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The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs

is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the

linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad

dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed

dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients

can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a

natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum

heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence

effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system

Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a

heat bath of sinusoidally modulated temperature.

DOI: 10.1103/PhysRevE.93.062134

I. INTRODUCTION

In a thermodynamic cycle, a working fluid is driven

by a sequence of control operations, e.g., compressions

and expansions through a moving piston, and temperature

variations such that its initial state is restored after one

period [1]. The net effect of such a process thus consists in

the transfer of heat and work between a set of controllers and

reservoirs external to the system. This concept was originally

designed to link the operation principle of macroscopic

machines such as Otto or Diesel engines with the fundamental

laws of thermodynamics. As a paramount result, these efforts

inter alia unveiled that the efficiency of any heat engine

operating between two reservoirs of respectively constant

temperature is bounded by the Carnot value.

During the last decade, thermodynamic cycles have been

implemented on increasingly smaller scales. Particular land-

marks of this development are mesoscopic heat engines, whose

working substance consists of a single colloidal particle [2,3]

or a micrometer-sized mechanical spring [4]. Recently, a

further milestone was achieved by crossing the border to

the quantum realm in experiments realizing cyclic thermo-

dynamic processes with objects like single electrons [5,6] or

atoms [7,8]. In the light of this progress, the question emerges

whether quantum effects might allow us to overcome classical

limitations such as the Carnot bound [9]. Indeed, there is

quite some evidence that the performance of thermal devices

can, in principle, be enhanced by exploiting, for example,

coherence effects [10–17], nonclassical reservoirs [18–22],

level degeneracy [23,24], or the properties of superconducting

materials [25]. These studies are, however, mainly restricted to

specific models and did so far not reveal a universal mechanism

that would allow cyclic energy converters to benefit from

quantum phenomena. Systematic investigations towards this

direction are generally scarce and typically assume either

infinitely slow operation or a temporary decoupling of the

system from its environment; see for example [26,27].

The theoretical description of quantum thermodynamic

cycles generally faces two major challenges. First, the

external control parameters are typically varied nonadiabat-

ically. Therefore, the state of the working fluid cannot be

described by an instantaneous Gibbs-Boltzmann distribution,

an assumption inherent to conventional macroscopic thermo-

dynamics. Second, the degrees of freedom of the working

substance are inevitably affected by both thermal and quantum

fluctuations, which must be consistently taken into account.
In this paper, we take a substantial step towards a general

framework overcoming both of these obstacles. To this end,
we consider the generic setup of Fig. 1, i.e., a small quantum

FIG. 1. Illustration of a periodically driven open quantum system.

The energy of the system, symbolically shown as an atom confined

in a chamber, is modulated by three external controllers, each of

which is represented by a reciprocating piston. Simultaneously, heat

is exchanged with one cold and one hot reservoir.

2470-0045/2016/93(6)/062134(20) 062134-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.062134


KAY BRANDNER AND UDO SEIFERT PHYSICAL REVIEW E 93, 062134 (2016)

system, which is in contact with a set of thermal reservoirs,
whose temperatures change periodically, and driven by mul-
tiple controllers altering its Hamiltonian. Building on the
concepts originally developed in [28], we devise a universal
approach that describes the corresponding thermodynamic
process in terms of time-independent affinities and cycle-
averaged fluxes. Using the well-established weak-coupling
scheme thereby allows us to consistently identify thermo-
dynamic quantities without detaching the system from the
reservoirs during the cycle. Furthermore, by focusing on mean
values, we avoid subtleties associated with the definitions of
heat and work for single realizations [29–33]. In borrowing a
term, which was coined by Kohn [34] to denote a theory of
quantum systems interacting with strong laser fields and later
used in various contexts [35,36], we refer to this scheme as
periodic thermodynamics of open quantum systems.

In the linear response regime, where temperature and
energy variations can be treated perturbatively, a quantum
thermodynamic cycle is fully determined by a set of time-
independent kinetic coefficients. Such quantities were in-
troduced in [37–39] for some specific models of Brownian
heat engines and later obtained on a more general level
for classical stochastic systems with continuous [28,40] and
discrete states [41,42]. Here, we prove two universal properties
of the quantum kinetic coefficients for open systems following
a Markovian time evolution. First, we derive a general-
ized reciprocity relation stemming from microreversibility.
Second, we establish a whole hierarchy of constraints,
which explicitly account for coherences between unperturbed
energy eigenstates and lie beyond the laws of classical
thermodynamics.

For quantum heat engines operating under linear response

conditions, these relations imply strong restrictions showing

that quantum coherence is generally detrimental to both power

and efficiency. In particular, the Carnot bound can be reached

only if the external driving protocol commutes with the

unperturbed Hamiltonian of the working substance, which

then effectively behaves like a discrete classical system. As

one of our key results, we can thus conclude that any thermal

engine, whose performance is truly enhanced through quantum

effects, must be equipped with components that are not covered

by our general setup as for example nonequilibrium reservoirs

or feedback mechanisms.

The rest of the paper is structured as follows. We begin with

introducing our general framework in Sec. II. In Sec. III we

outline a set of requirements on the Lindblad generator, which

ensure the thermodynamic consistency of the corresponding

time evolution. Using this dynamics we then focus on quantum

kinetic coefficients in Sec. IV. Section V is devoted to the

derivation of general bounds on the figures of performance of

quantum heat engines. We work out an explicit example for

such a device in Sec. VI. Finally, we conclude in Sec. VII.

II. FRAMEWORK

A. General scheme

As illustrated in Fig. 1, we consider an open quantum sys-

tem, which is mechanically driven by Nw external controllers

and attached to Nq heat baths with respectively time-dependent

temperature Tν(t). The total Hamiltonian of the system is

given by

H (t) ≡ H 0 +
Nw
∑

j=1

�jH gwj (t), (1)

where H 0 corresponds to the free Hamiltonian, the dimen-

sionless operator gwj (t) represents the driving exerted by the

controller j , and the scalar energy �jH quantifies the strength

of this perturbation. For this setup, the first law reads

U̇ (t) =
Nq
∑

ν=1

Q̇ν(t) −
Nw
∑

j=1

Ẇj (t) (2)

with dots indicating derivatives with respect to time throughout

the paper. Furthermore, by expressing the internal energy

U (t) ≡ tr{H (t)̺(t)} (3)

in terms of the density matrix ̺(t) characterizing the state of

the system, we obtain

U̇ (t) = tr{H (t) ˙̺ (t)} + tr{Ḣ (t)̺(t)}

= tr{H (t) ˙̺ (t)} +
Nw
∑

j=1

�jH tr{ġw(t)̺(t)}, (4)

where we used (1) in the second line and tr{•} denotes the

trace operation. Comparing this result with (2) allows us to

identify the power extracted by the controller j and the total

heat current absorbed from the environment as

Ẇj (t) ≡ −�jH tr{ġwj (t)̺(t)} (5)

and

Nq
∑

ν=1

Q̇ν(t) ≡ tr{H (t) ˙̺ (t)}, (6)

respectively. Here, we have applied the well-established

definitions of heat and work for systems weakly coupled to

their environment [43–46]. We note that (3) does not lead

to a microscopic expression for the individual heat current

Q̇ν(t) related to the reservoir ν. This indeterminacy arises

because thermal perturbations cannot be included in the total

Hamiltonian H (t). Taking them into account explicitly rather

requires us to specify the mechanism of energy exchange

between system and each of the individual reservoir.

Still, any dissipative dynamics must be consistent with the

second law, which requires

Ṡ(t) ≡ Ṡsys(t) −
Nq
∑

ν=1

Q̇ν(t)

Tν(t)
� 0, (7)

with Ṡ(t) denoting the total rate of entropy production. The

first contribution showing up here corresponds to the change

in the von Neumann entropy of the system,

Ssys(t) ≡ −kBtr{̺(t) ln ̺(t)}, (8)

where kB denotes Boltzmann’s constant. The second one

accounts for the entropy production in the environment. We

now focus on the situation where the Hamiltonian H (t) and

the temperatures Tν(t) are T periodic in time. After a certain

relaxation time, the density matrix of the system will then settle
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to a periodic limit cycle ̺c(t) = ̺c(t + T ). Consequently, after

averaging over one period, (7) becomes

Ṡ ≡
1

T

∫ T

0

dtṠ(t) = −
1

T

Nq
∑

ν=1

∫ T

0

dt
Q̇ν(t)

Tν(t)
, (9)

i.e., no net entropy is produced in the system during a full

operation cycle.

The entropy production in the environment can be attributed

to the individual controllers and reservoirs by parametrizing

the time-dependent temperatures as [28]

Tν(t) ≡
T h

ν T c

T h
ν +

(

T c − T h
ν

)

γqν(t)
. (10)

Here, T c � Tν(t) denotes the reference temperature, T h
ν is

the maximum temperature reached by the reservoir ν, and

the 0 � γqν(t) � 1 are dimensionless functions of time.

Inserting (2), (5), and (10) into (9) yields

Ṡ =
Nw
∑

j=1

FwjJwj +
Nq
∑

ν=1

FqνJqν (11)

with generalized affinities

Fwj ≡
�jH

T c
, Fqν ≡

1

T c
−

1

T h
ν

(12)

and generalized fluxes

Jwj ≡
1

T

∫ T

0

dt tr{ġwj (t)̺c(t)}, (13)

Jqν ≡
1

T

∫ T

0

dtγqν(t)Q̇ν(t). (14)

Expression (11), which constitutes our first main result, resem-

bles the generic form of the total rate of entropy production

known from conventional irreversible thermodynamics [1]. It

shows that the mean entropy, which must be generated to

maintain a periodic limit cycle in an open quantum system,

can be expressed as a bilinear form of properly chosen fluxes

and affinities. Each pair thereby corresponds to a certain source

of mechanical or thermal driving.

B. Linear response regime

A particular advantage of our approach is that it allows a

systematic analysis of the linear response regime, which is

defined by the temporal gradients �νT ≡ T h
ν − T c and �jH

being small compared to their respective reference values T c

and

Eeq ≡ tr{H 0̺eq}. (15)

Here,

̺eq ≡ exp[−H 0/(kBT c)]/Z0 (16)

denotes the equilibrium state of the system and Z0 the

canonical partition function.

The generalized fluxes (13) and (14) then become

Jα ≡
∑

β

LαβFβ + O(�2), (17)

where

Fwj =
�jH

T c
and Fqν =

�νT

(T c)2
+ O(�2). (18)

The combined indices α,β ≡ wj,qν allow a compact notation.

The generalized kinetic coefficients Lαβ introduced in (17) are

conveniently arranged in a matrix

L ≡
(

Lww Lwq

Lqw Lqq

)

(19)

with

LAB ≡

⎛

⎜

⎝

LA1,B1 · · · LA1,BNB

...
. . .

...

LANA,B1 · · · LANA,BNB

⎞

⎟

⎠
(A,B ≡ w,q).

(20)

Inserting (17) into (11) shows that, in the linear response

regime, the mean entropy production per operation cycle

becomes

Ṡ =
∑

αβ

LαβFαFβ =
F

t (L + L
t )F

2
≡ F

t
L

s
F (21)

with F ≡ (Fw1, . . . ,FwNw
,Fq1, . . .FqNq

)t . Consequently, the

second law Ṡ � 0 implies that the symmetric part L
s of the

matrix L must be positive semidefinite.

III. MARKOVIAN DYNAMICS

So far, we have introduced a universal framework for

the thermodynamic description of periodically driven open

quantum systems. We will now apply this scheme to systems,

whose time evolution is governed by the Markovian quantum

master equation [47]

∂t̺(t) = L(t)̺(t) (22)

with generator

L(t) ≡ H(t) +
Nq
∑

ν=1

Dν(t). (23)

Here, the superoperator

H(t)• ≡ −
i

�
[H (t),•] (24)

describes the unitary dynamics of the bare system, where

[•,◦] indicates the usual commutator and � denotes Planck’s

constant. The influence of the reservoir ν is taken into account

by the dissipation superoperator

Dν(t)• ≡
∑

σ

Ŵσ
ν (t)

2

([

V σ
ν (t) • ,V σ†

ν (t)
]

+
[

V σ
ν (t), • V σ†

ν (t)
])

(25)

with time-dependent rates Ŵσ
ν (t) � 0 and Lindblad operators

V σ
ν (t). As a consequence of this structure, the time evolution

generated by (22) can be shown to preserve trace and complete

positivity of the density matrix ̺(t) [48,49]. Furthermore,

after a certain relaxation time, it leads to a periodic limit

cycle ̺c(t) = ̺c(t + T ) for any initial condition [50]. For later
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purpose, we introduce here also the unperturbed generator

L(t)|F=0 ≡ L
0 ≡ H

0 +
Nq
∑

ν=1

D
0
ν with

H
0• ≡ −

i

�
[H 0,•] and

D
0
ν• ≡

∑

σ

Ŵσ
ν

2

([

V σ
ν • ,V σ†

ν

]

+
[

V σ
ν , • V σ†

ν

])

, (26)

where we assume the set of free Lindblad operators {V σ
ν } to

be self-adjoint and irreducible [51].

The structure (23) of the generator L(t) naturally leads to

microscopic expressions for the individual heat currents Q̇ν(t).

Specifically, after insertion of (22) and (23), the total heat

uptake (6) can be written in the form

Nq
∑

ν=1

Q̇ν(t) =
Nq
∑

ν=1

tr{H (t)Dν(t)̺(t)}, (27)

which suggests the definition [43,45,52]

Q̇ν(t) ≡ tr{H (t)Dν(t)̺(t)}. (28)

This identification has been shown to be consistent with

the second law (7) if the dissipation superoperators Dν(t)

fulfill [43,53]

Dν(t)̺ins
ν (t) = 0, (29)

where

̺ins
ν (t) ≡ exp[−H (t)/(kBTν(t))]/Zν(t), (30)

where Zν(t) ≡ tr{exp[−H (t)/(kBTν(t))]} denotes an instanta-

neous equilibrium state. In Appendix A, we show that, if the

reservoirs are considered mutually independent, (29) is also a

necessary condition for (7) to hold.

After specifying the dissipative dynamics of the system,

the expressions for the generalized fluxes (13) and (14) can be

made more explicit. First, integrating by parts with respect to

t in (13) and then eliminating ˙̺ c(t) using (22) yields

Jwj = −
1

T

∫ T

0

dt tr{gwj (t)L(t)̺c(t)}. (31)

The corresponding boundary terms vanish, since gwj (t) and

̺c(t) are T periodic in t . Second, by plugging (28) into (14),

we obtain the microscopic expression

Jqν =
1

T

∫ T

0

dtγqν(t)tr{H (t)Dν(t)̺c(t)} (32)

for the generalized heat flux extracted from the reservoir ν.

As a second criterion for thermodynamic consistency, we

require that the unperturbed dissipation superoperators D0
ν

fulfill the quantum detailed balance relation [54–57]

D
0
ν̺

eq = ̺eq
D

0†
ν . (33)

This condition ensures that, in equilibrium, the net rate of

transitions between each individual pair of unperturbed energy

eigenstates is zero. Note that, in (29), Dν(t) acts on the operator

exponential, while (33) must be read as an identity between

superoperators. Furthermore, throughout this paper, the adjoint

of superoperators is indicated by a dagger and understood with

respect to the Hilbert-Schmidt scalar product [47], i.e., for

example

D
0†
ν • ≡

∑

σ

Ŵσ
ν

2

(

V σ†
ν

[

• ,V σ
ν

]

+
[

V σ†
ν , •

]

V σ
ν

)

. (34)

For systems which can be described on a finite-dimensional

Hilbert space, (33) implies that the superoperator D0
ν can be

written in the natural form [54–56]

D
0
ν• =

1

2

∑

σ

Ŵσ
ν

([

V σ†
ν • ,V σ

ν

]

+
[

V σ†
ν , • V σ

ν

])

+ Ŵ̄σ
ν

([

V σ
ν • ,V σ†

ν

]

+
[

V σ
ν , • V σ†

ν

])

with

Ŵ̄σ
ν ≡ Ŵσ

ν exp
[

−εσ
ν /(kBT c)

]

, Ŵσ
ν > 0,

[

H 0,V σ
ν

]

= εσ
ν V σ

ν , and εσ
ν � 0. (35)

Conversely, however, these conditions imply (33) even if

the dimension of the underlying Hilbert space is infinite.

Therefore, the results of the subsequent sections, which

rely on both (33) and (35), are not restricted to systems

with a finite spectrum. They rather apply whenever the

unperturbed dissipation superoperators D0
ν have the form (35)

as, for example, in the standard description of the dissipative

harmonic oscillator [29,47,58].

The characteristics of the generator L(t) discussed in this

section form the basis for our subsequent analysis. Although

they are justified by phenomenological arguments involving

the second law and the principle of microreversibility, it is

worth noting that most of these properties can be derived

from first principles. Specifically, (33) and (35) have been

shown to emerge naturally from a general microscopic model

for a time-independent open system in the weak-coupling

limit [52,55,59–61]. Moreover, for a single reservoir of

constant temperature, the time-dependent relation (29) has

been derived using a similar method under the additional

assumption that the time evolution of the bare driven system

is slow on the time scale of the reservoirs [62,63]. In the

opposite limit of fast driving, this microscopic scheme can

be combined with Floquet theory to obtain an essentially

different type of Lindblad generator [50,64–68], which has

recently been actively investigated in the context of thermal

devices [13,23,24,69,70]. The thermodynamic interpretation

of this approach is, however, not yet settled. The question

how a thermodynamically consistent master equation for a

general setup involving a driven system, multiple reservoirs,

and time-dependent temperatures can be derived from first

principles is still open at this point.

IV. GENERALIZED KINETIC COEFFICIENTS

A. Microscopic expressions

Solving the master equation (22) within a first order pertur-

bation theory and exploiting the properties of the generator L(t)

discussed in the previous section leads to explicit expressions

for the generalized kinetic coefficients (17). For convenience,

we relegate this procedure to the first part of Appendix B and
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present here only the result:

Lwj,wk ≡ Lins
wj,wk + Lret

wj,wk ≡ −
1

kBT

∫ T

0

dt〈gwj (t),L̃0†gwk(t)〉 −
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gwj (t),L̃0†eL̃0†τ
L̃

0†gwk(t − τ )
〉

,

Lwj,qν ≡ Lins
wj,qν + Lret

wj,qν ≡ −
1

kBT

∫ T

0

dt
〈

gwj (t),D0†
ν gqν(t)

〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gwj (t),L̃0†eL̃0†τ
D

0†
ν gqν(t − τ )

〉

,

(36)

Lqν,wj ≡ Lins
qν,wj + Lret

qν,wj ≡ −
1

kBT

∫ T

0

dt
〈

gqν(t),D0†
ν gwj (t)

〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gqν(t),D0†
ν eL̃0†τ

L̃
0†gwj (t − τ )

〉

,

Lqν,qμ ≡ Lins
qν,qμ + Lret

qν,qμ ≡ −
δνμ

kBT

∫ T

0

dt
〈

gqν(t),D0†
ν gqν(t)

〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gqν(t),D0†
ν eL̃0†τ

D
0†
μ gqμ(t − τ )

〉

,

where δνμ denotes the Kronecker symbol, gwj (t) was defined

in (1),

gqν(t) ≡ −γqν(t)H 0, (37)

and

L̃
0† ≡ H

0 +
Nq
∑

ν=1

D
0†
ν . (38)

Furthermore, we introduced the scalar product [71]

〈•,◦〉 ≡
∫ 1

0

dλ tr{•†Rλ ◦ R−λ̺eq} with

R ≡ exp[−H 0/(kBT c)] (39)

in the space of operators.

The two parts of the coefficients Lαβ showing up in (36)

can be interpreted as follows. First, the modulation of the

Hamiltonian and the temperatures of the reservoirs leads to

nonvanishing generalized fluxes Jwj and Jqν even before the

system has time to adapt to these perturbations. This effect

is captured by the instantaneous coefficients Lins
αβ . Second, in

responding to the external driving, the state of the system

deviates from thermal equilibrium thus giving rise to the

retarded coefficients Lret
αβ . We note that the expressions (36)

do not involve the full generator L(t) but only the unperturbed

superoperators D0
ν and H0. This observation confirms the

general principle that linear response coefficients are fully

determined by the free dynamics of the system and the small

perturbations disturbing it [71].

Compared to the kinetic coefficients recently obtained for

periodically driven classical systems [28,41,42], the expres-

sions (36) are substantially more involved. This additional

complexity is, however, not due to quantum effects but rather

stems from the presence of multiple reservoirs, which has not

been considered in the previous studies. Indeed, as we show

in the second part of Appendix B, if only a single reservoir is

attached to the system, (36) simplifies to

Lab ≡ Lad
ab + L

dyn

ab = −
1

kBT

∫ T

0

dt〈δġa(t),δgb(t)〉

+
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

δġa(t),eL̃0†τ δġb(t − τ )
〉

, (40)

where a,b = wj,q1. The deviations of the external perturba-

tions from equilibrium are thereby defined as

δga(t) ≡ ga(t) − tr{ga(t)̺eq} = ga(t) − 〈1,ga(t)〉, (41)

where dots indicate derivatives with respect to t and 1 denotes

the unity operator. Expression (40) has precisely the same

structure as its classical analog with the only difference that

the scalar product had to be modified according to (39) in

order to account for the noncommuting nature of quantum

observables.

As in the classical case, the single-reservoir coefficients (40)

can be split into an adiabatic part Lad
ab, which persists even for

infinitely slow driving, and a dynamical one L
dyn

ab containing

finite-time corrections. This partitioning, which was suggested

in [28], is, however, not equivalent to the division into instan-

taneous and retarded contributions introduced here. In fact,

the latter scheme is more general than the former one, which

cannot be applied when the system is coupled to more than

one reservoir. In such setups, temperature gradients between

distinct reservoirs typically prevent the existence of a universal

adiabatic state, which, in the case of a single reservoir, is given

by the instantaneous Boltzmann distribution [41].

B. Reciprocity relations

After deriving the explicit expressions for the generalized

kinetic coefficients (36), we will now explore the interrelations

between these quantities. To this end, we first have to discuss

the principle of microscopic reversibility or T symmetry [72–

74]. A closed and autonomous, i.e., undriven, quantum system

is said to be T symmetric if its Hamiltonian commutes with

the antiunitary time-reversal operator T [75]. In generalizing

this concept, here we call an open, autonomous system T

symmetric if the generator L0 governing its time evolution

fulfills

L
0̺eq

T = T̺eq
L

0†, (42)

where

T• ≡ T • T −1 (43)

and ̺eq is the stationary state associated with L0. This definition

is motivated by the fact that, within the weak-coupling

approach, (42) arises from the T symmetry of the total system

including the reservoirs and their coupling to the system

proper [60]. Note that, here, we assume the absence of external

magnetic fields.
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The condition (42) was derived by Agarwal in order to

extend the classical notion of detailed balance to the quantum

realm [74]. In the same spirit, Kossakowski obtained the

relation (33) and the structure (35) without reference to

time-reversal symmetry. Provided that L0 has the Lindblad

form (26), the condition (33) is indeed less restrictive than (42).

In fact, (42) follows from (35) and (26) under the additional

requirement that [54]

T H 0 = H 0T and T V σ
ν = V σ

ν T . (44)

Microreversibility implies an important property of the

generalized kinetic coefficients (36). Specifically, if the free

Hamiltonian H 0 and the free Lindblad operators V σ
ν defined

in (26) satisfy (44), i.e., if the unperturbed system is T

symmetric, we have the reciprocity relations

Lαβ[gα(t),gβ(t)] = Lβα[Tgα(−t),Tgβ(−t)]. (45)

Here, the Lαβ are regarded as functionals of the perturbations

gα(t). The symmetry (45), which we prove in Appendix C,

constitutes the analog of the well-established Onsager rela-

tions [76,77] for periodically driven open quantum systems. Its

classical counterpart was recently derived in [28] for a single

reservoir and one external controller. Extensions to classical

setups with multiple controllers were subsequently obtained

in [41,42].

The quantities gqν(t) defined in (37) are invariant under the

action T by virtue of (44). Thus, if the modulations of the

Hamiltonian fulfill Tgwj (t) = gwj (t), (45) reduces to

Lαβ[gα(t),gβ(t)] = Lβα[gα(−t),gβ(−t)]. (46)

Furthermore, if the gwj (t) can be written in the form

gwj (t) = γwj (t)gwj , (47)

where γwj (t) ∈ R and Tgwj = gwj , the special symmetry

Lαβ[γα(t),γβ(t)] = Lβα[γβ(t),γα(t)] (48)

holds, which, in contrast to (45) and (46), does not involve the

reversed protocols (see Appendix C for details).

C. Quantum effects

We will now explore to what extend the kinetic coeffi-

cients (36) show signatures of quantum coherence. To this end,

we assume for simplicity that the spectrum of the unperturbed

Hamiltonian H 0 is nondegenerate. A quasiclassical system is

then defined by the condition

[H 0,gwj (t)] = 0 for j = 1, . . . ,Nw, (49)

which entails that, up to second-order corrections in �jH and

�νT , the periodic state ̺c(t) is diagonal in the joint eigenbasis

of H 0 and the perturbations gwj (t) at any time t . Thus,

the corresponding kinetic coefficients effectively describe a

discrete classical system with periodically modulated energy

levels given by the eigenvalues of the full Hamiltonian

H (t). This result, which is ultimately a consequence of the

detailed balance structure (35), is proven in the first part of

Appendix D, where we also provide explicit expressions for

the quasiclassical kinetic coefficients Lcl
αβ .

For a systematic analysis of the general case, where (49)

does not hold, we divide the perturbations

gwj (t) ≡ gcl
wj (t) + g

qu

wj (t) (50)

into a classical part gcl
wj (t) satisfying (49) and a coherent

part g
qu

wj (t), which is purely nondiagonal in the unperturbed

energy eigenstates. By inserting this decomposition into (36)

and exploiting the properties of the superoperators D0†
ν arising

from (35), we find

Lwj,wk = Lcl
wj,wk + L

qu

wj,wk, Lwj,qν = Lcl
wj,qν

,
(51)

Lqν,wj = Lcl
qν,wj , Lqν,qμ = Lcl

qν,qμ,

where the coefficients Lcl
αβ and L

qu

αβ are obtained by replac-

ing gwj (t) with gcl
wj (t) and g

qu

wj (t) in the definitions (36),

respectively.

This additive structure follows from a general argument,

which we provide in the second part of Appendix D. It reveals

two important features of the kinetic coefficients (36). First, the

coefficients Lwj,wk interrelating the perturbations applied by

different controllers decay into the quasiclassical part Lcl
wj,wk

and a quantum correction L
qu

wj,wk . The latter contribution

is thereby independent of the classical perturbations gcl
wj (t)

and accounts for coherences between different eigenstates of

H 0. Second, the remaining coefficients are unaffected by the

coherent perturbations g
qu

wj (t) and thus, in general, constitute

quasiclassical quantities.

D. A hierarchy of new constraints

The reciprocity relations (45) establish a link between the

kinetic coefficients describing a certain thermodynamic cycle

and those corresponding to its time-reversed counterpart. For

an individual process determined by fixed driving protocols

gα(t), these relations do, however, not provide any constraints.

Still, the kinetic coefficients (36) are subject to a set of

bounds, which do not involve the reversed protocols and can be

conveniently summarized in the form of the three conditions

A � 0, A
cl � 0, and A − A

cl � 0, (52)

where

A ≡
1

2

⎛

⎜

⎝

2L
ins
qq 2Lqw 2Lqq

2L
t
qw Lww + L

t
ww Lwq + L

t
qw

2L
t
qq Lqw + L

t
wq Lqq + L

t
qq

⎞

⎟

⎠
and

A
cl ≡ A|Lwj,wk→Lcl

wj,wk
. (53)

Here, we used the block matrices Lab introduced in (20), the

diagonal matrix

L
ins
qq ≡ diag

(

Lins
q1,q1, . . . ,L

ins
qNq ,qNq

)

(54)

with entries defined in (36), and the quasiclassical kinetic co-

efficients Lcl
wj,wk introduced in (51). Furthermore the notation

• � 0 indicates that the matrices A, A
cl, and A − A

cl are

positive semidefinite. The proof of this property, which we give

in Appendix E, does not involve the T -symmetry relation (42)

but rather relies only on the condition (29), the detailed balance

relation (33), and the corresponding structure (35) of the
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Lindblad generator. We note that, in the classical realm, where

A
cl = A, (51) reduces to the single condition A � 0.

The second law stipulates that the matrix L
s defined in (21)

must be positive semidefinite. Since L
s is a principal submatrix

of A, this constraint is included in the first of the condi-

tions (52), which thus explicitly confirms that our formalism is

thermodynamically consistent. Moreover, (52) implies a whole

hierarchy of constraints on the generalized kinetic coefficients

beyond the second law (21). These bounds can be derived

by taking successively larger principal submatrices of A, A
cl,

or A − A
cl, which are not completely contained in L

s, and

demanding their determinant to be non-negative. For example,

by considering the principal submatrix

A
cl
2 ≡

(

2Lcl
wj,wj Lwj,qν + Lqν,wj

Lwj,qν + Lqν,wj 2Lqν,qν

)

(55)

of A
cl we find

Lcl
wj,wjLqν,qν − (Lwj,qν + Lqν,wj )2/4 � 0. (56)

Analogously, the principal submatrix

A
cl
3 ≡

1

2

⎛

⎝

2Lins
qν,qν 2Lqν,wj 2Lqν,qν

2Lqν,wj 2Lcl
wj,wj Lwj,qν + Lqν,wj

2Lqν,qν Lqν,wj + Lwj,qν 2Lqν,qν

⎞

⎠

(57)

yields the particularly important relation

Lqν,qν

Lins
qν,qν

�
Lcl

wj,wjLqν,qν − (Lwj,qν + Lqν,wj )2/4

Lcl
wj,wjLqν,qν − Lwj,qνLqν,wj

. (58)

The classical version of this constraint has been previously

used to derive a universal bound on the power output of

thermoelectric [78] and cyclic Brownian [28] heat engines.

As we will show in the next section, (58) implies that cyclic

quantum engines are subject to an even stronger bound.

V. QUANTUM HEAT ENGINES

We will now show how the framework developed so far

can be used to describe the cyclic conversion of heat into work

through quantum devices. To this end, we focus on systems that

are driven by a single external controller with corresponding

affinity Fw and one thermal force Fq such that two fluxes Jw

and Jq emerge. For convenience, we omit the additional indices

counting controllers and reservoirs throughout this section. We

note that this general setup covers not only heat engines but also

other types of thermal machines. An analysis of cyclic quantum

refrigerators, for example, can be found in Appendix F.

A. Implementation

A proper heat engine is obtained under the condition Jw <

0, i.e., the external controller, on average, extracts the positive

power

P ≡ −
1

T

∫ T

0

dt tr{Ḣ (t)̺c(t)} = −T cFwJw (59)

per operation cycle while the system absorbs the heat flux Jq >

0. The efficiency of this process can be consistently defined

as [28]

η ≡ P/Jq � ηC ≡ 1 − T h/T c, (60)

where the Carnot bound ηC follows from the second law

Ṡ � 0 and the bilinear form (11) of the entropy production.

This figure generalizes the conventional thermodynamic effi-

ciency [1], which is recovered if the system is coupled to two

reservoirs with respectively constant temperatures T c and T h,

either alternately or simultaneously. Both of these scenarios,

for which Jq becomes the average heat uptake from the hot

reservoir, are included in our formalism as special cases. The

first one is realized by the protocol

γq(t) ≡
{

1 for 0 � t < T1

0 for T1 � t < T
(61)

with 0 < T1 < T , the second one by setting γq(t) = 1.

B. Bounds on efficiency and power

Optimizing the performance of a heat engine generally

constitutes a highly nontrivial task, which is crucially de-

termined by the type of admissible control operations [79].

Following the standard approach, here we consider the

thermal gradient Fq and the temperature protocol γq(t) as

prespecified [28,40,80–83]. The external controller is allowed

to adjust the strength of the energy modulation Fw and to

select gw(t) from the space of permissible driving protocols,

which is typically restricted by natural limitations such as

inaccessible degrees of freedom [40]. Furthermore, we focus

our analysis on the linear response regime, where general

results are available due to fluxes and affinities obeying the

simple relations

Jw = LwwFw + LwqFq and Jq = LqwFw + LqqFq .

(62)

Rather than working directly with the kinetic coefficients

showing up in (62), it is instructive to introduce the dimen-

sionless quantities

x ≡
Lwq

Lqw

, y ≡
LwqLqw

LwwLqq − LwqLqw

, z ≡
L

qu
wwLqq

L2
wq

,

(63)

which admit the following physical interpretation. First, we

observe that, if the perturbations are invariant under full time

reversal, i.e., if

gw(t) = Tgw(−t) and gq(t) = Tgq(−t), (64)

the reciprocity relations (45) imply Lwq = Lqw and thus

x = 1. Thus, x provides a measure for the degree, to which

time-reversal symmetry is broken by the external driving.

Second, y constitutes a generalized figure of merit accounting

for dissipative heat losses. As a consequence of the second

law, it is subject to the bound

h � y � 0 for x < 0, and 0 � y � h for x � 0

(65)

with h ≡ 4x/(x − 1)2 [28,84]. Third, the parameter z quan-

tifies the amount of coherence between unperturbed energy

eigenstates that is induced by the external controller. If gw(t)

commutes with H 0, i.e., if the system behaves quasiclassically,

the quantum correction L
qu
ww vanishes leading to z = 0. Since
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Lqq ,L
qu
ww � 0 by virtue of (52), for any proper heat engine, z

is strictly positive if the driving protocol is nonclassical.

We will now show that the presence of coherence pro-

foundly impacts the performance of quantum heat engines. In

order to obtain a first benchmark parameter, we insert (62) into

the definition (60) and take the maximum with respect to Fw.

This procedure yields the maximum efficiency

ηmax = ηCx

√
1 + y − 1

√
1 + y + 1

, (66)

which becomes equal to the Carnot value ηC = T cFq +
O(�T 2) in the reversible limit y → h. However, the con-

straint (56) stipulates

hz � y � 0 for x < 0 and 0 � y � hz for x � 0

(67)

with hz ≡ 4x/[(x − 1)2 + 4x2z] thus giving rise to the

stronger bound

ηmax � ηCx

√
1 + hz − 1

√
1 + hz + 1

�
ηC

1 + 4z
, (68)

where the second inequality can be saturated only asymptot-

ically for x → ±∞. This bound, which constitutes one of

our main results, shows that Carnot efficiency is intrinsically

out of reach for any cyclic quantum engine operated with a

nonclassical driving protocol in the linear response regime.

As a second indicator of performance, we consider the

maximum power output

Pmax =
T cF2

q Lqq

4

xy

1 + y
, (69)

which is found by optimizing (59) with respect to Fw

using (62). This figure can be bounded by invoking the

constraint (58), which, in terms of the parameters (63), reads

Lqq � Lins
qq

1 − y/hz

1 − xyz
. (70)

Replacing Lqq in (69) with this upper limit and maximizing

the result with respect to x and y while taking into account the

condition (67) yields

Pmax �
T cF2

q Lins
qq

4

1

1 + z
. (71)

Hence, as a further main result, the power output is subject to

an increasingly sharper bound as the coherence parameter z

deviates from its quasiclassical value 0. In the deep-quantum

limit z → ∞, which is realized if the classical part gcl
w(t) of

the energy modulation vanishes, both power and efficiency

must decay to zero. These results hold under linear response

conditions, however for any temperature profile γq(t) and any

nonzero coherent driving protocol gqu(t).

Finally, as an aside, we note that, even in the quasiclassical

regime the constraint (70) rules out the option of Carnot

efficiency at finite power, which, at least in principle, exists

in systems with broken time-reversal symmetry [84–88].

Specifically, for z = 0, (70) implies the relation [28,78]

P � T cF2
q Lins

qq

{ η

ηC

(

1 − η

ηC

)

for |x| � 1

η

ηC

(

1 − η

ηCx2

)

for |x| < 1
, (72)

which constrains the power output at any given efficiency

η. We leave the question how this detailed bound is altered

when coherence effects are taken explicitly into account as an

interesting subject for future research.

VI. EXAMPLE

A. System and kinetic coefficients

As an illustrative example for our general theory, we

consider the setup sketched in Fig. 2. A two-level system with

free Hamiltonian

H 0 =
�ω

2
σz (73)

is embedded in a thermal environment, which is taken into

account via the unperturbed dissipation superoperator

D
0• ≡

Ŵ

2
([σ− • ,σ+] + [σ−, • σ+])

+
Ŵe−2κ

2
([σ+ • ,σ−] + [σ+, • σ−]) (74)

with the dimensionless parameter

κ ≡ �ω/(2kBT c) (75)

corresponding to the rescaled level splitting. This system is

driven by the temperature profile

T (t) ≡
T hT c

T h + (T c − T h)γq(t)
. (76)

Simultaneously, work can be extracted through the energy

modulation

�Hgw(t) ≡ �Hγw(t)(cos θ σz + sin θ σx), (77)

where γw(t) and γq(t) are T -periodic functions of time.

Furthermore, σx,σy,σz denote the usual Pauli matrices and

FIG. 2. Two snapshots of the operation cycle of a two-level

quantum heat engine. A single particle is confined in a double well

potential and coupled to a thermal reservoir, whose temperature

oscillates between T h (left panel) and T c < T h (right panel). In a

coarse-grained picture, this setup can be described as a two-level

system, where the particle is localized either in the left or in the

right well. Work is extracted from the system by varying a certain

external control parameter, which affects both the energetic difference

between the two minima of the potential and the height of the barrier

separating them. This control operation, which corresponds to the

nonclassical driving protocol (77), inevitably allows the particle to

tunnel between the two wells. Consequently, it will typically be found

in a coherent superposition of the unperturbed energy-eigenstates

during the thermodynamic cycle.
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σ± ≡ (σx ± iσy)/2. The parameter 0 � θ � π quantifies the

relative degree, to which the external controller induces

shifting of the free energy levels and coherent mixing between

them.

The kinetic coefficients describing the thermodynamics of

this system in the linear response regime can be obtained from

the relation (40). To this end, we first evaluate the deviations

from equilibrium

δgw(t) = γw(t)(cos θ σz + tanh κ cos θ 1 + sin θ σx),

δgq(t) = −kBT cκγq(t)(σz + tanh κ 1) (78)

according to the definition (41). Inserting these expressions

into (40), after some straightforward algebra, yields

Lcl
ab = −

ξ cl
a ξ cl

b

kBT

∫ T

0

dt

(

γ̇a(t)γb(t)

−
∫ ∞

0

dτ γ̇a(t)γ̇b(t − τ )e−Ŵ̂τ

)

,

Lqu
ww =

(

ξ
qu
w

)2

kBT

∫ T

0

dt

∫ ∞

0

dτ γ̇w(t)γ̇w(t − τ )e−Ŵ̂τ/2 cos[ωτ ],

(79)

where a,b = w,q and the abbreviations

ξ cl
w ≡ cos θ/ cosh κ, ξ qu

w ≡ 2
√

κ tanh κ sin θ,
(80)

ξ cl
q ≡ −kBT cκ/ cosh κ, Ŵ̂ ≡ Ŵ(1 + e−2κ )

were introduced for convenience. We note that, obviously,

these coefficients fulfill the symmetry relation (48) due to

the driving protocol (77) satisfying the factorization con-

dition (47). Finally, for later purposes, we evaluate the

instantaneous coefficient

Lins
qq =

(

ξ cl
q

)2
Ŵ̂

kBT

∫ T

0

dtγ 2
q (t), (81)

which is defined in (36) and enters the constraint (71).

B. Power and efficiency

We will now explore the performance of the toy model of

Fig. 2 as a quantum heat engine. In order to keep our analysis

as simple and transparent as possible, we assume harmonic

protocols

γw(t) = sin[2πt/T + φ] and

γq(t) = (1 + sin[2πt/T ])/2. (82)

Since the kinetic coefficient do not mix the Fourier components

of the work and temperature protocols, variation with respect

to the phase shift φ suffices to optimize the device for either

efficiency or power [28,40].

For the driving protocols (82), the kinetic coefficients (79)

and (81) become

Lww = Lcl
ww + Lqu

ww =
(

ξ cl
w

)2

kBT

πα

1 + α2

+
(

ξ
qu
w

)2

kBT

2παν2[4ν2 + α2(ν2 + 1)]

16ν4 + 8α2ν2(ν2 − 4) + α4(ν2 + 4)2
,

Lwq = Lcl
wq =

ξ cl
w ξ cl

q

kBT

πα

1 + α2

cos φ + α sin φ

2
,

Lqw = Lcl
qw =

ξ cl
w ξ cl

q

kBT

πα

1 + α2

cos φ − α sin φ

2
,

Lqq = Lcl
qq =

(

ξ cl
q

)2

4kBT

πα

1 + α2
(83)

and

Lins
qq =

(

ξ cl
q

)2

kBT

3πα

4
, (84)

respectively, with

α ≡ Ŵ̂T /2π and ν ≡ Ŵ̂/ω (85)

being dimensionless constants.

Within these specifications, the maximal efficiency is found

by inserting (83) into (63) and (66) and taking the maximum

with respect to φ. This procedure yields

ηmax = ηC

αψ1 − ψ2

αψ1 + ψ2

(86)

and the corresponding optimal phase shift

φη = arccos
[(

ψ2
1 − ψ2

2

)/(

ψ2
1 + ψ2

2

)]

/2, (87)

where

ψ1 ≡
√

2kBT L
qu
ww + 2πα

(

ξ cl
w

)2
and

ψ2 ≡ α

√

2kBT L
qu
ww. (88)

In the quasiclassical limit, where L
qu
ww and thus ψ2 = 0, these

expressions reduce to

ηmax|θ=0 = ηC and φη|θ=0 = 0. (89)

Hence, the engine can indeed reach Carnot efficiency if the

protocols γw(t) and γq(t) are in phase with each other. As

Fig. 3 shows, the maximum efficiency falls monotonically

from ηC to 0 as θ varies from 0 to π/2. Moreover, the

decay proceeds increasingly faster the smaller the damping

parameter α is chosen. This observation can be understood

intuitively, since, for large α, the thermodynamic cycle evolves

close to the adiabatic limit, where it becomes reversible. As

a reference point, the bound (68) has been included in Fig. 3.

It shows the same qualitative dependence on θ and α as

the maximum efficiency, for which it provides a fairly good

estimate, especially as θ comes close to π/2.

We now turn to maximum power as a second important

benchmark parameter. Combining (83), (63), and (69), after

maximization with respect to φ, yields the explicit expression

Pmax =
T cF2

q

4

π2α2
(

ξ cl
q ξ cl

w

)2

2kBT
(

ψ2
1 + ψ2

2

) , (90)

where the optimal phase shift

φP = arctan α (91)
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FIG. 3. Maximum efficiency of a two-level quantum heat engine.

The solid lines show the explicit result (86) in units of the Carnot

efficiency ηC as function of the coherence parameter θ for different

values of the damping parameter α. The dashed lines indicate the

corresponding bound (68) evaluated with the protocols (82) and the

optimal phase shift (87). The remaining parameters have been chosen

as κ = 1/2 and ν = 10. For clarity, the legend in the lower left corner

follows the order of the plotted curves from top to bottom.

is independent of θ . This result can be quantitatively assessed

by comparing it with the bound

P̂max =
T cF2

q

4

3π2α2
(

ξ cl
q ξ cl

w

)2

2kBT ψ2
1

, (92)

which follows from (71) after inserting (84) and evaluating the

parameter z using the protocols (82) with φ = φP.

In Fig. 4, both, the optimal power (90) and the ratio

Pmax

P̂max

=
ψ2

1

3
(

ψ2
1 + ψ2

2

) (93)

1 6

1 3

1 12

1 4

P
m

a
x

P
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x
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50

0 π 8 π 4 3π 8 π 2

θ

FIG. 4. Dependence of the maximum power of a two-level

quantum engine on the coherence parameter θ for κ = 1/2, ν = 10,

and three different values of α. The solid lines correspond to the

optimized output (90) in units of P0 ≡ T cF2
q (ξ cl)2α/(12kBT ) [89].

The dashed lines show the maximum power as a fraction of its upper

bound (92). In the limit θ → π/2, both quantities Pmax and the bound

P̂max vanish, while their ratio approaches a finite value. The legend

in the lower left corner has been sorted according to the order of the

plotted curves from top to bottom. This correspondence applies to

dashed and solid lines, respectively.

are plotted. Two central features of these quantities can be

observed. First Pmax reaches its maximum as a function of θ in

the quasiclassical case θ = 0 and then decays monotonically

to zero as θ approaches π/2[89]. This behavior is in line with

our general insight that coherence effects are detrimental to

the performance of quantum heat engines. Second, in contrast

to maximum efficiency, the maximum power comes not even

close to the upper limit following from our new constraint (52).

Specifically, the degree of saturation (93) is equal to 1/3 for

θ = 0 and then decreases even further towards θ = π/2. Still,

the bound (71) might be attainable by more complex devices

than the one considered here. Whether or not such models exist

remains an open question at this point.

VII. CONCLUDING PERSPECTIVES

In this paper, we have developed a universal framework

for the description of quantum thermodynamic cycles, which

allows the consistent definition of kinetic coefficients relating

fluxes and affinities for small driving amplitudes. Focusing on

Markovian dynamics, we have proven that these quantities

fulfill generalized reciprocity relations and, moreover, are

subject to a set of additional constraints. These results were

derived from the characteristics of the Lindblad generator as

summarized in Fig. 5. To this end, we have invoked two funda-

mental physical principles. First, in order to ensure consistency

with the second law, each dissipation superoperator must

annihilate the instantaneous Gibbs-Boltzmann distribution at

the respectively corresponding temperature. Second, we have

demanded the dissipative parts of the unperturbed generator to

fulfill a detailed balance relation implying zero probability flux

between any pair or energy eigenstates in equilibrium. For the

reciprocity relations, the even stronger T -symmetry condition

is necessary. Both detailed balance and T symmetry are quite

natural and broadly accepted conditions, which ultimately

rely on the reversibility of microscopic dynamics. It should,

however, be noted that, at least from a phenomenological

point of view, they constitute stronger requirements than the

bare second law, which stipulates only the first of the above

mentioned properties of the Lindblad generator.

As a key application, our theory allows us to obtain

bounds on the maximum efficiency and power of quantum

heat engines, which reveal that coherence effects are generally

detrimental to both of these figures of merit. This insight

has been illustrated quantitatively for a paradigmatic model

consisting of a harmonically driven two-level system. In the

quasiclassical limit, where our constraints on the kinetic coeffi-

cients become weakest, we recover a general bound on power,

which is a quadratic function of efficiency. This relation,

which has been derived before for classical stochastic [28]

and thermoelectric heat engines [78], in particular proves the

nonexistence of reversibly operating quantum devices with

finite power output, at least within linear response. For classical

systems, the analogous result was obtained also in [41,42] and,

only recently, extended to the more general nonlinear regime

in [90]. All of these approaches, however, rely on a Markovian

dynamics, which is further specified by a detailed balance

condition. Since, as we argued before, this requirement is more

restrictive when demanding only the non-negativity of entropy
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FIG. 5. Flow chart visualizing the interdependence between properties of the Lindblad generator (left column), relations between

thermodynamic quantities (central column), and bounds on the performance figures of quantum heat engines (right column). Solid arrows denote

unrestricted implications, while dashed arrows require the additional condition attached to them. In the last column, we used the abbreviations

η̄ ≡ η/ηC and P̄max ≡ Pmax/P0, where P0 = T cF2
q Lqq/4 for the dashed arrow in the bottom line and otherwise P0 = T cF2

q Lins
qq/4. An engine

is considered to be time-reversal (TR) symmetric if the corresponding driving protocols fulfill the condition (64).

production, the incompatibility of Carnot efficiency and finite

power cannot be attributed to the bare second law.

Despite the fact that our discussion has mainly focused

on quantum heat engines, it is clear that our general frame-

work covers also other types of thermal machines like, for

example, quantum absorption refrigerators [15,91,92]. It can

be expected that the constraints on the kinetic coefficients

derived here allow to restrict also the figures of performance

of such devices. Working out these bounds explicitly is left as

an interesting topic for future research at this point.

Analyses of the linear response regime can provide pro-

found insights on the properties of nonequilibrium systems. A

complete understanding of their behavior, however, typically

requires us to take strong-driving effects into account. Quan-

tum heat engines, for example, that are operated by purely

nonclassical protocols do not admit a proper linear response

description, since their off-diagonal kinetic coefficients would

inevitably vanish. A paradigmatic model belonging to this

class is, for example, the coherently driven three-level am-

plifier [45,93,94]. It thus emerges the question of how our

constraint (52) and thus the bounds (68), (71), and (72) can

be extended to the nonlinear regime. Investigations towards

this direction constitute an important topic, which can be

expected to be challenging, since universal results for systems

arbitrary far from equilibrium are overall scarce. Indeed, the

general framework of Sec. II is not tied to the assumption

of small driving amplitudes. However, accounting for strong

perturbations, might, for example, require us to specify the

dynamical generator in a more restrictive way when it was

done in Sec. III thus sacrificing universality.

In summary, our approach provides an important step

towards a systematic theory of cyclic quantum thermodynamic

processes. It should thus provide a fruitful basis for future

investigations, which could eventually lead to a complete

understanding of the fundamental principles governing the

performance of quantum thermal devices.
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APPENDIX A: THERMODYNAMIC CONSISTENCY OF

THE TIME-DEPENDENT LINDBLAD EQUATION

We consider the total rate of entropy production (7), which

can be rewritten as

Ṡ[̺(t)] = −kBtr{ ˙̺ (t) ln ̺(t)} −
Nq
∑

ν=1

Q̇ν(t)

Tν(t)

= −kB

Nq
∑

ν=1

tr
{

[Dν(t)̺(t)]
[

ln ̺(t) − ln ̺ins
ν (t)

]}

≡
Nq
∑

ν=1

Ṡν[̺(t)]. (A1)

As proven by Spohn [53], the condition (29) is sufficient for

each of the contributions Sν[̺(t)] to be non-negative for any

̺(t). Here, we show that (29) is also necessary to this end.

We proceed as follows. First, we define a one-parameter

family of states ̺λ
ν such that ̺λ=0

ν = ̺ins
ν and Ṡν[̺λ

ν ] at

least once continuously differentiable at λ = 0. Hence, we

obviously have

Ṡν

[

̺λ
ν

]∣

∣

λ=0
= 0. (A2)

Note that, for convenience, we omit time arguments from here

onwards. Second, we observe that, due to continuity, the family

̺λ
ν will always contain a state ̺λ∗

ν in the vicinity of λ = 0 such

that Ṡν[̺λ∗
ν ] < 0 unless

∂λṠν

[

̺λ
ν

]∣

∣

λ=0
= 0. (A3)
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Third, we set

̺λ
ν = exp[−H/(kBTν) + λG]/Z(λ), (A4)

where Z(λ) ≡ tr{exp[−H/(kBTν) + λG]} and G is an ar-

bitrary Hermitian operator. Inserting (A4) into (A3) and

using (A1) and (25) yields

tr
{(

Dν̺
ins
ν

)

G
}

= 0. (A5)

Finally, this condition can only be satisfied for any Hermitian

G if Dν̺
ins
ν = 0. Thus, we have shown that, if (29) is not

fulfilled, we can always construct a state ̺λ∗
ν such that Ṡν[̺λ∗

ν ]

becomes negative, which completes the proof.

APPENDIX B: GENERALIZED KINETIC COEFFICIENTS

1. General setup

We derive the expressions (36) for the generalized kinetic

coefficients within three steps. First, by linearizing the com-

ponents of the generator (23) with respect to �jH and �νT ,

we obtain

H(t) ≡ H
0 +

Nw
∑

j=1

�jHH
wj (t) + O(�2),

(B1)

Dν(t) ≡ D
0
ν +

Nw
∑

j=1

�jHD
wj
ν (t) + �νT D

q
ν (t) + O(�2),

where we assume that Dν(t) depends on H (t) and Tν(t) but

not on Tμ(t) if μ �= ν. The quantities showing up in these

expansions can be characterized as follows. A straightforward

calculation shows that the structure (35) implies

D
0
ν

∫ 1

0

dλ Rλ • R−λ̺eq =
∫ 1

0

dλ Rλ
(

D
0†
ν •

)

R−λ̺eq, (B2)

where

D
0†
ν • =

1

2

∑

σ

Ŵσ
ν

(

V σ
ν

[

• ,V σ†
ν

]

+
[

V σ
ν , •

]

V σ†
ν

)

+ Ŵ̄σ
ν

(

V σ†
ν

[

• ,V σ
ν

]

+
[

V σ†
ν , •

]

V σ
ν

)

. (B3)

Furthermore, by expanding the relation (29) to linear order in

�jH and �νT , we find

D
wj
ν (t)̺eq =

1

kBT c
D

0
ν

∫ 1

0

dλ Rλgwj (t)R−λ̺eq,

=
1

kBT c

∫ 1

0

dλ Rλ
[

D
0†
ν gwj (t)

]

R−λ̺eq,

D
q
ν̺

eq =
1

kB(T c)2
D

0
ν

∫ 1

0

dλ Rλgqν(t)R−λ̺eq

=
1

kB(T c)2

∫ 1

0

dλ Rλ
[

D
0†
ν gqν(t)

]

R−λ̺eq. (B4)

Analogously, the trivial relation

H(t) exp[−H (t)/(kBTν(t))] = 0 (B5)

yields

H
wj (t)̺eq =

1

kBT c
H

0

∫ 1

0

dλ Rλgwj (t)R−λ̺eq

=
1

kBT c

∫ 1

0

dλ Rλ[H0gwj (t)]R−λ̺eq. (B6)

As the second step of our derivation, we parametrize the

density matrix ̺c(t) describing the limit cycle of (22) as

̺c(t) ≡
1

Z0
exp

⎡

⎣−
H 0

kBT c
+

Nw
∑

j=1

�jH

kBT c
Gwj (t)

+
Nq
∑

ν=1

�νT

kB(T c)2
Gqν(t) + O(�2)

⎤

⎦

= ̺eq +
Nw
∑

j=1

�jH

kBT c

∫ 1

0

dλ RλGwj (t)R−λ̺eq

+
Nq
∑

ν=1

�νT

kB(T c)2

∫ 1

0

dλ RλGqν(t)R−λ̺eq + O(�2).

(B7)

Inserting this expansion, (23) and (B1) into (22), and applying

the relation (B2) yields

∂tGwj (t) = L̃
0†Gwj (t) + L̃

0†gwj (t),
(B8)

∂tGqν(t) = L̃
0†Gqν(t) + D

0†
ν gqν(t).

By solving these differential equations with respect to

the periodic boundary conditions Gwj (t + T ) = Gwj (t) and

Gqν(t + T ) = Gqν(t), we obtain

Gwj (t) =
∫ ∞

0

dτ eL̃0†τ
L̃

0†gwj (t − τ ),

(B9)

Gqν(t) =
∫ ∞

0

dτ eL̃0†τ
D

0†
ν gqν(t − τ ).

The integrals with infinite upper bound showing up in these

expressions converge, since, due to the set of unperturbed

Lindblad operators {V σ
ν } being self-adjoint and irreducible, the

nonvanishing eigenvalues of L̃0† have negative real part [95].

Moreover, 1 is the unique right eigenvector of L̃0† corre-

sponding to the eigenvalue 0. In (B9), the superoperator eL̃0†τ ,

however, acts on operators, which, by construction, are linearly

independent of 1, since D0†
1 = 0 and H0

1 = 0. The same

argument ensures that the general expressions (36) for the

kinetic coefficients are well defined.

For the third step, we recall the definitions (31) and (32) of

the generalized fluxes,

Jwj = −
1

T

∫ T

0

dt tr{gwj (t)L(t)̺c(t)} and (B10)

Jqν =
1

T

∫ T

0

dtγqν(t)tr{H (t)D†
ν(t)̺c(t)}. (B11)

Inserting (23), (B1), (B4), (B6), and (B7) into (B10), neglect-

ing all contributions of second order in �, and applying (B2)
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leads to the generalized kinetic coefficients

Lwj,wk =
(−1)

kBT

∫ T

0

dt〈gwj (t),L̃0†Gwk(t) + L̃
0†gwk(t)〉,

Lwj,qν =
(−1)

kBT

∫ T

0

dt
〈

gwj (t),L̃0†Gqν(t) + D
0†
ν gqν(t)

〉

. (B12)

Analogously, we obtain from (B11)

Lqν,wj =
(−1)

kBT

∫ T

0

dt
〈

gqν(t),D0†
ν Gwj (t) + D

0†
ν gwj (t)

〉

,

Lqν,qμ =
(−1)

kBT

∫ T

0

dt
〈

gqν(t),D0†
ν Gqμ(t) + δνμD

0†
ν gqν(t)

〉

.

(B13)

Finally, eliminating Gwj (t) and Gqν(t) from (B12) and (B13)

using (B9) gives the desired expressions (36).

2. Simplified setup

We consider the special case where the system is attached

only to a single reservoir. In order to derive the simplified

expressions (40) for the generalized kinetic coefficients, we

first note that, since H0gq1(t) = 0, we can replace D
0†
1 gq1(t)

by L̃0†gq1(t) in (36). Furthermore, since also H0†gq1(t) = 0,

by virtue of (C4), scalar products of the type

〈

gq1(t),D
0†
1 •
〉

=
〈

D
0†
1 gq1(t),•

〉

(B14)

can be replaced by

〈L0†gq1(t),•〉 = 〈gq1(t),L̃0†•〉 (B15)

such that (36) becomes

Lab = Lins
ab + Lret

ab = −
1

kBT

∫ T

0

dt〈ga(t),L̃0†gb(t)〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

ga(t),L̃0†eL̃0†τ
L̃

0†gb(t − τ )
〉

(B16)

with a,b = wj,q1. Next, due to L̃0†
1 = L0†

1 = 0, by following

the same lines, we can replace ga(t) with δga(t) through-

out (B16) thus obtaining

Lab = −
1

kBT

∫ T

0

dt〈δga(t),L̃0†δgb(t)〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

δga(t),L̃0†
(

∂τ e
L̃0†τ
)

δgb(t − τ )
〉

.

(B17)

After one integration by parts with respect to τ , this expression

becomes

Lab =
(−1)

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

δga(t),L̃0†eL̃0†τ δġb(t − τ )
〉

. (B18)

Here, the upper boundary term vanishes, since the superoper-

ator L̃0† is negative semidefinite and the deviations δga(t) are,

by construction, orthogonal to its null space, which contains

only scalar multiples of the unit operator.

An integration by parts with respect to t transforms (B18)

into

Lab =
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

δġa(t),L̃0†eL̃0†τ δgb(t − τ )
〉

, (B19)

where the boundary terms do not contribute due to the

periodicity of the involved quantities with respect to t . Finally,

another integration by parts with respect to τ yields (40).

APPENDIX C: RECIPROCITY RELATIONS

Our aim is to prove the reciprocity relations (45). To this

end, we have to establish some technical prerequisites. First,

we introduce the shorthand notation

Lαβ = −
1

kBT

∫ T

0

dt〈gα(t),Xαβgβ(t)〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gα(t),YαeL̃0†τ
Yβgβ(t − τ )

〉

,

(C1)

where

(

Xwj,wk Xwj,qν

Xqν,wj Xqν ,qμ

)

≡
(

L̃0† D0†

D0† δνμD0†

)

(C2)

and

Ywj ≡ L̃
0†, Yqν ≡ D

0†. (C3)

Second, we note that (39) and (B2) imply

〈•,D0†◦〉 = 〈D0† • ,◦〉, 〈•,L̃0†◦〉 = 〈L0† • ,◦〉. (C4)

Third, by virtue of (44), we have

D
0† = T

−1
D

0†
T and L

0† = T
−1

L̃
0†

T, (C5)

where we used that the time-reversal operator is antiunitary,

i.e., T i + iT = 0 with i denoting the imaginary unit. Combin-

ing (C4) and (C5) with the definitions (C2) and (C3) yields

〈•,Xαβ◦〉 = 〈T−1
XαβT • ,◦〉 and

〈•,Yα◦〉 = 〈T−1
YαT • ,◦〉. (C6)

Fourth, from the relation [75]

tr{•} = tr{(T • T −1)†} (C7)

and the fact that H 0 commutes with T , it follows that

〈T−1 • ,◦〉 = 〈•†,T◦†〉. (C8)

The reciprocity relations (45) can now be obtained through

the calculation

Lαβ[gα(t),gβ(t)]

= −
1

kBT

∫ T

0

dt〈XαβTgα(t),Tgβ(t)〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

YβeL̃0†τ
YαTgα(t),Tgβ(t − τ )

〉
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= −
1

kBT

∫ T

0

dt〈Tgβ(−t),XβαTgα(−t)〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

Tgβ(−t),YβeL̃0†τ
YαTgα(τ − t)

〉

= Lβα[Tgα(−t),Tgβ(−t)]. (C9)

In the first step, we consecutively applied the relations (C6)

and (C8) and exploited the properties (Xαβ•)† = Xαβ•† and

(Yα•)† = Yα•† of the superoperators Xαβ and Yα , which can

be easily found by inspection. Furthermore, we used that the

operators gα(t) and Tgα(t) represent observables and thus must

be Hermitian. In the second step, we invoked the identities

∫ T

0

dtf (t)h(t + τ ) =
∫ T

0

dtf (t − τ )h(t) and

∫ T

0

dtf (t) =
∫ T

0

dtf (T − t) =
∫ T

0

dtf (−t),

(C10)

which hold for any T -periodic functions f (t) and h(t). Finally,

we used the symmetries 〈•,◦〉 = 〈◦,•〉 and Xαβ = Xβα , which

are direct consequences of the definitions (39) and (C2),

respectively.

In the special case, where

gα(t) = γα(t)gα (C11)

with γwj (t), gwj introduced in (47), γqν(t) defined in (10), and

gqν ≡ −H 0, (C1) becomes

Lαβ[γα(t),γβ(t)]

= −
1

kBT

∫ T

0

dtγα(t)γβ(t)〈gα,Xαβgβ〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ γα(t)γβ(t − τ )
〈

gα,YαeL̃0†τ
Yβgβ

〉

= −
1

kBT

∫ T

0

dtγα(t)γβ(t)〈gβ,Xβαgα〉

−
1

kBT

∫ T

0

dt

∫ ∞

0

dτ γα(t)γβ(t − τ )
〈

gβ,YβeL̃0†τ
Yαgα

〉

= Lβα[γβ(t),γα(t)]. (C12)

Here, for the second identity, we rearranged the scalar products

following the same steps as in (C9) and invoked the condition

Tgα = gα . We thus have proven the relation (48).

APPENDIX D: ROLE OF QUANTUM COHERENCE FOR

THE GENERALIZED KINETIC COEFFICIENTS

1. Quasiclassical systems

Our aim is to derive explicit expressions for the quasiclas-

sical kinetic coefficients Lcl
αβ introduced in Sec. IV C. To this

end, we proceed in four steps. First, the condition (49) allows

us to write the perturbations gα(t) as

gα(t) =
M
∑

n=1

gn
α(t)|n〉〈n|, (D1)

where gn
α(t) ∈ R and {|n〉}Mn=1 denotes the set of unper-

turbed energy eigenvectors corresponding to the nondegen-

erate eigenvalues E0
1 < E0

2 < · · · < E0
M of H 0. Second, the

commutation relations

[

H 0,V σ
ν

]

= εσ
ν V σ

ν and
[

H 0,V σ†
ν

]

= −εσ
ν V σ†

ν , (D2)

which are part of the detailed balance structure (35), identify

the unperturbed Lindblad operators V σ
ν and V σ†

ν as ladder

operators with respect to H 0. Hence, their matrix elements

with respect to the states |n〉 are given by

〈n|V σ
ν |m〉 = �

(

E0
n − E0

m − εσ
ν

)〈

nV σ
ν

∣

∣m
〉

and

〈n|V σ†
ν |m〉 = �

(

E0
n − E0

m + εσ
ν

)

〈n|V σ†
ν |m〉 (D3)

with

�(•) ≡
{

1 for • = 0

0 else
. (D4)

Third, (D1), (D3), and the detailed-balance structure (B3)

allow us to rewrite the expressions (B9) for the first-order

contributions to the periodic state ̺c(t) as

Gwj (t) =
∫ ∞

0

dτ eW 0t τ
W

0tgwj (t − τ ),

Gqν(t) =
∫ ∞

0

dτ eW 0t τ
W

0t
ν ggν(t − τ ),

〈n|Gα(t)|m〉 = 0 for n �= m. (D5)

Here, we used the vector notation

gα(t) ≡
(

g1
α(t), . . . ,gM

α (t)
)t

,

Gα(t) ≡
(

G1
α(t), . . . ,GM

α (t)
)t

with

Gn
α(t) ≡ 〈n|Gα(t)|n〉 (D6)

and the abbreviation

W
0t ≡

Nq
∑

ν=1

W
0t
ν , (D7)

where the elements of the matrices W
0t
ν are given by

(

W
0t
ν

)

mn

≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

σ Ŵσ
ν �
(

E0
m − E0

n − εσ
ν

)∣

∣〈m|V σ
ν |n〉

∣

∣

2
, m > n

∑

σ Ŵ̄σ
ν �
(

E0
m − E0

n + εσ
ν

)∣

∣〈n|V σ
ν |m〉

∣

∣

2
, m < n

−
∑

k �=m

(

W
0t
ν

)

mk
, m = n

.

(D8)

Furthermore the superscript t indicates matrix transposition.

The result (D5) shows that, in first order with respect to �jH

and �νT , the periodic state ̺c(t) is indeed diagonal in the

eigenstates of H 0, provided the condition (49) is fulfilled.

For the fourth step of our derivation, we evaluate (B12)

and (B13) using (D5) thus obtaining the quasiclassical kinetic
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coefficients

Lcl
wj,wk ≡ −

1

kBT

∫ T

0

dt〈gwj (t),W 0tgwk(t)〉cl −
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gwj (t),W 0teW 0t τ
W

0tgwk(t − τ )
〉

cl
,

Lcl
wj,qν ≡ −

1

kBT

∫ T

0

dt
〈

gwj (t),W 0t
ν gqν(t)

〉

cl
−

1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gwj (t),W 0teW 0t τ
W

0t
ν gqν(t − τ )

〉

cl
,

(D9)

Lcl
qν,wj ≡ −

1

kBT

∫ T

0

dt
〈

gqν(t),W 0t
ν gwj (t)

〉

cl
−

1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gqν(t),W 0t
ν eW 0t τ

W
0tgwj (t − τ )

〉

cl
,

Lcl
qν,qμ ≡ −

δνμ

kBT

∫ T

0

dt
〈

gqν(t),W 0t
ν gqν(t)

〉

cl
−

1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

gqν(t),W 0t
ν eW 0t τ

W
0t
μ gqμ(t − τ )

〉

cl
,

where the simplified scalar product is defined for arbitrary

vectors A ≡ (A1, . . . ,AM )t ∈ R
M and B ≡ (B1, . . . ,BM )t ∈

R
M as

〈A,B〉cl ≡ At
P

eqB (D10)

with P
eq denoting the diagonal matrix

P
eq ≡ diag(exp[−E1/(kBT c)],

. . . , exp[−EM/(kBT c)])/Z0. (D11)

The generalized kinetic coefficients (D9) describe a discrete

classical system with periodically modulated energy levels

En(t) = E0
n + �jH

Nw
∑

j=1

gwj (t), (D12)

whose unperturbed dynamics is governed by the master

equation

∂tp(t) = W
0p(t). (D13)

Here, the vector p(t) ≡ (p1(t), . . . ,pM (t))t contains the prob-

abilities pn(t) to find the system in the state n at the time t and

the matrix W
0 obeys the classical detailed balance relation

W
0
P

eq = P
eq

W
0t (D14)

as a consequence of (35). If Nq = 1, i.e., if the system is

coupled only to a single reservoir, (D9) can be cast into the

compact form

Lab = −
1

kBT

∫ T

0

dt〈δġa(t),δgb(t)〉cl

+
1

kBT

∫ T

0

dt

∫ ∞

0

dτ
〈

δġa(t),eW 0t τ δġb(t − τ )
〉

cl
,

(D15)

where a,b = wj,q1 and

δga(t) ≡ ga(t) − 1〈1,ga(t)〉cl (D16)

with 1 ≡ (1, . . . ,1)t . These expressions, which here arise as a

special case of our general result (36), were recently derived

independently in [41,42] by considering a discrete classical

system from the outset.

2. Quantum corrections

The decomposition (51) can be obtained from the following

argument. First, we note that the superoperator H0 is skew

Hermitian with respect to the scalar product (39). Second,

as a consequence of the detailed balance structure (35),

the superoperators D0†
ν are Hermitian with respect to (39)

and commute with H0. Consequently, the Liouville space

of the system L can be partitioned into subspaces that are

orthogonal with respect to (39) and simultaneously invariant

under the action of H0 and each D0†
ν . In particular, such a

partitioning is given by the null space of H0, i.e., the set

Lcl of all operators commuting with H 0, and its orthogonal

complement Lqu ≡ (Lcl)⊥. Since, by construction, gcl
wj (t) ∈

Lcl and g
qu

wj (t) ∈ Lqu, (51) now follows directly from the

general structure of the kinetic coefficients (36).

APPENDIX E: NEW CONSTRAINT

In order to prove the constraint (52), we first show that the

matrix A defined in is positive semidefinite. To this end, we

introduce the quadratic form

Q(x,y,z) ≡ xt
L

ins
qqx + 2xt

Lqwy + 2xt
Lqqz

+ yt
Lwwy + yt

Lwqz + zt
Lqwy + zt

Lqqz, (E1)

where x ≡ (x1, . . . ,xNq
)t ,z ≡ (z1, . . . ,zNq

)t ∈ R
Nq , and y ≡

(y1, . . . ,yNw
)t ∈ R

Nw . We will now, one by one, cast the terms

showing up on the right-hand side of (E1) into a particularly

instructive form. To this end, it is convenient to introduce the

extended scalar product

〈〈A,B〉〉 ≡
1

T

∫ T

0

dt〈A(t),B(t)〉, (E2)

for arbitrary time-dependent operators A(t) and B(t)

The first term in (E1) becomes

xt
L

ins
qqx =

(−1)

kB

Nq
∑

ν=1

x2
ν

〈〈

gqν,D
0†
ν gqν

〉〉

. (E3)

after inserting the definition (36) for the coefficients Lins
qν,qμ.

Using the expressions (B13), the second and the third one can

be respectively written as

2xt
Lqwy =

(−2)

kB

Nq
∑

ν=1

xν

〈〈

gqν,D
0†
ν

(

Gy
w + gy

w

)〉〉

(E4)

062134-15



KAY BRANDNER AND UDO SEIFERT PHYSICAL REVIEW E 93, 062134 (2016)

and

2xt
Lqqz =

(−2)

kB

Nq
∑

ν=1

xν

〈〈

gqν,D
0†
ν

(

Gz
q + zνgqν

)〉〉

(E5)

with

gy
w(t) ≡

Nw
∑

j=1

yjgwj (t), Gy
w(t) ≡

Nw
∑

j=1

yjGwj (t) (E6)

and

Gz
q(t) ≡

Nq
∑

ν=1

zνGqν(t). (E7)

We now consider the fourth term in (E1). By virtue of (B12), it becomes

yt
Lwwy =

(−1)

kB

{〈〈

gy
w + Gy

w,L̃0†
(

Gy
w + gy

w

)〉〉

−
〈〈

Gy
w,L̃0†

(

Gy
w + gy

w

)〉〉}

=
(−1)

kB

{〈〈

gy
w + Gy

w,L̃0†
(

Gy
w + gy

w

)〉〉

−
〈〈

Gy
w,Ġy

w

〉〉}

=
(−1)

kB

Nq
∑

ν=1

〈〈

gy
w + Gy

w,D0†
ν

(

Gy
w + gy

w

)〉〉

. (E8)

For the second identity, we used the differential equation

∂tG
y
w(t) = L̃

0†
(

Gy
w(t) + gy

w(t)
)

, (E9)

which derives from (B8). Since a simple integration by parts with respect to t shows

〈〈A,Ḃ〉〉 = −〈〈Ȧ,B〉〉 (E10)

for arbitrary operators A(t) and B(t), the contribution 〈〈Gy
w,Ġ

y
w〉〉 = −〈〈Gy

w,Ġ
y
w〉〉 vanishes. The third identity in (E8) then follows

by inserting the definition (38) of L̃0† and noting that 〈〈•,H0•〉〉 = 0 due to

〈〈•,H0◦〉〉 = −〈〈H0 • ,◦〉〉 = −〈〈◦,H0•〉〉. (E11)

The contributions yt
Lwqz and zt

Lqwy are most conveniently analyzed together. We find

yt
Lwqz + zt

Lqwy =
(−1)

kB

⎧

⎨

⎩

〈〈

Gy
w + gy

w,L̃0†Gz
q +

Nq
∑

ν=1

zνD
0†
ν gqν

〉〉

−

〈〈

Gy
w,L̃0†Gz

q +
Nq
∑

ν=1

zνD
0†
ν gqν

〉〉

+
Nq
∑

ν=1

〈〈

Gz
q + zνgqν,D

0†
ν

(

Gy
w + gy

w

)〉〉

−
Nq
∑

ν=1

〈〈

Gz
q ,D

0†
ν

(

Gy
w + gy

w

)〉〉

⎫

⎬

⎭

=
(−1)

kB

⎧

⎨

⎩

Nq
∑

ν=1

〈〈

Gy
w + gy

w,D0†
ν

(

Gz
q + zνgqν

)〉〉

+
〈〈

Gy
w + gy

w,H0Gz
q

〉〉

−
〈〈

Gy
w,Ġz

q

〉〉

+
Nq
∑

ν=1

〈〈

Gz
q + zνgqν,D

0†
ν

(

Gy
w + gy

w

)〉〉

−
〈〈

Gz
q,Ġ

y
w

〉〉

+
〈〈

Gz
q,H

0
(

Gy
w + gy

w

)〉〉

⎫

⎬

⎭

=
(−1)

kB

Nq
∑

ν=1

{〈〈

Gy
w + gy

w,D0†
ν

(

Gz
q + zνgqν

)〉〉

+
〈〈

Gz
q + zνgqν,D

0†
ν

(

Gy
w + gy

w

)〉〉}

, (E12)

where, for the second identity, we inserted the definition (38) of L̃0† and the differential equations (E9) and

∂tG
z
q(t) = L̃

0†Gz
q(t) +

Nq
∑

ν=1

zνD
0†
ν gqν(t) (E13)
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following from (B8). The third identity in (E12) is obtained by applying (E10) and (E11). Finally, the last term in (E1) assumes

the form

zt
Lqqz =

(−1)

kB

Nq
∑

ν=1

{〈〈

Gz
q + zνgqν,D

0†
ν

(

Gz
q + zνgqν

)〉〉

−
〈〈

Gz
q ,D

0†
ν

(

Gz
q + zνgqν

)〉〉}

=
(−1)

kB

⎧

⎨

⎩

⎛

⎝

Nq
∑

ν=1

〈〈

Gz
q + zνgqν,D

0†
ν

(

Gz
q + zνgqν

)〉〉

⎞

⎠−
〈〈

Gz
q ,Ġ

z
q

〉〉

+
〈〈

Gz
q,H

0Gz
q

〉〉

⎫

⎬

⎭

=
(−1)

kB

Nq
∑

ν=1

〈〈

Gz
q + zνgqν,D

0†
ν

(

Gz
q + zνgqν

)〉〉

, (E14)

where the second identity follows from (38) and (E13) and the third one from (E10) and (E11).

Plugging the expressions (E3), (E4), (E5), (E8), (E12), (E14) into (E1) and recalling (C4) yields

Q(x,y,z) = −
1

kB

Nq
∑

ν=1

〈〈

Fν,D
0†
ν Fν

〉〉

(E15)

with

Fν(t) ≡ Gy
w(t) + gy

w(t) + Gz
q(t) + (zν + xν)gqν(t). (E16)

Since, as a consequence of the detailed balance condition (33), the superoperators D0†
ν have only real, nonpositive eigenvalues [95–

97], it follows that Q(x,y,z) � 0 for any x,y,z. Moreover, the quadratic form (E1) can be written as

Q(x,y,z) = qt
Aq (E17)

with q ≡ (xt ,yt ,zt )
t

and the matrix A defined in (53). We can thus conclude that the matrix A must be positive semidefinite.

The second and the third relation in (52) now follow from the additive structure (51) of the kinetic coefficients by setting either

g
qu

wj (t) = 0 or gcl
wj (t) = 0.

APPENDIX F: QUANTUM REFRIGERATORS

1. Implementation

In this Appendix, we provide a discussion of quantum

refrigerators using the setup and notation of Sec. V. To this

end, we assume that the thermal gradient Fq is created by two

distinct reservoirs with respectively constant temperatures T c

and T h > T c. The flux Jq then corresponds to the average

heat withdrawal from the hot reservoir in one operation cycle.

Consequently, a proper refrigerator is obtained for

J c
q = P − Jq � 0. (F1)

Here, J c
q denotes the heat flux extracted from the cold reservoir

and −P = T cFwJw > 0 the power supplied by the external

controller. A common measure for the efficiency of such a

device is the coefficient of performance [1]

ε ≡ −J c
q /P � εC ≡ T c/(T h − T c), (F2)

where the upper bound εC, which corresponds to Carnot

efficiency, follows directly from the second law.

2. Bounds on efficiency

Under linear response conditions, the cooling flux (F1)

becomes

J c
q = −(LqwFw + LqqFq), (F3)

since the power P is of second order in the affinities. Together

with the expression (62) for the work flux Jw, this relation

leads to the maximum coefficient of performance

εmax = εC

1

x

√
1 + y − 1

√
1 + y + 1

(F4)

with respect to Fw [84].

In order to show how this figure is restricted by the

constraint (52), it is instructive to redefine the parameter z as

zc ≡ Lqu
wwLqq/L

2
qw � 0. (F5)

Relation (56), which follows from (52), can then be rewritten as

hc
z � y � 0 for x < 0 and 0 � y � hc

z for x � 0

(F6)

with hc
z ≡ 4x/[(x − 1)2 + 4zc]. Consequently, we obtain the

bound

εmax � εC

1

x

√

1 + hc
z − 1

√

1 + hc
z − 1

�
εC

1 + 4zc
(F7)

with the second inequality being saturated only for x → 0.

This result proves that cyclic quantum refrigerators, at least in

the linear response regime, can reach Carnot efficiency only

in the quasiclassical limit, where L
qu
ww = 0 and thus zc = 0.

It thus completes our overall picture that coherence effects

reduce the efficiency of thermal devices.

We note that the bare current (F3) cannot be optimized,

since it is unbounded as a function of both affinities. Bounding

the cooling flux of a refrigerator generally is possible only in

the nonlinear regime, which is beyond the scope of this analysis

and will be left to future investigations.
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