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The nature of the behavior of an isolated many-body quantum system periodically driven in time has

been an open question since the beginning of quantum mechanics. After an initial transient period, such

a system is known to synchronize with the driving; in contrast to the nondriven case, no fundamental

principle has been proposed for constructing the resulting nonequilibrium state. Here, we analytically show

that, for a class of integrable systems, the relevant ensemble is constructed by maximizing an appropriately

defined entropy subject to constraints, which we explicitly identify. This result constitutes a generalization

of the concepts of equilibrium statistical mechanics to a class of far-from-equilibrium systems, up to now

mainly accessible using ad hoc methods.

DOI: 10.1103/PhysRevLett.112.150401 PACS numbers: 05.30.Ch, 37.10.Jk, 67.85.-d

There has recently been significant progress in our

understanding of statistical mechanics based on the twin

concepts of equilibration, the approach of a large, closed

system’s state to some steady state [1–8], as well as of

thermalization, when this steady state depends only upon

a small number of quantities. Starting from ideas due to

Jaynes [9,10], Srednicki and Deutsch [1,2], and Popescu

et al. [11], both integrable and nonintegrable closed,

nondriven many-body systems have, thus, been shown to

thermalize [3,5,8].

On the other hand, the study of periodically driven

systems has also had a long history. Following early

foundational work by Shirley [12] and Sambe [13], sub-

stantial theoretical and experimental progress has recently

been made [14–22].

Here, we combine ideas from the two areas to extend the

concept of thermalization to the out-of-equilibrium case of

periodically driven systems. By devising a mapping of the

system to a set of effectively nondriven systems,we show that

a periodically driven system asymptotically approaches a

time-periodic steady state at long times (see, e.g., Ref. [23]

and the Supplemental Material [24]). Specializing to a

large class of integrable systems, we analytically show that

Jaynes’s entropy maximization principle [9,10] gives a

statisticalmechanical description of the long-time, synchron-

ized dynamics for infinite systems and study the approach

to this equilibrium state as a function of both the system size

and time. Finally, we explain how our proposed setup is

achievable with current experimental techniques.

Synchronization.—The starting point for our analysis is

the synchronization of the system with the driving, which

may be seen as follows.

Consider a time-periodic Hamiltonian ĤðtÞ ¼ Ĥðtþ TÞ
and denote the time evolution operator over a period

starting from time 0 ≤ ϵ < T by Ûðϵ; ϵþ TÞ. Taking

ℏ ¼ 1, we define an effective Hamiltonian Ĥeff via

exp ½−iĤeffT� ¼ Ûð0; TÞ: (1)

Ĥeff is a time-independent effective Hamiltonian that takes

an initial state at t ¼ 0 to the same final state at t ¼ T as

the real time-dependent Hamiltonian ĤðtÞ.
We concentrate on “stroboscopic” observations, that is,

observations at discrete points of time separated by a

period tn ¼ ϵþ nT for a given ϵ. The expectation value

of an arbitrary time-independent operator Ô at time t,
OðtÞ ¼ hψðtÞjÔjψðtÞi, is

OðtnÞ ¼< ψð0ÞjeiĤeffnTÔðϵÞe−iĤeffnT jψð0Þ > (2)

where ÔðϵÞ ¼ Û†ð0; ϵÞÔ Ûð0; ϵÞ. We have, thus, recast the

time evolution into evolution under a time-independent

Hamiltonian, at the price of introducing a set of new

operators ÔðϵÞ.

By analogy to a static quench [4,7] (see the Supple-

mental Material [24] for a discussion of the necessary

conditions), one can show that each series fOðtnÞ; n ¼
0; 1; 2;…g converges to a fixed value. This immediately

implies that the long-time behavior of the system is periodic

in time, i.e., synchronized.

Construction of the periodic ensemble.—We now come

to themainpart of ourworkwherewe show that Jaynes’s idea

of entropymaximization [4,5,9,10] remains valid away from

equilibrium for this class of models. In order to demonstrate

that this is correct, we restrict ourselves to a class of tractable

integrable Hamiltonians. For infinite systems, we show

analytically that this ensemble correctly reproduces all

correlation functions. For finite systems, we study the

approach to the thermodynamic limit in a spatially inhomo-

geneous system of hard-core bosons (HCBs).

The Hamiltonians we consider are of the form

ĤðtÞ ¼
X

i

½â†iMi;jðtÞâj þ â†iN i;jðtÞâ
†
j þ H.c.�; (3)
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with the âi fermionic or bosonic operators, ½ai; a
†
j �� ¼ δi;j,

and M, N are complex matrices. In cases of interest, the

nonlinear, nonlocal transformation that brings the physical

Hamiltonian to this form maps local observables to highly

nonlocal, nonlinear functions of the â operators.

For Hamiltonians bilinear in the operators â, Ĥeff are

bilinear and may, therefore, be brought to the form

Ĥeff ¼
X

L

p¼1

ωp ~a
†
p ~ap (4)

by a unitary transformation (L is the system size).

The operators ÎpðtÞ ≔ Ûð0; tÞ ~a†p ~apÛ
†ð0; tÞ (of which

there are L) correspond to conserved quantities

hψðtÞjÎpðtÞjψðtÞi ¼ hψð0ÞjÎpð0Þjψð0Þi for all t and are

temporally periodic.

We now describe how to obtain the statistical ensemble

describing the long-time behavior of this system after a

number of periods have elapsed. Given the set fÎpðtÞg,
we construct the most general distribution maximizing

Shannon’s entropy in the space of periodic operators,

subject to the constraints given by the conservation laws.

The resulting “periodic Gibbs ensemble” (PGE) density

operator is

ρ̂PGEðtÞ ¼ Z−1 exp

�

−

X

p

λpÎpðtÞ

�

(5)

with the λp value fixed by requiring that

hψð0ÞjÎpð0Þjψð0Þi ¼ tr½ρ̂PGEð0ÞÎpð0Þ� and Z ¼
tr½ expð−

P

pλpIpÞ�, a (time-independent) normalization

factor. Operator ρ̂PGEðtÞ has the following two properties:

First, it correctly gives the conserved quantities:

tr½ ~a†p ~aqρ̂PGEðtÞ� ¼ δp;qhψðtÞjÎpðtÞjψðtÞi. Second, since

the Îp are periodic in time, it is itself manifestly periodic

with time: ρ̂PGEðtÞ ¼ ρ̂PGEðtþ TÞ.
Finally, we can analytically show that the PGE density

matrix exactly reproduces all correlation functions in the

thermodynamic limit; this somewhat lengthy but ultimately

elementary calculation is described in the Supplemental

Material [24]. This constitutes our central conceptual result.

Application to finite systems: numerical results.—Let us

now supplement the above exact and general results using

numerical simulations for specific, finite systems. While

the proof for the correctness of the PGE is strictly

applicable only in the thermodynamic limit, we shall see

that the deviation of finite systems from the PGE result

rapidly decreases with system size.

A number of different physical systems may be mapped

to Eq. (3) (see Supplemental Material [24]). Here, we

present numerical results for the experimentally relevant

case of HCBs subject to a simple potential, the Hamiltonian

for which reads

ĤbðtÞ ¼ −
1

2

X

i

JiðtÞb̂
†
i b̂iþ1 þ H.c.þ

X

i

ViðtÞb̂
†
i b̂i (6)

with the b̂i HCBs. The HCBs are described by operators

b̂ obeying bosonic commutation relations ½b̂i; b̂
†
j � ¼ δi;j,

with the additional hard-core condition b̂2i ¼ 0. A Jordan-

Wigner transformation b̂i ¼ âi
Q

j<ið−1Þ
n̂j with n̂j ¼

b̂†j b̂j ¼ â†j âj maps ĤbðtÞ to Eq. (3) with Mi;jðtÞ¼

−
1
2
JiðtÞðδiþ1;jþδi−1;jÞþδi;jViðtÞ, N i;j ¼ 0 and fermionic

commutation relations for the â.
Here, we focus on a time-dependent superlattice

potential superposed on a quadratic potential, ViðtÞ¼
1
2
½ði−L=2Þ=lHO�

2þΔð−1Þi cosðωtÞ and a time-dependent

hopping amplitude JiðtÞ ¼ J þ δJ cosðωtÞ with

ω ¼ 2π=T. The protocol we use is to prepare the system

in the ground state in the presence of a harmonic potential

V
ð0Þ
i ¼ 1

2
½ði − L=2Þ=lHO�

2, fixing lHO ¼ N. This allows

us to take the thermodynamic limit, since for large total

number of particles the dimensionless parameter [25]

~ρ ¼ Nb=lHO plays a role analogous to the density in the

uniform limit. Results with different system sizes but

constant ~ρ are therefore comparable.

At time t ¼ 0, the driving is switched on so that the

total Hamiltonian is ĤbðtÞ ¼ −
1
2
J
P

ib̂
†
i b̂iþ1 þ H.c.þ

P

iViðtÞb̂
†
i b̂i with ViðtÞ ¼ V

ð0Þ
i þ Δð−1Þi cos ð2πt=TÞ.

Concentrating on the experimentally accessible momen-

tum distribution of the bosons n̂ðbÞðkÞ ¼ L−1
P

i;jb̂
†
i b̂j×

exp½−2πkði − jÞL−1�, we use the numerical method used
in, among others, Ref. [26]; it consists of solving the
fermionic time-dependent problem and, at the end,
inverting the Jordan-Wigner transformation [27]. We begin
by demonstrating a number of possible periodic states,
corresponding to different parameters of the model. The
leftmost panel of Fig. 1 shows snapshots of the PGE
momentum distribution tr½ρ̂PGEn̂

ðbÞðkÞ� at the beginning of
each period (ϵ ¼ 0) for different parameter values. We
emphasise that, away from the high-frequency regime, the
corresponding time-averaged Hamiltonian [16,28] is not an
appropriate description. As a striking example, the black
line shows a momentum distribution with peaks at the
edges of the Brillouin zone. Concentrating now on the
parameters corresponding to the cyan line, the central panel
shows the time evolution of the momentum distribution
over an entire period. Note that the system evolves through
states in which the momentum is peaked at different
locations of the Brillouin zone. Finally, the rightmost panel
shows three snapshots of the density distribution of the
same system at times indicated by the colored lines in the
central panel. The high spatial frequency oscillations and
the peaking of the density at the edges is also very different
from what would be obtained had the system been well
described by a time-averaged Hamiltonian, since the
time-averaged potential (shown in black) is smooth and
its potential is highest at the edges.

We next discuss the approach to the long-time periodic

state as a function of time and system sizes. After showing

that the stroboscopic values of observables approach, then

oscillate around, a constant value for each ϵ, we proceed
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to demonstrate that both this average value and the relative

magnitude of the oscillations away from it decay to zero

with increasing system size, in agreement with our ana-

lytical results for infinite systems. The approach is rapid:

within a few periods, the system is practically thermalized.

The main plot of Fig. 2 shows the stroboscopic approach

to the PGE state of the full bosonic momentum distribu-

tion, n̂ðbÞðk;mTÞ, for the parameters corresponding to the

black line in Fig. 1. The entire momentum distribution

approaches, then oscillates around, a period-independent

result. The inset focuses on the component n̂ðbÞðk ¼ π=2Þ,
showing the stroboscopic time evolution of its difference

from the value predicted by the PGE as a function of period,

showing the oscillations about the equilibrium value shown

by the heavy blue lines.

We now quantitatively study the approach to the PGE

limit as system size is increased. In Fig. 3, we plot the

average of the distance of the dynamical momentum dis-

tribution from its PGE value over a number of periods,

d̄ ¼ ðLNÞ−1
P

nþN
m¼n

P

k jn̂
ðbÞðk;mTÞ − n̂PGEðkÞj, as a func-

tion of the inverse system size 1=L. These plots are for large
n ¼ 40L andN ¼ 20L in order to to allow plenty of time for

equilibration. From Fig. 3, we conclude that the average of

the momentum distribution approaches the PGE result, while

fluctuations away from it on average become smaller with

increasing system size: as L → ∞, the momentum distri-

bution rapidly approaches the PGE periodic steady state.

In conclusion, we have shown that the real dynamics

rapidly approaches the thermodynamic-limit and long-time

results for relatively small systems and short times.

Experiments.—We now turn to the question of the

experimental implementation of the specific system we

have studied. To realize our proposal, three ingredients are

required: A superlattice potential, periodic modulation,

and HCBs.

Experiments using a superlattice potential are already

available [29], while periodic modulation of the lattice

depth [18,30] is a standard technique. In particular, peri-

odically driving a superlattice potential is described in

Ref. [21]. Finally, the HCB regime may be achieved via

confinement-induced resonance, which involves manipu-

lating the radial harmonic potential strength [31,32].

The example we have studied above is, therefore,

accessible with current experimental techniques.

Conclusions and outlook.—For a large class of inte-

grable periodically driven systems, we have shown that a

periodic steady state is attained at long times. To describe

this state, we have constructed a periodic version of the

generalized Gibbs ensemble (GGE) [5], commonly intro-

duced in connection with quenches in integrable models.

We have provided an analytical demonstration that it

exactly reproduces the periodic steady state in the thermo-

dynamic limit. We also provide numerical evidence

of rapid convergence (i) to the thermodynamic-limit

FIG. 1 (color online). Characterization of the synchronized steady state. Left: Stroboscopic momentum distribution,

n̂ðkÞ ¼ L−1
P

i;jb̂
†
i b̂j exp½−2πikði − jÞL−1�, demonstrating the wide range of behavior that occurs for varying parameters. The points

correspond to snapshots of the dynamical evolution at late times (t ¼ 490T) for L ¼ 200, while the continuous lines correspond to the

PGE prediction. From top to bottom at the extreme left end of the plot, the amplitudes of the superlattice potential, frequency, and filling

factor (Δ, δJ, ω, ν) are (0.6, 0.5, 1.6, 3=4) (black, dot-dashed), (4, 0.5, 1.5, 1=3) (yellow, dashed), (4, 0.75, 2, 1=3) (cyan, full), (0.6, 0.5,
2, 1=4) (magenta, dotted), and ϵ ¼ 0. The next two panels correspond to the parameters for the cyan full line. Center: Expectation value

of the momentum distribution n̂ðkÞ of the bosons during a single period in the synchronized state as a function of the time in the period ϵ.

The three lines on the time-momentum plane indicate the times ϵ=T ¼ 0, 0.15, 0.25 for which density distributions are shown in the

rightmost panel. The momentum distribution undergoes qualitative changes: at some points of the period, it has a single maximum

at k ¼ 0 while at others it acquires double maxima at the edges of the Brillouin zone. Right: Each trace shows the expectation value of

the density of the bosons n̂bi ¼ b̂†i b̂i at the time indicated in the middle panel by the line of the same color, for a lattice size L ¼ 100

and offset for better visibility. The black line indicates the time average of the applied potential; the density peaks at the edges despite

the potential being highest there indicating a strongly nonequilibrium situation.
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prediction with increasing system size and (ii) to the steady

state with time.

It is now natural to ask whether, and how, our results can

be extended to a nonintegrable situation. Our PGE is

analogous to the GGE for nondriven systems [5]; the

analogy would suggest that, for a closed, nonintegrable,

periodically driven system, a subsystem for which the rest

of the system plays the role of a bath might be described

by the periodic density matrix operator exp½ĤeffðϵÞ ¼
Ûð0; ϵÞĤeffÛ

†ð0; ϵÞ�, analogous to the Gibbs ensemble

for nondriven systems [11]. Unfortunately, there are several

issues with this; chief amongst them are that ĤeffðϵÞ is not a

local operator in general and, more seriously, that ĤeffðϵÞ is
not uniquely defined (its eigenvalues are only defined

modulo 2π=T— we do not use the eigenvalues and,

therefore, circumvent this problem in our work). We are

currently investigating possible resolutions of these con-

ceptual issues.

Our work here should be compared to the usual situation

for out-of-equilibrium systems, where each case has to be

studied individually using ad hoc techniques tailored to

the specific problem at hand. In contrast, for this type of

periodically driven system, the general framework of

maximum entropy statistical mechanics applies as is. It

not only gives the correct ensemble but also allows the

detailed computation of physical observables. We hope

that this work will motivate the search for further such

“thermodynamic” principles governing driven systems in

all generality.

We acknowledge discussions with M. Aidelsburger, M.

Atala, J. T. Barreiro, and I. Bloch. A. L. thanks M. Kollar,

O. Tieleman, P. Ribeiro, A. Eckardt, T. Scheler, A. Sen,

V. Bastidas, and M. Haque for discussions. A. D. acknowl-

edges inspiring general discussions with E. Tosatti on

nonequilibrium in the past.

[1] M. Srednicki, Phys. Rev. E 50, 888 (1994).

[2] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).

[3] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)

452, 854 (2008).

[4] M. A. Cazalilla, A. Iucci, and M.-C. Chung, Phys. Rev. E

85, 011133 (2012).

[5] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys.

Rev. Lett. 98, 050405 (2007).

[6] P. Calabrese, F. H. L. Essler, and M. Fagotti, Phys. Rev. Lett.

106, 227203 (2011).

[7] P. Reimann, Phys. Rev. Lett. 101, 190403 (2008).

[8] M. Fagotti and F. H. L. Essler, Phys. Rev. B 87, 245107

(2013).

[9] E. T. Jaynes, Phys. Rev. 106, 620 (1957).

[10] S. Pressé, K. Ghosh, J. Lee, and K. A. Dill, Rev. Mod. Phys.

85, 1115 (2013).

[11] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2, 754

(2006).

[12] J. H. Shirley, Phys. Rev. 138, B979 (1965).

FIG. 2 (color online). Main plot: Stroboscopic approach to

equilibrium with time for the full momentum distribution of the

bosons n̂ðbÞ, corresponding to the heavy black line in Fig. 1 and

for a system size L ¼ 200 sites. Note the brief initial transient

period, followed by small oscillations around a well-defined

limit. Inset: Same as the main plot, but for a single component

of the momentum distribution. In this plot, dπ=2ðmÞ ¼
½n̂ðbÞðk ¼ π=2; mTÞ − n̂

ðbÞ
PGEðk ¼ π=2Þ�=n̂

ðbÞ
PGEðk ¼ π=2Þ measures

the deviation of the actual value from the prediction of the PGE.

The heavy blue lines show the average of the deviations

after discarding the first 50 periods, which approximates the

long-time average. These plots demonstrate that the expectation

value of the operator approaches, then oscillates about,

a value that is very close (within a few percent) to the PGE

prediction. Both the deviation of the average from the PGE

prediction and the relative magnitude of the fluctuations about

the mean value are shown to scale to zero with system size

in Fig. 3.

FIG. 3 (color online). Approach to equilibrium with system

size. The Hamiltonian and color coding is the same as in

Fig. 1. Here, d̄ measures distance from the PGE prediction,

d̄ ¼ ðLNÞ−1
P

nþN
m¼n

P

k jn̂ðk;mTÞ − n̂PGEðkÞj. We take n ¼ 40L
and N ¼ 20L, large enough so that the results are insensitive

to further increase. The dashed green line is a plot of d̄ ∝ L−1 to

guide the eye. These results strongly suggest that the distance

of the long-time behavior of the system from our prediction at

the thermodynamic limit falls off as a power law.

PRL 112, 150401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

150401-4

http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevE.85.011133
http://dx.doi.org/10.1103/PhysRevE.85.011133
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1103/PhysRevLett.106.227203
http://dx.doi.org/10.1103/PhysRevLett.101.190403
http://dx.doi.org/10.1103/PhysRevB.87.245107
http://dx.doi.org/10.1103/PhysRevB.87.245107
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/RevModPhys.85.1115
http://dx.doi.org/10.1103/RevModPhys.85.1115
http://dx.doi.org/10.1038/nphys444
http://dx.doi.org/10.1038/nphys444
http://dx.doi.org/10.1103/PhysRev.138.B979


[13] H. Sambe, Phys. Rev. A 7, 2203 (1973).

[14] M. Grifoni and P. Hanggi, Phys. Rep. 304, 229 (1998).

[15] A. Das, Phys. Rev. B 82, 172402 (2010).

[16] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95,

260404 (2005).

[17] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).

[18] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger,

Phys. Rev. Lett. 92, 130403 (2004).

[19] H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E.

Arimondo, S. Montangero, G. Pupillo, and R. Fazio, Phys.

Rev. A 79, 041601 (2009).

[20] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart,

G. Pupillo, and H.-C. Naegerl, Science 325, 1224 (2009).

[21] T. Iadecola, C. Chamon, R. Jackiw, and S.-Y. Pi, Phys. Rev.

B 88, 104302 (2013).

[22] Y.-A. Chen, S. Nascimbène, M. Aidelsburger, M. Atala,

S. Trotzky, and I. Bloch, Phys. Rev. Lett. 107, 210405 (2011).

[23] A. Russomanno, A. Silva, and G. E. Santoro, Phys. Rev.

Lett. 109, 257201 (2012).

[24] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.112.150401 for details.

[25] M. Rigol and A. Muramatsu, Phys. Rev. A 70, 031603

(2004).

[26] M. Rigol and A. Muramatsu, Mod. Phys. Lett. B 19, 861

(2005).

[27] It is worth pointing out that n̂ðbÞ for the bosons is neither

bilinear nor local in terms of the Jordan-Wigner fermions,

since b̂†i b̂j ¼ â†i ½
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