

where i refers to  the  layer,  and  the (real) electric field is given 

by 

E y i ( x , y ,  z ,  t )  = Re [Ey j@, y ,   z ) e i u t ] .  
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Fig. 2. Top:  the  different regimes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  b ,  c, d ,  e ,  of the  propagation  constant, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3, of  the waveguide shown in Fig. 1. Middle: 

the field distributions corresponding to the  different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. Bottom:  the  propagation triangles  corresponding to the 
different  propagation regimes. 

For waves propagating  along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz direction  and  for a/ay = 0 
we have 

~ , , ~ ( x , y , z ) =  8,,i(x)e-ifiz. (7) 

The transverse function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&,,i(x) is  taken as 

[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc exp (- 4x), o < x < =  

gY = C[cos (hx) - (4/h) sin (la)], - t < x < o  

C[cos (ht) t (q/h) sin (ht) exp Ip(x t t ) ] ,  

-= < x  < -t. ( 8 )  

Applying (6) to  (8) results  in 

h ( n d k 2  - P 2 ) l / z  

= ( p 2  - n2 2 1 / 2  
l k  1 

= ( p 2  - n2 2 1 /2  
3 k  1 

k w/c. (9) 

The  acceptable  solutions  for E,, and X, = ( i / o p )  (a&,,/ax) 
should  be continuous  at  both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 0 and x = -t. The  choice of 

coefficients  in (8) is such as to make 8,, continuous  at  both 
interfaces as well as @&,,/ax) at x = 0. By imposing the  con- 
tinuity  requirement  on ab,,/aX at x = - t ,  we get from (8) 

h sin (ht) - 4 cos (ht) = p [cos (ht) t (q/h) sin (ht)]  

or 

tan (ht) = 
P + 4  

h(1 - P4/h2) '  

The  last equation  in  conjunction  with (9) is used to  obtain  the 

eigenvalues P for  the  confined  TE  modes. An example  of  such 
a  solution is shown in Fig. 3. 

The constant, C, appearing  in (8) is arbitrary,  yet  for  many 

applications,  especially  those  in  which  propagation  and  ex- 
change  of  power involve more than  one  mode,  it is advanta- 

geous to  define C in such a way that  it is  simply  related to  

total power in  the  mode. This  point will become  clearer 

below. We choose C so that  the field &,, ( x )  in (8) corresponds 
to a power  flow  of 1 W (per unit  width in the y direction)  in 

the  mode. A mode  for which E,, = A 8 , , ( x )  will thus  corre- 
spond to  a  power  flow of [AI2 W/m. The  normalization 
condition  becomes 

when the symbol m  denotes  the  mth confined  TE mode 
[corresponding to the mth eigenvalue of (1 l)] and H, = 
- i ( ~ p O ) - '  aE,,/az. 

Using (8) in (1 1) leads,  after  substantial but straightforward 
calculation, to  

Since the  modes &Sm) are orthogonal we have 
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Fig. 3. Dispersion curves for  the confined  modes  of ZnO on sapphire 
waveguide n 1 = 1. 

TM Modes 

The derivation  of the  confined TM modes is  similar in 
principle to  that of  the  TE  modes.  The field components are 

Hy ( x ,  z ,  t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, ( x )  exp i(ot - ipz) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i aH, 

E , ( x , z , t )  = -  --. 
ax 

The transverse function, X, ( x ) ,  is taken as 

f C[t  cos ( k t )  t sin (ht)  exp p ( x  t t ) ,  1 
x < - t  

( kx )  t sin (kx) , - t<x<O 1 
x > o .  (15) 

The  continuity  of H, and E, at  the  two  interfaces  leads, in 

a manner similar to (IO), to the eigenvalue equation 

where 

The  normalization  constant, C, is chosen so that  the field 

represented by (14) and (1 5 )  carries one watt per unit  width  in 
t hey  direction 

or, using n; E ei/eo, 

Carrying out  the  integration using (1 5) gives 

The  general  properties  of the  TE  and TM mode  solutions  are 

illustrated  in  Fig. 3. In general,  a  mode  becomes  confined 

above  a  certain (cutof0 value of t /h .  At the  cutoff value 
p = 0, the  mode  extends  to x = - 00. For increasing values of 

t /h,  p > 0 ,  and  the  mode  becomes  increasingly  confined to 
layer 2. This is reflected  in  the effective mode  index 2n/@h) 
that,  at  cutoff, is equal to  n 3 ,  and  which,  for large t /h,  ap- 

proaches n 2 ,  In a  symmetric waveguide (nl  = n 3 )  the  lowest 

order  modes  TEo  and TMo have no  cutoff  and are  confined 
for all values of t/h.  The selective excitation  of waveguide 

modes  by  means  of prism couplers  and  a  determination of 

their  propagation  constants 0, are  described  in [3] , [4] . 

111. MODE  COUPLING IN PERIODIC WAVEGUIDES 

In  this  section we will derive the  equations describing mode 

coupling  caused  by  periodic  perturbations.  Before approach- 

ing the  formal  problem we  will consider  some  of the  more 

general and qualitative  aspects  of mode  coupling. 

Coupling Between Modes 

Consider two  different spatial  modes  of the  unperturbed 

waveguide  given by 

Let the  effect of the  perturbation  be represented  by An2(x, 

y ,  z )  which is defined as the difference  between the  squared 

index  of  refraction of the periodic waveguide minus  that  of 

the  uniform waveguide. In  the case of  a  corrugated wave 

An2(x ,  y ,  z) is thus  the spatial function whose value at  each 

point ( x ,  y ,  z )  is equal to the change  in n2 caused  by the 
corrugation. 

It follows from  the basic  relation between  the dielectric 
constant e and  the  index n which is e = eon2,  and  the relation 

between  the  electric field E and  the  medium  polarization 

(dipole moment per unit volume) P that  the field E ,   ( x ,  y ,  
z ,  t )  propagating in  the  perturbed (i.e., periodic) waveguide 
will give rise to  a new perturbation  polarization 

Now if this  field,  acting as a  distributed  source,  can  feed  power 

into  (or  out of) mode E2 ( x ,  y ,  z ,  t ) ,  then we  say that  the 
perturbation A n 2  ( x ,  y ,  z )  couples  (i.e., causes power ex- 
change)  between  modes E ,  and E2 . Let us find,  next,  under 
what  conditions  this  coupling  takes  place. 

The  power per unit volume  flowing into  the field E2 from 
the  polarization source Ppert is 
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averaging the  power  flow over one  optical  period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT =  2nfw we 

obtain, using (19) in (22), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 n / w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w 
PI  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ z(t)/vol dt 

(24) 

The  source  of  this  power  flow  is,  of  course,  the  power  of  mode 

1. It is not  surprising  that  a similar calculation  for  the  power 

flow into mode  1  (here we take AP = eoAn2Ez) yields 

pz+ l /Vo l=   -p1+2/v01,  (25) 

so that, in the  absence of gain or  losses, the  total  power is 

conserved.  Power  fed via the  perturbation  into  mode 1 
originates  in  mode 2 and vice versa. 

The  total  power  flowing  into  mode 2 from  mode  1 is ob- 

tained  by  integrating  the  power  density as  given by  (24) over 

all space 

space 

. exp i ( p 2  - p l ) z ]   d x  dy dz. (2 6) 

In  the  periodic  structures  which are considered  in  this  article 

the  direction of periodicity is taken along the  direction  of 

propagation z .  Since An2(x ,  y ,  z )  is periodic in z we can 

expand  it  in general as a  Fourier series 

A n z ( x , y , z ) =  aI(x,y)exp 
I = - -  

where A is the  period. By substituting this  expression  into 

(26) and  integrating over a  distance z large compared to A we 

find  that  a  necessary  condition  for  power  flow, i.e., for  non- 
vanishing of  the integral is that 

for  some  integer 1. This  happens when 

Condition  (29) is  of fundamental  importance  and we will 

refer to  it as “longitudinal phase matching”  or  just as phase 
matching. We note  that  the  coupling  between  modes  1  and  2 

is brought  about  by  the  lth  Fourier  harmonic  of  the spatial 
perturbation  (27).  It  would  thus  follow  naturally  that  the 

strength  of this  coupling will depend  on al and will vanish 

altogether  when  aI = 0. This  situation is analogous to  the case 

in X-ray diffraction where certain  diffraction  orders  may  be 

missing in a given crystal class although  the  appropriate 
Bragg condition  [equivalent to our  condition  (29)] is satisfied. 

The  second  condition  necessary to ensure  power  flow P 1 + 2  

is that  the transverse part  of  the integral  (26) be nonvanishing, 

i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An2(x,y,z)fT(x,y)-fi(x,y)dxdy#0. (30) 

section 
cross 

The integral (30) is  referred  to as the  transverse  overlap 

integral and  the  integrand is essentially the  product  of  the 

transverse  profiles  of  the  two  interacting  modes  and  the  per- 
turbation  which  couples  them. If the phase matching is 
achieved via the  lth space harmonic  (i.e.,  (29)  is  satisfied)  then 

the  relevant  part of (30) is 

/- a I ( ~ > Y ) f ’ T . I z ( x , Y >  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx d Y f O >  (3 1) 
cross 

section 

i.e., only  the  transverse field distribution of the  phase-matched 

harmonic (1) figures in the  overlap  integral. 

A number  of  situations  occur  in  practice  which  may  require 

a slight  generalization of condition  (31).  These involve a 
periodic  index  perturbation  due to  the  photoelastic,  electro- 

optic,  or  magnetooptic effects. In this case condition (31) is 

replaced  by an obvious  tensorial  extension [5] . Another 

interesting case is one  in  which  the  Perturbation is periodic 

in  time as  well  as in space.  In  this case the  requLement  that 

the  time-averaged  power  flow  be  nonvanishing is satisfied 

only  when  the  modes’  frequencies w1 - wz satisfy w1 - w z  = 
+i2 where i2 is the  frequency  of  the  perturbation. 

The general properties  of  mode  coupling  considered  above 

are of  great  importance in the sense that  they  can  be used to 

determine  what processes can take place and  what  kind of 

perturbation is needed to couple  a given pair of modes. We 

will demonstrate this  point  by  a  number of examples. 

Let us assume that we need to couple  together  a  forward 

guided  mode  with  a  spatial  propagation  factor exp ( - ipz )  to  a 

backward wave  of the same  mode description, i.e.,  one 

propagating as exp ( ipz). It  follows  from  (29)  that  the spatial 

perturbation  period A needs to  satisfy 

211 

A 
p 1  - 6 2  =2p=1-- ,  (3  2) 

or since 0 = 2n/hg, where hg is the  mode  wavelength  in  the 
guide, 

A = 1 - 8 ~ 1 -  h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
(33) 

2  2neff’ 

where 1 = 1,  2, . . * is some  integer. As noted  above,  condition 
(33) is necessary  but  not  sufficient. As a matter of fact we 

will consider  later  in  this  article  a case of  a  symmetric  square 
wave corrugation  where  the  second-order  coupling (1 = 2) 
vanishes, since az = 0. 
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A  phase-matching diagram illustrating  condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(32) is 
shown in  Fig.  4(a). 

As a  second  example  consider  the  problem  of designing a 

grating  coupler [6] for  coupling  from  a  guided  confined  mode 

with  a  propagation  constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 to a  radiation  mode  (i.e.,  a 

mode of type e in Fig. 2)  which escapes at  an angle 6 into  the 

semi-infinite upper layer  with index n1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. The  situation is 

illustrated  in  Fig.  4(b).  The wave in  medium 1 has  the  form of 

E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa exp [ -i- o:~ (z cos e t x sin 6 )  1 (3 4) 

as appropriate to a  plane wave with  a  wavelength h/nl prop- 

agating at an  angle 0 to  the z axis. 
The grating,  which  may be corrugated  into one  of the  two 

interfaces  must,  according to (29), have a  period A satisfying 

/coupled intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p -  ccose=z-- ,  o n  1 2n z=a1,*2, . - .  . (b) 
(35) A 

Using the relation /3 = 271/Xg and h = c/f (A is the free-space x 
wavelength, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is the  frequency) we can  rewrite (35) in  a some- 

what  more  convenient  form 
LA-; 

COS 81 

As a  third ~Xample, which is not related to waveguiding Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Longitudinal phase  matching  diagram  illustrating the applica- 

phenomena  but  demonstrates  the power  of the general p i n -  tion of (29) to a number of periodic devices. (a)  Corrugated wave- 

diffraction  grating as illustrated  in Fig. 4(c). 

of  period A. We need to find  the  reflection angle 6 2 .  We 
apply the longitudinal  phase-matching  condition (29) replacing v ~ E ( T ~ )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApeO at2 a2E -+ at2 a2 P ( ~ ,  t )  
the  longitudinal  propagation  constant /3 by  k  cos 6.  The result 

ciples  derived above,  let us consider  the  problem of the  planar guide  reflector. (b) Corrugated waveguide Output co’@er. (c) 
Diffraction  grating. 

An optical  plane wave  is incident at angle e l  on  a grating  such  a waveguide is 

(3 8) 

where P, the  total  polarization  vector  in  the  medium,  can  be 

written as 

P(r ,  t )  = eo [n2 ( r )  f An2 ( r )  - 11 E(r, t). (39) 

or using k = o / c  = 2n/A (since in air zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 1) Using (39) in (38) and recognizing that eon2 ( r )  is the dielec- 

1 1 

h A 

tric  constant e(r )  of  the  unperturbed waveguide we arrive at 

- (cos e l  - cos e, )  = -. (3 7) a2 
V2E, - pe  ( r )  3 = peO at2 An2 (r)E,(r, t )  (40) 

The  different  integers I = 0, +1, +2 for  which lcos O 2  I < 1 

correspond to  the various  orders  of the  grating.  Anybody  who  and  similar  equations  for H, and H z .  
had occasion to derive the grating equation (37) using path Limiting our  attention to coupling  between  confined  modes 
difference  arguments will appreciate  the simplicity of  the  only  (is.,  not involving the  radiation  modes  type d and e in 
phase-matching  approach.  Fig. 2)  we expand  the  total field Ey (r, t )  in (40) as 

The Coupled-Mode Equations E, (r,  t )  = - 1 A ~ ( Z ) E $ ) ( X )  exp i(wt - pmz) t C.C. 

modes  and  describing  in the early  part  of  this  section  the 

qualitative  nature of mode  coupling, we  derive next  the 
coupled-mode  formalism  for  treating  mode  coupling  by  a  where m indicates the  mth discrete  eigenmode of (40), which 

periodic index  perturbation. satisfies 

The physical  situation is that  of  a slab dielectric waveguide 
whose  spatial  distribution  of  index of refraction is n2 (r).  The ($ - pk) @)(r )  f w”e(r)&jYP”’(r) = 0. (42) 
waveguide is next  perturbed  by  a spatial  periodic index 
modulation An2 (x, y,  z).  Maxwell’s propagation  equation in  Substitution of (41) in (40) and using Q2 = - p 2  t a2/ax2 

Having set  the stage by deriving in  Section I1 the waveguide 2 m  

(41) 
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leads to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
at 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 7 (eo An2Ey (r, t)). (43) 

First we note  that  in view of (42),  the sum of the  first  three 

terms  in  (43) is zero. We assume "slow" variation so that 

and  obtain  from  (43) 

- iom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 gj.,) exp i (wt - 0,z) + C.C. 

= -w2peo An2 . E, (r, t ) .  (44) 

We next  take  the  product of  (44)  with & y ) ( x )  and  integrate 

from --M to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. The  result,  using (13) is 

dAm 

m 

dA$-)  dA$+) 
exp i (wt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt &z)  - ~ exp i (wt  - & z )  - C.C. 

dz dz  

- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn2 (x,  z)E,,(x, z ,  t )&P)(x)  dx (45) 

where we recall that  the  summation over m in  (44)  contains 

two  terms involving ~ L $ ~ ) ( X )  for  each value of m-one, desig- 

nated as (-), traveling  in the -z direction,  and  the  other (t), 

traveling  in the t z  direction. 

Equation  (45) is the  starting  point for the treatment of 

mode coupling  in  periodic  waveguides. 

2 -m 

The Coupled-Mode Equations for Periodic  Waveguides 

Consider  a  dielectric wave with  a  corrugated  interface  such 

as shown  in  Fig. 5 .  The deviation of the spatial  distribution of 
n2(r )  due to  the  corrugation  from  that of the  uniform wave- 

guide is represented  by An2(x,  z )  in (45). If  we expand 

E,  (x,  z ,  t )  in  (45)  in  terms of waveguide modes 

E, ( x ,  z ,  t )  = - E$,~)(x) exp i (wt - p,z) t c.c., 
Am 

2 m 

we obtain 

dA$-) dA$+) 
exp i ( o t  t &z)  - - exp i(wt - P,z) - C.C. 

dz dz  

2 . 0  z = L  
I I 
I I 
I I "' 

x=o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x=-a _ _ _ _  

"2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x = - 1  

"3 

Fig. 5 .  Corrugated  periodic waveguide. 

We may  consider the right side of (46) as  a  source term 

driving the forward wave A$+) exp [ i(wt - &z) ]  and  the  back- 

ward wave A$- )  exp [ i(wt t P,z)]. In  order  for  a wave to  be 

driven by  a source it is necessary that  both  the wave and the 

source  have the same  frequency so that  the  interaction will not 
average out  to zero over a  long  time  (long compared to  a 
period  of  their  difference  frequency).  Since  in  our case 

An2 (x ,  z )  does not  depend  on t this condition is satisfied. 

Equally important:  both source and  term  must have  nearly the 

same  phase  dependence  exp ( ipz) so that  the  interaction does 

not average out  to zero  with  distance  of  propagation z .  If,  for 

example,  it is desired that  the forward wave A:') exp [ i ( o t  - 
& z ) ]  be  excited,  it is necessary that  at least  one term on the 

right  side  of  (46), say the  lth  one, vary as exp [ i(wt - Pz)] 
with j3 x p,. If no  other  terms  on  the right  side  of  (46)  satisfy 

this  condition, we simplify  -the  equation  by  keeping  only the 
lth  on  the  right. We describe  this  situation by saying that  the 

perturbation An2 ( x ,  z )  couples the  forward (ts) mode to  the 

lth  mode and vice versa. 
To be specific, let  us assume that  the period A of  the  per- 

turbation n2 ( x ,  z )  is so chosen that ln/A = & for  some  integer 
1. We can  expand An2  (x,  z )  as 

An2  (x ,  z )  = An2 ( x )  a4 exp [ i(2qn/A)z] (47) 
-m 

An2(x ,  z )  = a,(x) exp 
m 

-m 

The  right  side  of  (46) now contains a term (q = 1 ,  m = s) 

proportional to  Ai') exp [i(2ln/A - &)z] . But A was chosen 

above  such that 

so that  this  term is capable  of  driving  synchronously  the  ampli- 
tude A$-)  exp ( i&z) on  the  left side of  (46)  with  the result 

exp i [(2Zn/A) - 2&] z .  (49) 

The  coupling between  the backward A$-)  and  the  forward 
A$+) by  the  harmonic q ( x )  of the  corrugation can thus  be 

described by 
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and,  reciprocally, 

We note  that  the  total  power carried  by both  modes is con- 

served  since 

(5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 )  

Let us consider the specific  “square wave” corrugation  of Fig. 
5.  In  this case the  periodicity  (period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A) in the z  direction is 

accounted  for  by  taking 

A n 2 ( x , z ) = ~ a l ( x ) e x p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-co 

1 

3 
t - s i n 3 q z + . . .  

where 

n; - n:, - a < x < ~  
An2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) = 

(5 4) 

operation is sufficiently  above  propagation cutoff, t(n2 - 
n3)/sh >> 1 so that  from (9) and (10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnzk 

77s 
h, + - s = 1 , 2 ,  . . * = transverse mode  number 

t ’  

In  addition, since qs >> h,, we have,  from  (12) 

in the  well-confined  regime,  and  for h,a << 1 the integral 
(58) becomes 

elsewhere  The  complicated physical problem  of  mode  coupling  in  a 

corrugated waveguide has  thus  been  reduced to a pair of 

(55) coupled  differential  equations (50) and  an  expression  (60) 
q z 2n/A. 

For even 1, al is zero.  For 1 odd we obtain  from (51) and (54) for  the coupling constant. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K =- An2(x)[&p)(x)]2 dx. 

- O E O  

4771 -co 

Coupled-Mode Solutions 

(56) Let us return  to  the  coupled-mode  equations (50). For 

simplicity  let us put  the  amplitude of the reflected mode 
In  practice the  period A is chosen SO that, for  some  partic- A$-)  E A ,   A $ + )  G B  and write them as 

ular I, Ap e 0. We note  that  for AD = 0 

dB 

d Z  
where h f ) =  27r/P, is the guide wavelength  of the  sth  mode. 

the  integration  of  (56)  Consider  a waveguide with  a  corrugated  section  of  length 
L as in Fig. 6. A wave with an amplitude B(0) is incident 

from  the  left  on  the  corrugated  section. J An2(x) [€$)(x)] dx = (nz - n?)  / [8$)(x)l dx The  solution  of  (61)  in  this case subject to A(L)  = 0, i.e., 

-- - K,*b A eXp [ti2(Ap)z] . (6 1) 

We can  now use the field  expansion (8) plus (55) to  perform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 0 

-m -a no reflected wave at  the  output  of  the  periodic  section, is [7] 

3 
. sinh [S(Z - L ) ]  

- 4. sin (h,x) dx. (58) 

Although  the  integral can  be  calculated exactly using (8) and 
(lo), an especially  simple  result  follows  if we consider that {AD sinh [S(z - L) ]  t iS cosh [S(z - L ) }  

hS B(z)e-iflz = B exp (- iPoz) 
(O) -AB  sinh (SL) t iS cosh (SL) (62) 
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I 
Perturbed 
section of 

1 
I 

waveguide I 
1 
I 

x = o  
x = -a 

x = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-t  I 
I I 
I 

173 Substrate I 
I I 

Perturbation 
causes mode 
coupling here 

PERTURBATION  REGION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = o  2 ,= L 

Fig. 6 .  Upper: Corrugated section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a dielectric waveguide. Lower: 
Incident and reflected  fields. 

-_ 

Under  phase-matching conditions Ap = 0 we have 

A (z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB(0) ( y )  
B(z) = B(0) 

sinh [ K ( Z  - L ) ]  
cosh ( K L )  

cosh  [K(Z - L ) ]  
cosh (KL) * 

semiconductors  where  the  periodic  crystal  potential causes the 

electron  propagation  constants to become  complex.  Note  that 

for each value of E ,  E = 1, 2 ,  3, . . . , there  exists  a  gap  whose 
(63) center  frequency wo satisfies p(oo  = h / A .  The  exceptions 

are values of E for  which K is zero.  Returning to (65) and 

approximating p(w) near its Bragg  value (d/A) by p(w) 
(o l c )ne f f ,  where n e f f  is  an  effective index of refraction, we 
have 

A plot  of  the  mode powers IB(z)12 and IA(z)12 for  this case 

is shown  in Fig. 6.  For  sufficiently large arguments of the 

hyperbolic  cosine  and  hyperbolic sine functions  in (64), the 

incident  mode  power  drops  off  exponentially  along  the 

perturbation region.  This  behavior,  however, is due,  not to 

absorption,  but  to reflection of  power into  the backward 
traveling mode, A ,  as shown  in  the figure. 

From (41) and (62)  we find  that  the  z-dependent  part  of  the 
wave solutions in  the  periodic waveguide is an  exponential 

with  propagation  constant 

(64) P = - 
A 

where w o ,  the midgap frequency, is the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo for  which 

the  unperturbed p is equal to Po h / A .  
A plot of Re P’ and  Im zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0’ for ( I  = 1) versus o, based on (66), 

is shown  in  Fig. 7. We note  that  the  height  of  the  “fdrbidden” 

frequency  zone is 

where K is,  according to (61), a function  of  the  order I .  It 
follows from (65) that 

En 
A 

p’ = po zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf: is = --f idK2 - [p(w) - p 0 ] 2  (65) = K = coupling  coefficient. 

A short  section of a corrugated waveguide thus  acts as a 
where we used Ab /3 - P o ,  Po nl/A. high-reflectivity mirror  for  frequencies  near  the Bragg 

K ,  p’ has  an imaginary part. This is the so-called “forbidden” Having derived the waveguide modes  (Section 11), and the 
region in  which  the evanescence  behavior  shown  in  Fig. 6 coupling  formalism  (Section 111), we are  now  ready to apply 
occurs  and  which is formally  analogous to  the energy gap in them to some  specific cases. 

We note  that  for a range of  frequencies  such  that Ap(o)  < value, u0. 
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iaser beam 

Refractlve  lndex of wave gulde: 

Refractwe Index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof substrate: 
" 3  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.4 

kOA Perlodiclty: A arbitrary 

I I  1 1  I I I I I *  
3.15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.20  

Re ( P A )  

Fig. 7.  The dispersion  characteristics, Le., the  real  and imaginary parts 
of the propagation constant p as a function  of  frequency  in a  periodic 
waveguide. 

IV. FABRICATION OF SURFACE CORRUGATIONS 

The  periods of surface  corrugations  of  interest  in  optical 

devices vary  from as low as -0.12  pm  for GaAs DFB lasers to 

tens of microns  for  phase  matching  of 10.6-pm second  har- 

monic  generation  in  GaAs.  For  corrugation  periods  longer 
than of the  order  of a few microns,  conventional  photolithog- 

raphy  techniques are  used for  making  a  photoresist  mask. 

For  corrugation  periods  shorter  than - 1 pm, grating  masks 

are  usually  produced by laser holographic  techniques [6] ,  
[8] -[ 1 11, or  by  electron  beam  lithography [ 121 . In  the laser 

holographic  techniques, the surface  of the guiding layer is 

spin-coated  with  a  photosensitive resist material  (typically, 
Shipley  1350,  13505). Argon laser (4580-8 line)  or  He-Cd 

laser (4561-8  or  3250-8 line)  beams  from  a common source 
are  projected onto  the  photoresist  at  an angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 as shown  in 

Fig. 8. The  interference  of these two  beams causes an  expo- 

sure  with  a  sinusoidal  intensity  variation  across  the  surface 

with a  period of A = hl/2 sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa where hl is the laser wave- 

length. By adjusting  the  exposure  and  development  param- 
eters  a  photoresist  grating  mask  remains  on  the  surface  of  the 

substrate  [Fig.  51.  The  shortest  period achievable by this 

method is h,/2. A further  reduction  of  the  corrugation  period 

is obtained  by  exposing  the  photoresist in  a  high-index 

material [ i 31 , [ 141 , as shown  in  Fig. 9. In  this  method, laser 

beams  are  projected through a high-quality  quartz prism.  In 

this case the grating  period is A = hl/2np sin a', where np is 
the refractive index of the prism material (np 1.51  for 
quartz),  and a' is the  internal incidence  angle. For a near 90°, 
periods  approaching  0.1  1 pm can be produced using a 3250-8 

He-Cd laser. In the  method  illustrated  by Fig. 9, index 

matching oil such as xylene was  used between  the prism and 
the  photoresist  layer  to increase the optical  exposure. 

The  substrate surface  can  be  corrugated by  ion milling or  by 

chemical  etching through  the  photoresist  mask as described 
above. In the  ion milling,  a  broad-area  argon ion  beam is used 

to  etch grooves into  the substrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8] , [15] . The  argon ions 
are  accelerated at 0.6-5 keV.  The milling process  occurs 
essentially through  the  transfer  of  momentum  by  the  im- 
pinging ions to  atoms  on  the surface of  the  material.  The  ion 

x* 

photoresist 

(b) 

Fig. 8. A holographic setup  for grating fabrication. (a)  Exposure  of 
photoresist  by  contradirectional laser beam derived from a common 
source. (b) Photoresist mask after development. 

He-Cd 
laser 

lrnmerslon Oil 

Fig. 9. A photographic  exposure  method  for  short period [ 4 ] .  

milling yield is a function of the beam  energy, mass numbers 
of  incident  atoms  and  target  atoms,  etc.  Typical milling rates 

are given in [15]  and  [16] . 
Surface  corrugations  produced  in GaAs are  shown  in Figs. 10 

and  11. In Fig. 10, a  0.41-pm  pattern was etched  to a depth 

of 0.12 pm  into  the surface of GaAs [SI . Fig. 11 shows  a 
grating  with  a  period  of  0.12 pm in GaAs, where the  depth was 
-0.05 pm [ 141. 

Substrate surfaces  can also  be corrugated  by  chemical 

etching.  In  semiconductors,  for  example,  in Si and  GaAs, 

selective etching is a  chemical  technique  which  can be utilized 

to make  well-defined grooves [17]  -[19]. The usefulness of 

this  method originates  from the preferential  etching  habit  of 

such single crystals.  Fig.  12  shows  the basic  groove profiles 

that can be  obtained  when  the  (100) surface  of  GaAs is 

preferentially  etched  through  a  slotted  photoresist  mask. In 

both  directions  of  the  mask,  the groove  walls correspond to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A {I 11 } crystallographic  planes. These planes are selected 

because the  etching  rate  for A (1 11) planes is much slower 
than  that  for  any  other  low-index planes. If the  slotted mask 
is in the (0 1 i) direction, V-shaped grooves are  easily produced 

[20] - [22] . Fig. 13 shows SEM photographs  of  the  corrugated 
GaAs surface  made by  the  preferential  etching  technique,  with 

grating  lines aligned along the  [Oli]  direction, and having a 
profie as shown  in Fig. 12. 

V. REFLECTION FILTERS 

A corrugated  section of a  dielectric waveguide acts as a 

reflection  filter  [7]  for  frequencies  near  the  forbidden gaps of 
the  structure  where A e lh,/2, since only  at these  frequencies 

do  the reflections  from the  corrugations  build  up  in  phase. 
This  can  be  demonstrated if we plot  the power  reflection 
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resist  mask. 

Fig. 11. An 0.12-pm-period  grating  in  GaAs. 

Fig.  14.  The transmission  and  reflection  coefficients  of  a  corrugated 
section  of  a  waveguide  of  length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL as  a function  of  the  detuning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApL 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- wo)Ln,ff /c] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(KL = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.84). 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACorrugation gratlng, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 12. Basic groove  types-observed  when (100) faces  of  GaAs  are 
selectively etched.  The (011) and  (011) faces are cleaved  planes [20]. 

Wavelength (A1 
Dewatlon 

Fig. 15.  Illustration of corrugation  filter  in  a  thin-film  waveguide,  plot 
(solid  line) of reflectivity  of  filter  versus  wavelength  deviation  from 

Fig. 13. A GaAs  grating  made  by  chemical  etching.  The  grating  period the Bragg condition,  and calculated  response  of  filter (dotted  line) 
is 3470 A [21]. IA(0)/B(O)12 using (62 )  (after [23]). 

IA(0)/B(O)12 obtained  from  the first of  (62) as a function  of  VI. DISTRIBUTED FEEDBACK LASERS 
(in Practice Afl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 0 - nl/A can be varied by varying the Lasers in  which  the  feedback is provided by a  periodic 

frequency).  The  result is &own  in  Fig. 14. Note  that, perturbation  rather  than  by  reflectors are known as  distributed 
according to (62),  the  maximum  reflection Coefficient obtains feedback (DFB) lasers [24] . In what  follows we will show 
at Ap = 0, i.e., the center  of  the  forbidden “gap”  and is how this  form of laser oscillation can be treated  within  the 

framework of our  theory  and describe  some types  of DFB 
R = tanh’ (I K IL) lasers. 

and  can thus  approach  unity  for I K  IL >> 1. Threshold Condition 

waveguides [23] . The  surface  corrugation was fabricated  by  mode equations (61) are replaced  by 
the holographic  exposure  technique and  ion milling as  de- 

scribed in  the previous section, Fig. 15 is the illustration of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe = K ~ - i 2 ( A p ) ~  - 

corrugated  filter  in  a  thin-film glass  waveguide. The solid  line dz 
denotes  the  experimental  result,  and  the dashed  line is the cal- 
culated  reflectivity. The  agreement  between  measured  and -- dB - K*A exp i2(Afl)z +gB, 

dz (68) 
calculated values  is excellent  in  this  example.  Filters  with 

3-dB  bandwidth  of less than 2 a and reflectivities  greater than  where g is the  exponential gain constant  of  the  unperturbed 
75 percent were  achieved in  this  structure.  medium.  In  terms  of  mode  amplitudes 2(z) and g(z) defined 

Brag  reflection  filters  were  fabricated using sputtered glass If a corrugated  guiding  medium possesses gain,  the coupled 

gA, 
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by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z(z)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A(z)e+g”, 

&z) = B(z)e-g“ ; 

equations (68) become 
.̂ 

d A  
- = KZ exp [- i2(Ap + ig)z] , 
dz 

- _  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd’ - K*zexp [ i2(Ap + ig)z] . 
dz 

Equations (69) become  identical to (61) if we replace Ap+ 
A0 + ig. With this  substitution, we can then use (62) to  obtain 

the  solutions  for  the  complex field component E,,(z) = g ( z )  
exp [(- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi o  + g)z]  t z ( z )  exp [(ip - g)z]  in  the periodic  section 

of length L .  Assuming an  input  incident field of B(0) at z = 0 ,  
as shown  in Fig. 16, the  solutions  of (69) for  the  forward wave 

Ei exp [(- ip + g)z] and the  backward wave E,. r i  exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[(io - g)zl are 

Ei(z) = 

B(O) 
e-ipOz {(g - iAp) sinh [y(L - z) ]  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy cosh [y(L - z) ]  } 

(g - iAp) sinh ( yL )  - y cosh ( yL )  

where 

y2 = I K ~ ’  f (g  - iA0)2. (71) 

The fact that y is now  complex  makes  for  a  qualitative 

difference  between  the  behavior  of  the passive periodic  wave- 

guide (62) and  the periodic waveguide with gain (70). In (70), 
the  amplitude  ratios Ei(L)/B(0) and E,.(O)/B(O) become 

infinite  when  the  condition 

(g - iAp) sinh ( y L )  = cosh (yL)  (72) 

is satisfied.  This  corresponds to finite  output fields E,(O) and 

Ei(L) with  no  input (B(0) = 0). The device then  acts as an 

oscillator,  and (72) is the  threshold  condition  for  DFB lasers 

[26] , [ 28 ] .  It can  be written as 

(73) 

The  reflection gain IE,(O)/Ei(O)I and  the  transmission gain 

IEi(L)/Ei(0)12 are plotted in Figs. 17 and 18, respectively. 
Each plot contains  four  infinite gain singularities at which 

the oscillation condition (73) is satisfied [28] . These  are four 

of  the  longitudinal laser modes. It should  be noted  that  the 
longitudinal  mode  closest to  the Bragg frequency wo has  the 
lowest  threshold  gain.  This  fact  means  that  DFB lasers have 

longitudinal  mode  selectivity. 
In  general, one  has to resort to a  numerical  solution to 

obtain  the  threshold values of AD and g for oscillation. In 
some  limiting  cases,  however, we can obtain  approximate 
solutions.  In  the high-gain g case with  index  modulation, 
equation (73) becomes 

(74) 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Substrate I 

I. 

Fig. 16. The incident and reflected  fields inside an amplifying  periodic 
waveguide near the Bragg condition p = n/h. 

Equating  the phases on  both sides  of (74) results  in 

n=0,+1,*2; . . ,   (75)  

where n denotes  the  longitudinal  mode. Since Ap z p - PO N 

(W - wg)neff/C, 

We note  that  no oscillation  takes  place at  the Bragg frequency 

wO . The  mode  frequency  spacing is 

77C 

(77) 

and is approximately  the same as in  a  Fabry-Perot  resonator. 

The  threshold gain  value  is obtained  from  the  amplitude 

equality  in (74), 

indicating an increase  in  threshold with increasing mode 

number n. 
In  the  limit of low gain g << K ,  we have from (73 j 

Ap = K  (79) 

and 

gL = (;T. 
Numerical  solutions of (72) were given in  many references 

[24] - [29] . 

DFB Dye Lasers 

Laser action was first  demonstrated  in  dye lasers [30]  -[38] . 
Kogelnik et al. [30] demonstrated  a  DFB  dye laser in  a  gelatin 
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Fig. 17. 
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Fig. 18. Transmission gain contours in the ApL - y L  plane  for  a  periodic  waveguide  with KL = 0.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
film  as shown  in Fig. 19. The  laser was 10 mm long  and about 

0.1 mm wide.  The  gelatin was dichromated  and  exposed to  
the  interference  pattern  produced by two  coherent beams 

from an He-Cd laser.  The  period was -0.3  pm. The  develop- 
ment of the gelatin  resulted in  a spatial  modulation of the 

refractive index.  The developed  gelatin was soaked  in  a  solu- 

tion of rhodamine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6G. The  dye was pumped  by  a  nitrogen 

laser beam, and  laser  oscillation was observed  at  a  wavelength 
of -0.63 pm, with  a  linewidth  of less than 0.5 8. 

The  frequency  selectivity  in  DFB  lasers was clearly demon- 

strated by changing the period of modulation as shown in Fig. 

20 [31]. In this  experiment,  the 0.347-pm-wavelength  beam 

was split  with  a  beam  splitter into  two nearly  equal  parts, and 

recombined at  the  rhodamine 6G dye cell,  resulting  in the 
periodic modulation of gain (and  refractive  index)  in the  dye. 

The lasing  wavelength h was found  to satisfy  the Bragg 

condition 

h = neff &,/sin B (8 1? 

where X, is the wavelength  of the  pumping.light  and B is the 

incident  angle.  The  laser  showed single longitudinal  mode 
operation with  a  linewidth  of -0.01 8 at  low  excitation levels. 

The  threshold gain of DFB  dye  lasers was examined  by using 
corrugated waveguide structures  [9] , [38] . The  threshold 

gain g is in agreement  with (80) 

gL X (?T/KL)'. (82) 

The  pumping intensity I, and the resulting gain constant g 

are  related by 

OUTPUT 
LASER 

GLASS  SUBSTRATE 

-L- 

Fig. 19. Cross section of a  DFB laser consisting of  dyed  gelatin  on  a 
glass substrate [35]. 

OUTPUT 

OUTPUT 

Fig. 20. Schematic diagram of tunable DFB dye laser [36]. 

g = GI,, 

where G is the gain coefficient of the  medium. The  threshold 

pumping I, is thus given by 

gtot = &loss + (n/kI2 / L 3  = GIpt ,  (8 3) 

where q o S s  is the loss constant of the waveguide.  The corru- 
gated  dye  laser was pumped  at right angles to  the plane  of the 
fdm by  a  pulsed Nz laser.  The  threshold pump  intensity Ip t  
was measured  as  a function of the pumping  length L and 
shown in Fig. 21. The intercept on the  ordinate (L + -) gives 
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Fig. 21. Threshold pump  intensity as  a function of pumped region. 
The straight lines are  the  expected  dependence  (32) [ 111 . 

the  intrinsic loss of  the guided mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc q o S s ,  while the slope  of 

the curve  depends  on  the  coupling  constant IC .  The  data are  in 

reasonable  agreement with  the  theoretical  dependence as given 

by (83). The gain coefficient G in  (83)  was  determined  from 

the measurements  of amplified spontaneous emission  1411, 

and G 25-55 dB/cm. Using these values and  the  slopes  in 

Fig. 21, the  coupling  constant K was estimated to range from 

12 to 780 cm-’,  which agreed  well with  the  theoretical values. 

DFB Semiconductor Lasers 
The  most  important  application of the  DFB principle is 

probably  in  the case of  semiconductor  injection  lasers.  This 
is due to the  important role these lasers play in  optical  com- 

munication  and to  the fact  that  the use of  DFB  offers  the  first 

viable solution to  controlling  selectively  their output spec- 

trum.  In  addition  the  corrugation  techniques developed for 

these lasers are consistent  with  semiconductor  planar  pro- 

cessing and  with  integrated  optical  circuits. 

The first  experiments were performed  on GaAs surface- 

corrugated  samples  pumped  optically  [39]  -[41] . A schematic 

structure  of a DFB GaAs surface laser is shown  in  Fig. 22. 

Surface  corrugations  with  a  period  of  0.1 15 pm (first  order)  or 

0.345  pm (third  order)  were  fabricated by photographic 

photolithography  and  ion milling,  and the GaAs surface was 

pumped by  ruby laser beams [39]  and  dye laser beams [40],  

[41].  Lasing occurred  with  a  threshold  pumping  intensity of 
lo4 W/cm2 at 77 K. The  threshold  power gain 2gtOt was 

estimated to  be 100 cm-’  as shown  in  Fig. 23  [40].  The 
threshold gain  was obtained assuming  a  linear  dependence  of 
the  exponential gain constant  on  the  pumping  density as in 

(83). The  constant G was estimated to  be - 5  cm/kW  from  the 
gain measurement.  In  Fig. 23, the solid line  denotes  the 
theoretical value calculated  from  (72)  for K = 1.93 cm-’ and 

aloSs = 15 cm-‘ which were obtained  from  other  experiments. 
Injection lasers with  corrugated  interface  were  made in single 

heterostructure  [42],  [43]  homostructure,  and  double  hetero- 
structure  [44]  -[46] , and  operated at low  temperatures. In 

the single heterostructure  and  double  heterostructure lasers,  an 
additional GaAlAs layer was regrown on a  corrugated  surface 
of a GaAs layer.  The  emission  spectra  of  a  typical  injection 

Pumping Beam 

LA Ga,i 

Fig. 22.  Schematic  structure of a GaAs DFB laser. A - 0.35  pm  [45], 
[46]  and -0.11 pm [ 4 ] .  

Fig. 23.  Threshold gain of a DFB GaAs laser 2gtot as a function of the 
excitation length L [ 461 . 

laser are shown  in Fig. 24.  The period  of the  corrugation is 

3470 8, the  length  of  the  active  region is 1050 pm,  and  the 

threshold  current  density is 750 A/cm2  at 80 K. Just  above 

threshold  (390  mA),  a  narrow  peak of stimulated emission is 

shown at 8225 8. The  linewidth  of  the  stimulated emission 

was ~ 0 . 5  8. Diodes lased usually  in  a single longitudinal 

mode  up to twice  the  threshold  pumping.  Fig.  25  shows  the 

spectrum  of a  typical  double  heterostructure laser as a func- 

tion  of  temperature. In this  experiment,  the  current was 

chosen to be  about - 1.05  times  the  threshold.  In Fig. 25,  the 

peak  wavelength  of spontaneous emission  shifts more rapidly 

than  the peak of the  stimulated  emission.  The  temperature 

dependence  of  the lasing wavelength is  given, according to  the 

Bragg condition,  by 

where 

With Aeff  ~ 4 . 5 ,  an,&T= 3 X 10-4/degrees  [47] , we  have 
dh/dT-O.6 Aldegrees,  which agrees  well with  the  experi- 

mental results  shown  in Fig. 25.  The  peak  wavelength of 

the  spontaneous emission, on  the  other  hand,  shifts (see  Fig. 
27)  at a  rate  of -2 8ldegrees  at  -100 K [21] which is 
essentially the  shift of the  energy gap (expressed in equivalent 
wavelength)  as  a function of temperature. 

The  problem  inherent  in  the above DFB semiconductor 
diode  lasers was the  steep increase of threshold  current 
density at  higher  temperatures.  It was found  that  the fabrica- 

tion of a  grating  on the active  layer  caused  interface  recom- 
bination  centers  which  increased  the  threshold  current  density 
substantially at higher temperatures  [48] . This  problem  has 
been  overcome by adopting  separate  confinement  hetero- 
structures (SCH) [49] -[51] . An example  of SCH corrugated 
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Fig. 24.  The emission  spectra of a typical  DFB GaAs injection laser. 

The period and  the  depth  of  the corrugation are 3470 A and 1800 A, 
respectively. The  threshold  current  density is 750  A/cm2  at 80 K 

122A-5-6P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-it- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

145 K 

8000 8100 8200 

Wavelength ( A ) 

Fig. 25. Temperature  dependence of the emission spectrum of  a  DFB 
GaAs injection laser. The  current is chosen to be - 1 .OS times  the 
threshold  for  each  temperature [21]. 

waveguides  is shown  in  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26. In  this  structure  the  injected 

electrons  are  confined to  the p-GaAs active  layer, while the 

mode  profile  extends to the p-Gal -,Al,As layer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y -0.17) 
and  the p-Gal -,&,As layer ( z  - 0.07) grown successively on 

the active  layer.  Since the active  layer was separated  from  the 

corrugated  interface, the threshold  current  density  has  been 

low enough  to  operate  the  diode  at  room  temperature. A 
similar structure was  also reported  by Casey et al. [49] ,where 
the grating was fabricated  on  the p-Gal -,Al,As layer  and 

p-Gal -,As,As layer (x - 0.3) was  deposited on  it  by molec- 
ular  beam epitaxy. 

The  threshold  current  density  and lasing wavelength of an 
SCH DFB laser are plotted  by  open circles in Fig. 27 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5  11 . In 
this  laser,  three  different  modes  were  observed. The  lowest 
threshold  current  density  was 3 kA/cm2  at 320 K. The  diode 

was  also operated  under CW bias. The  dots  in Fig. 27 are the 
results obtained in  a cleaved laser made  from  the same wafer. 
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Fig. 26. SEM photograph of the cross section  of  a separate  confine- 
ment  heterostructure  DFB GaAs-GaAlAs laser [ S 9 ] .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 27. Threshold current  density  and lasing wavelength  of  a DFB 
SCH structure GaAs laser (open circles) and  those of a cleaved laser 
(dots) [59] .  
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Fig. 28. Output  power of  a DFB GaAs injection laser as  a function of 
applied current  density.  The  stripe  width was 50 pm [ S 9 ] .  

The  output  power of  an SCH DFB laser is  shown  in Fig. 28 
as a function  of applied current. An output power as high as 
-60 mW was  obtained  under CW operation.  The  differential 

quantum  efficiency next was -7 percent  under pulse bias,  and 
-5 percent  under  dc  bias  from  one  facet. 
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VII. GRATING COUPLED  LASERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 
In  DFB lasers in which  a  high  grating  order (I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , 3 )  is used 

to obtain  feedback,  the  low  diffraction  orders of the same 

grating  lead to coupling to radiation  modes  and  thus to output 

beams  coupled  with  a  low-angle  divergence.  Grating  couplers, 

which will be  considered  in the  next  section, were  also incor- 

porated  into  conventional cleaved-ends  semiconductor  lasers 

to obtain low-divergence output beams [52] ,   [53]  . In these 

lasers, the  optical  feedback was  provided by  the cleaved ends 

and light traveling in the waveguide  was diffracted  by  the 

corrugated  interface.  The  exit angle in air is given by (35) 
(replacing 8 by n/2 - @, putting n1 = 1  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp z  2n/X n,ff) 

sin @ = I h/A - neff (8 6 )  

where @ is the angle of  the wave normal measured from  the 

normal to the  surface,  and 1 is the diffraction  order  integer. 
Consider  a DFB laser with a  period  of A = Ih/neff, where 

optical  feedback is provided by  the Bragg scattering  of  order 

21. Bragg scattering  of  order 1 then results  in  an output beam 

emanating  at  a  right angle to  the  junction  plane.  In a DFB 
laser with a  long  active  region, the angular divergence of  the 

output  beam A@ is obtained  by  differentiating (86) 

where Ah is the  spectral  width  of  the  radiation.  For  a  near- 

monochromatic laser, A@ is determined  by  the  diffraction 
limit  of  the grating aperture. An angular scan of  the far-field 

pattern  of  radiation  from a GaAs-GaAiAs single heterostruc- 

ture  DFB laser is shown  in Fig. 29. Corrugations  with  a  period 

of 4693 a corresponding to a fourth-order  DFB grating  were 
fabricated  in  the  laser.  The output beams by  the first  and 

third-order  diffraction were not observed  due to  the internal 

total  reflection.  The divergence of  the beam  (which is coupled 

in second order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 2)  in  the  direction  along  the laser length 

was measured to be -0.35”. 

VIII. DISTRIBUTED  BRAGG  REFLECTOR LASERS 

Threshold Condition 

An alternative to  the  DFB laser is one where the Brag  

coupling  between the  forward  and  backward waves is achieved 

in  two  corrugated waveguide sections  outside  the active  region, 

as shown  in  Fig. 30. The  corrugated  sections  with  lengths  of 
L and L3 can act as high-reflectance  “mirrors”  for waveguide 

modes  at  frequencies  within  the  “forbidden  gap”  as was 

discussed in  Section V. Such  DBR lasers possess the  main 
advantages  of the  DFB lasers, i.e., frequency  and  mode  selec- 
tivity, while avoiding the  problem of degradation  of  the  re- 

combination efficiency by  the  corrugated  interface. 
Theoretical  analyses  of DBR lasers were  given by a number 

of  authors [57]  -[61] . Formally,  the  periodically  corrugated 
sections  of  the waveguide can be  replaced by  fictious  reflectors 
with  complex reflectances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr l , z  (w)  exp [ -@l ,z (w) ] .  The 
complex  reflectance of each  reflector is given,  from (62), by 

r(w) exp [- i$(w)] = 
h sinh (yL) 

(a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt iAp) sinh (yL)  + y cosh (yL)  
(88) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4 -2 0 2 4 6 
ANGLE FROM NORMAL. degrees 

Fig. 29. Angular scan of the far-field radiation  pattern in the  direction 
perpendicular to  the corrugation grooves. Angular resolution is 
-0.1” [ 6 3 ] .  

Substrate 

(a) 

L2 * a- 

l F 1 - j  
R l  = r , (w )e - ’O I (W’  R ~ =  rP:uje- ’+&’ 

(b) 
Fig. 30. (a) Schematic diagram of  a DBR laser. (b) Equivalent  cavity 

of a DBR laser [ 5 9 ] .  

where a is the loss constant  of  the  corrugated  section, y2 = 
K’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a + iAp)” and L stands  for  the  length of each  corru- 
gated  section.  The lasing condition is then  obtained  by  setting 

the  round  trip gain equal to unity, i.e., 

r1 (w)rz (CJ) exp - i[@l (a) $2 (all 
. exp 2 [(dm) - @(.i)l Lz = 1, (89) 

where L2 is the  length  of  the active  region. Using (88), (89) 
becomes 

K’ exp [2(g - ip)Lz] = [(a t iAp) t y coth (yL l ) ]  

‘ [(a f iAp) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy cot ( T L ~ ) ] .  (90) 

This is the eigenvalue equation of a DBR laser. 

one gets 

Equation (90) can  be solved graphically [68] . From (89), 

, ,  

In a given DBR  structure, we  use (88) to obtain r1,2 and 
as a function of Ap. Then  the  round  trip  phase  delay @ is 
plotted as a function  of Ap. The  intersections of this  curve 
with  horizontal lines Q, = 2nn determine  the  oscillation  fre- 
quencies A&. The  corresponding rl(A&) and r2(Ap,) are 
then used in (9 1) to find the  threshold gain g, . This  procedure 
is illustrated  in Fig. 3 1 for  a case of L 1  = L3  = L ,   L 2  = 2L, 
KL = 3.0, a = 0, and POL = 2n. 
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DBR lasers  have  been  fabricated  in a GaAs-GaA1As crystal. 

They have  been  pumped  optically [59]  and  by  current injec- 

tion  [61]  -[63] . A schematic  diagram  of  the  layer  structure 

of  this laser is shown  in  Fig. 32. The  spectrum of a  room- 
temperature DBR laser is shown  in  Fig. 33. The  basic 

tendency  of  the laser to oscillate in  a single mode is evident. 

This class of lasers  has  been  developed  only  recently  and 

experimental results are still  sparse. 

IX. GRATING COUPLERS 
Diffraction  gratings  built  directly  into  a  dielectric  waveguide 

as in Fig. 34 can be used  as input  or  output  couplers  from  the 

waveguide  (confined)  modes to free  space, or substrate, 

propagating  modes.  This  application was first  illustrated  by 

Dakss et al. [6] . It was also discussed in  Section  VII. 

The qualitative explanation  of  the  operation of a  grating 

coupler was given in  Section I11 and is illustrated  in  Fig. 4(b). 
A number  of  theoretical  analyses  exist  for  calculating  the 

coupling  efficiency  of  such  gratings.  These  analyses use some- 

what  different  approaches  [64] -[70] . The  theoretical 
approach closest to  the spirit  of  this  paper is that using the 
formalism  of  Floquet  modes  best  exemplified  by [69],  [70]. 

In  this  formalism  one solves the wave equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t- tk2n2(x,z)Ey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O ,  ax2 az2 (93) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = w / c  and  the n(x,  z) is the spatial distribution  of  the 

index  of  refraction  including  the  effect  of  the  grating.  Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n2 (x, z) is a  periodic  function  of z, the  period A being that  of 

the grating, the  solution  must be given, according to the 
Floquet  theorem,  by an infinite  sum  of  partial waves (often 

referred to as spatial  harmonics) 

Ey = &,(x) exp 
m 

m = -m 

(94) 

If the  grating  height is shrunk  gradually to  zero, all the &, 

T = 300°K 
I=l 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 

I I I / / / I , I / I ,  
8733 8753 8773 8793 8813 8833 

Wavelength ( % )  

T: 300°K 
I= 1.2 I,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+I- 

Wavelenglh [ A )  

Fig. 33. Typical single spectra of  the laser shown in  the  previous 
figure. 

"2 

"3 

x = - 1  

Fig. 34. A  schematic diagram of a waveguide grating coupler. 

functions  become  zero  except ao(x) which  approaches  the 
mode  solution of the  uniform  waveguide.  The  solution of the 

problem  thus  consists  of  determining Po and &,(X). Let us 
consider  a given mode, say m, in region 1  of Fig. 34.  The 

power flow in this  mode  in  the  transverse (+x) direction (in 
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watts  per  square  meter) is for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkxm is real (so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 0) is always  finite  and in 
practice it can  be  made small so that  the  summation in  (99) 

The  deviation  of a thus  requires a  solution  for the spatial 
Since region 1 is homogeneous,  the  nature  of  the wave Soh- harmonics  profiles Em (x ) .  If  we  express the  index of refrac- 
tion  of  mode m is that  of a  plane wave  of the  form  tion  of a  corrugated waveguide  as in  (48) by a  Fourier series 

1 

2 
Pm =-Re  [Ey,H;m]. (95)  may  include  only  one  or  two  terms. 

so that as  required by (93) 

Using (96)  in  (95) as  well as the relation 

and  then  substitute  in (93)  we obtain, using (94), 

2r 
Pm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P O  + m  

I I  

Equating  terms  with  the same z dependence  leads to 

which  holds  for TE modes  in slab (a/ay = 0) waveguides, (95) - 

becomes 

a2&, a2 
ax2 c2 + - ao(x)Gm - PA &m 

geometry). 

(m = 0 )  satisfies the  condition 
Consider  a case where the  dominant spatial harmonic a2g-1  

According to (96) k,, is imaginary  and the  harmonic m = 0 is 
thus evanescent in region (1) (Po = 0). Another  harmonic 

m # 0 ,  however,  may  exist  for  which k,, is real.  (This, of 

course, will depend  on  the  magnitude  of  the  grating  period A). 

This  harmonic will according to (98)  radiate  into region I. The 
exponential  attenuation  constant a of a  propagating  mode 
after  entering  the grating region  is thus given by 

m 

m 

a =  pm/  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ( P O / ~ ~ ~ * O )  J lao(x)l2  XI, (99) 
m = - m  -m 

which is the  ratio of CmPm, the power  radiated per unit wave- 
guide length by all the  high-order  harmonics, to  the power  in 

the  fundamental zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(rn = 0) harmonic.  Although  the  summation 
in  (99)  extends  from rn = --oo to m = 00, the  number  of  modes 

Equation  (104) can be solved for G- ( x )  which is  used in 

(99) to obtain  the loss constant  due to radiation  into  the m = 
- 1 order. 

A result of such  a  calculation  taken  from  [70] is shown  in 

Fig. 35  for  the case of a  triangular  corrugation. Note  the 
symmetry  of  the curves about  the value 6 = 0.5 (the  slope 
parameter 6 = A/A is defined in  the figure). The curve  shown 

is for  propagation  from  left to right.  For  the  opposite  direc- 
tion of propagation  the loss a: is obtained at  a value of the 
shape  parameter 1 - 6.  From  the figure it follows that  except 
for  the case of a  symmetric  corrugation (6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS), the power 
loss exercised by modes  traveling in  opposite  directions is not 
equal  and can differ by a large factor. This is analogous to the 
blazing  effect  in  conventional  spectroscopic  gratings.  This 

effect  has  been  demonstrated by Aoyagi and  Namba [72]. 
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Fig.  35. The coupling  loss  of  a  waveguide  triangular  grating  as  a  func- 
tion  of  shape  parameters [70]. 

X. PERIODIC WAVEGUIDES FOR NONLINEAR 

INTERACTIONS 

Periodic structures can be used for  phase  matching in non- 

linear  optical  interactions  [73]-[76]. The  subject is too 

specialized to be  considered  in  detail  here. We will,  however, 

present  the basic  arguments  here leaving the  details to  the 

quoted references. 

Consider the  problem  of second harmonic generation  inside 

a waveguide from an input  mode 

&;“)(x) exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi(wt - p,‘”)z) 

to  an output  mode  at twice the  frequency 

8 & 2 ~ ) ( x >  exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi (ot - pdZW)z); 

for an  appreciable  conversion  efficiency the phase  matching 

condition 

2 p p  = p p J )  (1 05) 

must be satisfied. If condition (105) is violated,  then  the 

interaction  is  limited  effectively to a waveguide length  of 

and is  usually  uninterestingly  small.  One  method  of  over- 

coming  this problem is to supply  the missing “momentum” by 
the waveguide periodicity. If the period  of the  spatial  modula- 
tion is A, then phase  matching is achieved  provided 

for some  integer m. The  reasons for  (107) are  fundamentally 
similar to those used to derive (29). Equation  (107)  guaran- 

nl= I 

x = - t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  
n3 Substrate 

0,“ 0,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2_. 
A, 

B? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

Fig.  36. A dielectric  waveguide  with  a  space  periodic  nonlinear 
property. 

tees that  a source  polarization is produced by the spatial 

modulation  of  the  fundamental  mode  a  by  the  periodicity 

which  propagates at  the same phase  velocity 2 ~ / p & ~ ” )  as that 

of the generated mode  at 2w. The  interaction is thus  cumula- 

tive over the whole  length  of  the waveguide since the  coher- 

ence  length LC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LC = 

2n 

2 p y  - p p )  - m - 2n 
A 

is infinite. 

Two  types of periodic perturbation have been considered. 
The  first involves a  corrugation  of  the waveguide [74] . It  has 

been  demonstrated  recently  by  Chen et al. [77] . 
The  second method proposed [75] involves a  modulation of 

the spatial distribution of the nonlinear  material. It is poten- 

tially the  more  efficient of the  two  methods  but  more  difficult 

to realize. It  has  not been  demonstrated  as  yet. A possible 
embodiment is  shown  in  Fig. 36. 
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Monolithic  LasedWaveguide  Coupling by 
Evanescent  Fields 

Abstract-Evanescent field coupling  without phase  matching between 

a double  heterostructure,  monolithic laser and  an  “external” waveguide 

is reported. Coupling  efficiencies as high as 25 percent have been 

obtained. 

0 NE of  the  key  problems in the  development  of  integrated 

optical circuits  is that  of efficiently  coupling  light from  a 
monolithic laser source  to  a waveguide circuit.  Three  coupling 
schemes have previously  been  reported: 1)  endfire  coupling 

[ l ]  , [2] ; 2)  taper  coupling [3],  [4] ; and 3) phase-matched 
coupling [SI ,  [6]. Devices using endfire  coupling  have passive 

waveguides  coplanar  with the laser cavity. An alternate 
approach utilizes an  intracavity  taper to couple  light  from  the 

laser to an  underlying waveguide. A  disadvantage  of  these  cou- 
pling  schemes is that  they  require  the  utmost  control  of  the 
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growth  conditions [2] ,  [4] or  a  two-stage  growth  procedure. 

A less complicated  structure,  from  a  fabrication  point  of view, 

has  been  proposed  by  Watts [5] and  fabricated  by  Suematsu 

et al. [6] ,  [7]. In  these lasers the  coupling  between  the 

laser cavity  and an external passive  waveguide  is analogous 

to  that  of  a  directional  coupler.  To  obtain efficient cou- 

pling, the  propagation  constants  of  the laser cavity  and  the 

passive waveguide must be closely matched.  This  imposes 

severe limitations  on  the  dimensions  and  compositions  of 

the layers.  In this  paper we describe a device similar to  the 
structure  reported  by  Suematsu et al., consisting  of  a  mono- 

lithic laser  coupled to  a passive waveguide. The  coupling 

mechanism  differs,  however, in that  the  modes  of  the wave- 

guide are excited directly by  the  evanescent fields of  radiation 
in the laser cavity  without phase matching. 

The  schematic in Fig. 1 shows  that  the  laser/waveguide 

structure  consists  of five layers.  Typical values for  the  AI  con- 

centration  and  thickness of each  layer are indicated in the 

figure. The top  three  layers are typical  of  those  commonly 

found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A, Ga)As/GaAs heterojunction lasers.  The fourth 

layer  has  a  dual  function;  it serves as the  n-type  heterobarrier 
as well  as being  the  “external”  waveguide.  Radiation in the 


