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Thin-film dielectric waveguides with a periodic refractive index, a periodic substrate, or periodic 
surface are studied. The field is determined from Maxwell's equations using Floquet's theorem. The 
Brillouin diagram and the interaction regions are investigated. The bandwidth and the attenuation 
coefficients of the interaction regions are given as a function of the optical wavelength. A number of 
applications in active and passive integrated optics systems are discussed. 

I. INTRODUCTION 

The recent introduction of the concept of integrated 
optics1 -

3 has stimulated a great deal of interest in the 
design of thin-film miniaturized optical systems. In the 
last three years, many experiments have been per­
formed in light generation, waveguiding, coupling, de­
flection, parametric interactions, and others in thin­
film structures. 1- 4 

Periodic dielectric structures can be used in many in­
tegrated optical devices. The periodicity could be gen­
erated either by chemical processes, by ion milling, 
by volume or surface acoustic waves, by electro-optical 
periodic systems, or by photodimer memories. s-9 Such 
structures could be used in DFB (distributed feed-back) 
lasers, 9•10 integrated optics filter, frequency-selective 
couplers, and phase-matchable nonlinear interactions. 8 

In this paper we shall study the waveguiding properties 
of three important types of periodic structures: period­
ically inhomogeneous thin-film waveguide [Fig. 1(a)], 
periodically inhomogeneous substrate guide [Fig. 1(b)], 
and thin-film waveguide with periodic surfaces (periodic 
thickness) [Fig. 1(c) ]. 

We shall first obtain the general solutions of the wave 
equation in sinusoidally stratified media. The solutions 
will then be applied to three specific periodic structure 
problems as mentioned earlier. Many possible applica­
tions of this type of periodic structure to passive and 
active integrated optics systems will be discussed. 

II. SOLUTION OF THE WAVE EQUATION IN 
PERIODICALLY STRATIFIED DIELECTRIC 
MEDIA 

The source-free wave vector equations in a medium 
whose permittivity is a function of z, the axial coordi­
nate, are11 

VXVXE -k~[E(z)/e0]E=0, (1) 

V xv XH- [ve(z)/E(z)]xv XH- ~[E(z)/e0]H = 0, (2) 

where k0 =w(J.L0E0 )
112

, E0 and J.l.o are, respectively, the 
free-space permittivity and permeability, E and Hare, 
respectively, the electric and magnetic field vectors, a 
time dependence exp(- iwt) is assumed and suppressed 
throughout, and e(z) is the dielectric permittivity of the 
inhomogeneous medium. Let e(z) be a periodically vary­
ing function of z: 

E(z) =dl +17.f(Kz)], 

where TJ and K are known constants and/(~) is a periodic 
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function. The solution of the wave equation consists of 
an infinite number of space harmonics (Floquet form). 
For the TE wave, we can write (for propagation in the 
xz plane) 

E<TE> = e ·~~ cTE (sin(s,x)) exp(iK_z)· 
Y n•-~ " cos(s,x) ' 

(3) 

and for the TM wave, 

H<™>=e "I; .. C™ (sin(p,x)) exp(iK'z)· 
Y •·-~ " cos( P.x) " ' 

(4) 

where TJ is an integer, s. and P. are separation con­
stants, CJE and CJM are the amplitudes of the space 
harmonics, and K" and K~ are the propagation constants 

Kn=K +nK, 

K~=K' +nK, 

where K and K' may be determined from the dispersion 
relation and the boundary conditions of various prob­
lems that we shall consider. 

Replacing E and H by their Floquet form in Eqs. (1) and 
(2), replacing e(z) by its exponential Fourrier series, 
and equating the terms with the same z dependence, we 
obtain the following set of infinite equations: 

(5) 

(6) 

where a; and a~ are the Fourier series coefficients of 
E(z) and 1/E{z). The solution of the above equations gives 
the relative amplitudes c;E /CJE and c~ /CJM. cJE and 
CJM can be determined from the source condition (or the 
excitation condition). 12 The nontriviality condition gives 
the dispersion relation. 

Ill. THIN-FILM LONGITUDINALLY 
INHOMOGENEOUS OPTICAL WAVEGUIDE 

In this section we shall consider the problem of the 
propagation of a transverse electric wave (TE) along a 
thin-film optical waveguide where the permittivity 
varies as [Fig. l(a)] 

e{z) =E1[1 +TJ cosKz], 

and where the thickness is 2L. This waveguide is sub-
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FIG. 1. Geometry of the periodic structures. In (d), X(z) is the 
surface impedance. 

merged in a uniform medium of dielectric constant E2 

with E2 <El" 

Substituting Eq. (3) into Eq. (1) gives the electric field 
component of the TE wave [E(x,z)=Ey(x,z)e) within 
the inhomogeneous layer: 

n=+oo 

E y= 6 A.u.(x) exp(iK.z); 
n= .. oo 

(7) 

where u.(x) = cos(s.x) (for even mode) or sin(s,x) (for 
odd mode), and A. are yet unknown amplitudes of the 
space harmonics. Since the fields are independent of y, 
all other components of the electric field are zero. In 

-K 0 
(a) (b) 

n == l n ~ 0 
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the surrounding medium, we have for the guided waves 
n=+co 

E=6A~exp(iK.z-o.\xj), for\x\>L, (8) 
Y n= .. oo 

where A~ are yet unknown amplitudes of the space 
harmonics and o. is the transverse wave number. The 
magnetic field components may be found from Maxwell's 
equations. 

The boundary conditions at I xI = L demand the continui­
ty of the tangential electric and magnetic field. Hence, 
we have 

A.u.(L) =A~ exp(- o.L), 

A du. I = -A' o exp(- o L) 
n dx x=L n n n • 

Simplifying, 

(5" = s. tans.L (even modes) 

=s.(-cotans.L) (odd modes). 

From the wave equation, one has 

and 

D_A.u.(x) + A •• 1u •• 1(x) + A._1u._1 (x) = 0, 

where 

D = ~ (1 - s~ + K~) . 
n '17 f.J.oEl w2 

(9) 

(10) 

(11) 

(12) 

To simplify the notation, we did not include the index 
corresponding to different possible waveguide modes. 
Equation (12) cannot be satisfied for all x, but as we 
will only study the interaction regions of identical modes 
in the limit 77 small, the u.(x) will be the same for the 
two phase-matched space harmonics. 

When "1 =0, Eq. (12) gives ryD.= 0; hence, 

(13) 

and the resulting Brillouin diagram w(K) consists of an 
infinite number of identical curves centered at K = - nK. 
Each curve is identical to the well-known Brillouin 
curve of a homogeneous dielectric waveguide (Fig. 2). 
For 77 = 0, only the central curve has physical meaning. 
Since we are mainly interested in the bounded wave, the 
following condition must be satisfied: 

K 
2 

K 
n ~ -1 

(14) 

n ::::: -2 

FIG. 2. (a) w-K diagram (BrilloUin diagram) for a typical dielectric waveguide. (b) w-K diagram for a typical periodic dielectric 
waveguide. 
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FIG. 3. w-K diagram near an interaction region. The solution 
for K is complex. The dashed curve is the imaginary part of K 

and the solid curve is the real part of K. 

and the corresponding region is shown in Fig. 2. It 
shows that only successive space harmonics intersect 
in the bounded region. 13 

For 1) t- 0, strong coupling occurs at the intersection 
points leading to stop-band interactions (complex K) be­
tween identical modes of successive space harmonics. 
The behavior of K near those points requires the solu­
tion of the nontriviality condition of the system of Eq. 
(12). For small values of '7, a first-order Taylor series 
development which takes into account only the two in­
teracting space harmonics can be used to determine the 
solution in the interaction regions between successive 
space harmonics. 

This paper is confined to the study of stop-band inter­
actions. The codirectional passive interactions are not 
stupied because, in most practical cases, the refrac­
tive indices of the film and the substrate are not very 
different from each other, and these interactions occur 
in the radiation region of the Brillouin diagram. 

In order that interactions between harmonics of the mth 
mode may occur, the following condition must be 
satisfied: 

K N2 m7T 
2 > K cutoff (of the mth mode) == (~ -~)1 ; 2 2L . 

This implies that 

A= 27T < 2L (Ni -1)1/2 
K m ~ ' 

(15) 

where Ni=E1 /E0 and ~=E2/E0 • 

Consider now the interaction point (w0
, K

0 = iK) between 
the space harmonics n = 0 and n =- 1. Near that point 
we can write 
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FIG. 4. Plots of the relative width (l/7JL~w/w and attenuation 
factor 7Jd/L for the first interaction region of the main even 
mode as a function of L /~. ~ is wavelength in vacuum. The 
cases of a periodic waveguide and a periodic substrate are 
plotted. The waveguide index is N 1 = 2 and the substrate index 
is N 2 =1.5. 

K=K
0(1+1)g) and w==u!0(1+1)/), 

and u0 "'u_1 • The system of Eqs. (12) reduces to 

DaAo+A_1==0} D D -1 
~ 0 -1- • 

D _1A_1 + A 0 == 0 
(16) 

Applying the Taylor series development to Eqs. (10), 
(11), and (16), we get 

a2J2 _ g2 == (32, 

where 

a== (2w0
)

2 (~ + qNf) 
Kc 1 +q ' 

0.6 

0.5 

31 0.4 
<13 
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FIG. 5. Plots of the relative width (l/7J)Aw/w and attenuation 
factor 7)d/L for the first interaction region of the first odd 
mode as a function of L/~. ~is wavelength in vacuum. The 
cases of a periodic waveguide, periodic surface, and a periodic 
substrate are plotted. The waveguide index is N 1 = 2 and the 
substrate index is N 2 = 1. 5. 
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FIG. 6. Plots of the relative width (1/?J)tl.w/w and attenuation 
factor ?)d/L for the first interaction region of the second 
even mode as a function of L /A,. A, is wavelength in vacuum. 
The cases of a periodic waveguide and a periodic substrate are 
plotted. The waveguide index is N 1 = 2 and the substrate index 
is N 2=1.5. 

(150)2 ( s
0
L ) 

q= ,;fi l± sins0Lcoss0L ' 

where the± sign corresponds to the even(+) and odd(-) 
modes, and the values of 15° and s0 correspond to w0 and 
K

0
• Equation (16) corresponds to a hyperbola for lfl 

~ f3/a and an ellipse (g imaginary) for lfl < {3/a, as 
sketched in Fig. 3. The two characteristic parameters 
of interest are the relative bandwidth of the interaction 
tl.w/w=21)13/a, and the maximum of imaginary (K) 
=1)Kf3/2 and its inverse d. In Figs. 4-6 we plot these 
two parameters as a function of L/>c, where X corre­
sponds to the free-space wavelength for the first two 
even modes and the first odd mode. In all these cases, 
the interaction is most efficient (d/L - 0) when the en­
ergy of the wave is mostly confined within the wave­
guide (i.e., L/>c-oo). 

IV. HOMOGENEOUS THIN-FILM WAVEGUIDE 
SURROUNDED BY A LONGITUDINALLY 
PERIODIC MEDIUM 

Let us now treat the problem of aTE wave propagating 
along a homogeneous thin film immersed in an inhomo­
geneous medium whose dielectric constant is given by 

E2(z) =E2(1 + 1J 1 cosKz), 

The dielectric constant of the film is E1 [see Fig. 1(b)]. 
This problem may be solved in a manner similar to the 
previous case. The corresponding systems of equations 
to be solved are Eq. (10) and 

(18) 

D,;A~exp(-15nx) +A~+l exp(-15n+1x) +A~.1 exp(-1\_1x)=0, 

(19) 

where 

The limitations on the solution of Eq. (19) are the same 
as for Eq. (12). The Brillouin diagram is the same as 
in Fig. 2 and the solution in the interaction region for 
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smallry 1 is 

a2f2 -g2=f3'2, 

where 
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The corresponding characteristic parameters are given 
in Table I and plotted in Figs. 4-6. Unlike the previous 
case, we note that mode interaction occurs most effi-· 
ciently near the cutoff where most of the energy is in 
the substrate. The mode interaction characteristics for 
these two structures are equivalent if 7) and 7) 1 satisfy 
the following relation: 

7)f3 =7) I f3' ~ 7) /1) I= f3' /f3. 

This ratio is plotted in Fig. 7. 

V. OPTICAL GUIDE WITH SINUSOIDALLY 
VARYING SURFACE 

The third problem we shall consider is the case of a TE 
wave propagating along an optical thin-film guide whose 
surface is a sinusoidal function of the longitudinal co­
ordinate [Fig. 1(c)]; i.e., 

L(z) = L[1 +ry" cosKz]. 

The substrate is assumed to be a perfect conductor and 
the upper half -space has a dielectric constant E2 < E1• 

We assume rj"KL« 1, so that the Rayleigh assumption14 

for scattering from periodic surfaces is valid. 

Owing to the boundary periodicity, the field is the sum 
of an infinite number of space harmonics (Floquet's 
theorem). Therefore, the field expression can be writ­
ten as follows (we are mainly interested in the bounded 
wave): 

n=+oo 

E= ~ Ansin(snx)exp(iKnz), for O<x~L(z) 
n=-oo 

n=+oo 

= ~ A~exp(-15nlxl +iKnz), for x~L(z), 
n=-co 

where An and A~ are the amplitudes of the space har­
monics. The above expressions satisfy the boundary 

40 

-~~~ 30 

10 

FIG. 7. Equivalence ratio 7}1 /7) between the periodic substrate 
and periodic waveguide configuration. Curve 1 corresponds to 
the basic even mode. Curve 2 corresponds to the first odd 
mode. Curve 3 corresponds to the second even mode. 
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FIG. 8. Equivalence ratio TJ" /1) between the periodic thickness 
and periodic waveguide index configuration for the first odd 
mode. 

condition at x = 0. From Maxwell's equations we may 
obtain the following relations: 

K~ + S~= jJ. 0E1 W
2

, 

K~- 0~= 1J. 0E2W
2

• 

(20) 

(21) 

The boundary conditions at x=L(z)=L(1 +7)" cosKz) are 
(i) tangential E must be continuous; and (ii) 

(H -H')Xe=O, 

AT AF 

!1!1!-:wv- ~L-~-~~~ 

(a) 

+V 

~ ___________ -Eo 
-AF ------------
-s 

-v 
(c) 

(22) 
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where e is a unit vector normal to the surface = (e 
+T)"KL sinKzez)/(1 +7)"2K2L2 sin2Kz)1 12 and Hand H' are 
the magnetic field on both sides of the boundary. 

From condition (i) and the field expression we get, 
after applying a first-order Taylor series development 
(7J"KL « 1), 

6 An(sinsnL +7] "snL cosKz coss"L) exp(iKnz) 
n 

= ~ A~(1 -7) "onL cosKz) exp(iK"z). 
n 

Writing cosKz in an exponential form and equating the 
terms with the same longitudinal wave vector, we get 

(an/sn) tans"L + t7J "L(an+l + a"_1)- (bn/on) 

(23) 

where an=s~n cos(snL) and bn= onA~exp(- onL). Simi­
larly, from Eq. (22) we find 

an- t7J"L(Cn•lan•l +Cn-lan-l) + bn 

+ t7J "L(Bn+l bn+l + Bn-l bn-l) = 0, 

where 

C" = [(KKn + s~)/s"]tans"L, Bn = (KKn- 6~)/on. 

(24) 

The infinite systems of Eqs. (23) and (24) can be written 
in a matrix form: 

or 

IIMII·Ial = IINII·Ibl, 
IIPII·Ial = IIQII·Ibl, 

(b) 

--K 
a 

(d) 

(25) 

FIG. 9. Some optical systems using periodic structures: (a) DFB laser using a propagating acoustic wave; (b) DFB pulsing laser 
using a stationary acoustic wave; (c) DFB laser using an electro-optic periodic structure; (d) frequency-selective coupler with the 
corresponding Brillouin diagram. AT-acoustic transducer; AF-amplifying film; AW-acoustic wave; LW-light wave; EO-elec­
tro-optic film, s-substrate. 
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TABLE I. Characteristic parameters withY= wL/21fc. 

Structure .! Aw !1!!. Aw.f!. 
T) w L w L 

periodic waveguide qNj L 1+q 1 L 1+q 1 
index 2(N!+qNV Aq 1fNiY2 2A Nf+qNf ;y2 

periodic substrate N~ L 1 same as above 
index 2(N~+qNfj A (l+q) 1fN~Y2 

periodic waveguide o 2 Nj-N2 K l+q 
same as above 

thickness (o L) N~+qN?l ~ (Nf -N~)(2,Y) 2 

where the elements of the matrices IIMII, IfNI!, IIPII, and 
IIQII can be easily determined from Eqs. (23) and (24). 
The notriviality condition of Eq. (25), with Eqs. (20) 
and (21), gives the dispersion relation K(w) and the 
relative amplitudes an/an and b"/av. 
For r!" = 0, Eqs. (23) and (24) reduce to 

(an/sn) tansnL = bn/on, 

or 

(26) 

The corresponding Brillouin diagram is the same as for 
the previous cases (odd modes only). 

For small77" * 0, a first-order Taylor series develop­
ment gives 

where 

The two characteristic parameters tl.w/w and d/L are 
given in Table I and plotted in Fig. 6 for the first mode 
with N 2 = 1. 5 and N1 =2. We see that for w-oo (L/X 
-oo), the periodicity has little effect (d/L -oo, D.w/w 
- 0) because the wave energy is mostly confined inside 
the waveguide and is not near the boundary" The bound­
ary periodicity has also little effect on the propagating 
waves in the limit w- wcutou when most of the energy is 
in the substrate. The boundary perturbation is most 
effective for L/A"'O. 35, where d/£=2.3/77 and D.w/w 
=0.21). 

In Fig. 8 we plotted the equivalence ratio 77" /11 between 
the surface periodic case and the inside index periodic 
case. 

Another interesting structure which can be treated in a 
similar way is shown in Fig. 1(d)-the dielectric wave­
guide which has a periodic boundary impedance 

Z = iX0 [ 1 + 11 cosKz ]. 

Such an impedance can be generated by using a grooved 
substrate. This impedance can be controllable (slightly), 
for matching purposes, by filling the substrate grooves 
with an electro-optic material whose index (and, there­
fore, the effective groove depth) can be controlled by an 
applied electric voltage. 

J. Appl. Phys., Vol. 44, No.7, July 19.73 

VI. DISCUSSIONS AND POSSIBLE 
APPLICATIONS 
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Periodic structures can be of two types: (i) permanent, 
where the periodicity in the refractive index, gain coef­
ficient (in the case of an active medium), and boundary 
of the optical medium is permanent (chemical, doping, 
ion implementation, or others). This type of structure 
was used in DFB lasers10•15 and in. couplers. (ii) Non­
permanent or dynamically controllable, where the 
periodicity can be easily written and erased (photodimer 
memories, 6 electro-optical periodic structures), or is 
dynamically controllable (beam interference, 7 surface 
or bulk acoustic waves). We shall now discuss the ap­
plication of some of these structures in active and pas­
sive integrated optics systems. 

Periodic structures in amplifying films are used in 
DFB lasers. 10

•
15

•
16 Kogelnik and Shank10 showed that 

very small changes (10-4 -10-5) in the refractive index of 
the guiding film are sufficient to generate oscillation in 
a DFB laser. Using the results of Sec. V and Fig. 8, we 
see that this is equivalent to boundary rippling of the 
order of 10-20 A depending on the guide parameters. 
This surface perturbation could be obtained by a sur­
face acoustic wave [Fig. 9(a)]. The lasing wavelength 
of the DFB laser is given by the Bragg condition (ne­
glecting the acoustic wave motion): 

'A0 =2N1A/m, 

where m is an integero Therefore, the acoustic frequen­
cy falls in the range of few GHz. This domain of the 
acoustic spectrum is of great interest in integrated 
acoustics and it is presently possible to fabricate such 
surface-wave devices for operating frequencies up to 3 
GHz. 17 In Fig. 9(b), a second acoustic transducer, at 
180° from the first one, would generate a standing 
acoustic wave leading to a DFB laser pulsing at twice 
the acoustic frequency. The lasing frequency can be 
tuned by changing the acoustic frequency. 

The electro-optic effect can also be used in thin-film 
structures. 1•

18 If a spatial periodic electric voltage is 
applied to an electro-<>ptic material, the resulting 
periodicity generates the DFB effect. The electro-optic 
material can be used as a substrate or as a matrix for 
the lasing material [Fig. 9(c)]. Index change of the 
order of 10-4 can be easily achieved with only a few 
volts. Periodic structures using the electro-optic effect 
have also been used for wave modulation. 19 

In passive systems, periodic structures can be used for 
distributed selective coupling between two closely 
spaced waveguides. 20 They have already been used for 
the coupling of a free wave to a waveguide. Let us now 
consider the system shown in Fig. 9(d). It can be easily 
seen that there is no evanescent coupling for the funda­
mental mode at all frequencies since, for a given j, {3 
is not the same in both guides, and the periodic struc­
ture would only couple a signal of frequency f., even if 
the waveguides may carry a large number of signals 
with different frequencies. To obtain optimum coupling, 
the parameters must be adequately choseno Such a sys­
tem can be designed to yield selective coupling at two 
or more specific frequencies, if we make adequate use 
of the different modes of the waveguides and the guide 
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dimensions. If the periodic structure is of the dynamic 
type, the frequencies can be varied. The frequency­
selective coupler can be used as the basic unit of an op­
tical multiplexer to select specific channels from a 
large number of communication channels in a thin-film 
guide. 

Another application is the use of the periodic structures 
as integrated optical filters. For an 0. 8-11 film with a 
surface rippling of 40 A and an optical wavelength of ;\0 

== 0. 8 11, the attenuation factor could reach 14 dB /mm 
(power). 

In conclusion, we note that periodic structures have 
characteristics which can be used in many active and 
passive integrated-optics systems. The stop-band pass­
band property can be used to design integrated optics 
filterso Attenuations of the order of tens of dB/mm can 
be easily obtained. The feedback property of periodic 
structures can be used in active systems to design DFB 
lasers. Different configurations can be used: index 
periodicity in the film, index periodicity of the sub­
strate, or film-thickness periodicity. The presence of 
space harmonics with different phase velocities can also 
be used for phase-matched nonlinear interactions. 
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