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PERIODIC TRAVELING WAVES
AND LOCATING OSCILLATING PATTERNS

IN MULTIDIMENSIONAL DOMAINS

NICHOLAS D. ALIKAKOS, PETER W. BATES, AND XINFU CHEN

Abstract. We establish the existence and robustness of layered, time-periodic
solutions to a reaction-diffusion equation in a bounded domain in Rn, when the
diffusion coefficient is sufficiently small and the reaction term is periodic in time
and bistable in the state variable. Our results suggest that these patterned,
oscillatory solutions are stable and locally unique. The location of the internal
layers is characterized through a periodic traveling wave problem for a related
one-dimensional reaction-diffusion equation. This one-dimensional problem is
of independent interest and for this we establish the existence and uniqueness
of a heteroclinic solution which, in constant-velocity moving coodinates, is
periodic in time. Furthermore, we prove that the manifold of translates of this
solution is globally exponentially asymptotically stable.

1. Introduction

In this paper, we are concerned with two distinct, but strongly related problems
involving bistable time-periodic nonlinearities: A traveling wave problem for a one-
dimensional equation, and a multidimensional singular perturbation problem of
reaction-diffusion type.

Reaction-diffusion equations with small diffusivity arise naturally in the model-
ing of many physical and biological phenomena. Often, as with phase transition
and genotype models, two competing stable states are present. As a result of the
bistability, patterns are generated wherein the solution in different regions of the
domain takes on values close to one or the other of the two stable states. As a
result of the small diffusivity (the singular perturbation nature of the equation) the
patterns become well-defined, the solution changing sharply between the two stable
states within a thin zone. This thin zone becomes a hypersurface as the diffusivity
vanishes and is approximated by an intermediate level surface of the solution, which
we call the interface.
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The interfaces which form the pattern evolve with time and we wish to under-
stand their motion and the configurations which ultimately develop. We also wish
to determine the fine structure of the transition across the interface. The tran-
sition occurs rapidly in the direction normal to the interface and so, in rescaled
coordinates, is essentially one-dimensional.

At a given location the transition profile and its speed of propagation is governed
by a traveling wave problem for a reaction-diffusion equation on the real line ob-
tained through the rescaling. The traveling wave problem is of independent interest
and, in the autonomous case, has a substantial history. However, the presence of
periodic forcing, which has physical relevance, introduces significant difficulties and
requires us to develop a new approach. This analysis occupies a large portion of
this paper. We establish existence, uniqueness and global stability of traveling wave
solutions for a general class of bistable time-periodic nonlinearities.

The traveling wave solutions to the one-dimensional problem are then employed
to construct sub- and super-solutions to the higher-dimensional equation. The
construction shows the development of interfaces and provides estimates for their
speed of propagation, thereby establishing the existence of patterned solutions as
asymptotic states.

Since the results for the multidimensional reaction-diffusion equation depend on
results for the one-dimensional traveling wave problem, we first discuss the one-
dimensional equation.

The traveling wave problem. We consider the asymptotic behavior, as t →
∞, of the solutions of the following problem:{

ut − uzz − f(u, t) = 0, z ∈ R, t > 0,
u(z, 0) = g(z), z ∈ R,(1.1)

where f(·, t) is bistable, f(u, ·) is T –periodic, i.e. f(u, T + t) = f(u, t) for all
u, t ∈ R, and g is an arbitrary bounded function having certain asymptotic behavior
as z → ±∞. A typical example of f is the cubic potential f = (1 − u2)(2u− γ(t))
where γ(·) ∈ (−2, 2) is T –periodic.

We claim that the long-time behavior of solutions of (1.1) is governed by periodic
traveling wave solutions of (1.1a), that is, solutions which have the form

u(z, t) = U(z − ct, t), U(·, t+ T ) = U(·, t)
where c is some real number. In other words, a wave with speed c, which, when
viewed from the standpoint of the moving coordinate frame (i.e. in ξ := z−ct), has
a profile which oscillates periodically in time. We first establish the existence and
uniqueness of such a solution for a class of non–linear potentials f . In the following
theorems we assume that f satisfies the structure hypotheses:

(H1) There exists T > 0 such that f(u, t) = f(u, t+ T ) for all (u, t) ∈ R2;
(H2) The period map P (α) := w(α, T ), where w(α, t) is the solution to

wt = f(w, t) ∀t ∈ R, w(α, 0) = α ∈ R,(1.2)

has exactly three fixed points α−, α0, α+ satisfying α− < α0 < α+. In addition,
they are non–degenerate and α± are stable, i.e.,

d

dα
P (α±) < 1 <

d

dα
P (α0).(1.3)

Theorem 1.1. Assume that f(u, t) ∈ C2,1(R × R) satisfies (H1) and (H2) above.
Then there exist a unique function U(ξ, t) : R×R → R and a unique constant c ∈ R
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such that 
Ut − cUξ − Uξξ − f(U, t) = 0 ∀ (ξ, t) ∈ R2,
U(±∞, t) := limξ→±∞ U(ξ, t) = w(α±, t) ∀ t ∈ R,
U(·, T ) = U(·, 0), U(0, 0) = α0.

(1.4)

In addition, (c, U) has the following properties:
1. For each t, U(·, t) is monotonic; that is, Uξ(·, ·) > 0 in R× R;
2. U exponentially approaches its limits as ξ → ±∞; in fact, there exist positive

constants C and β such that

|U(±ξ, t)− w(α±, t)|+ |Uξ(±ξ, t)|+ |Uξξ(±ξ, t)| ≤ Ce−βξ ∀ ξ ≥ 0, t ∈ R.
We also relate the long-time behavior of the solution to (1.1) for a class of initial

data g, with this periodic traveling wave.

Theorem 1.2. Under the assumption that f(u, t) ∈ C2,1(R×R) satisfies (H1) and
(H2) the mainfold M := {U(z + ·, ·) : z ∈ R1} is globally stable; that is, for every
g ∈ L∞(R1) satisfying

lim sup
z→−∞

g(z) < α0, lim inf
z→∞ g(z) > α0,(1.5)

the solution u(z, t) to the initial value problem (1.1) satisfies

‖u(z, t)− U(z + zg − ct, t)‖L∞(R1) ≤ Cge
−µt ∀t ≥ 0(1.6)

where zg and Cg are real numbers depending on g whereas µ is a positive number
independent of g.

With the information provided by the above theorems we can now give a char-
acterization of spatially robust patterns with oscillating amplitude generated by a
periodic bistable reaction-diffusion equation with small diffusivity.

The singular perturbation problem. Consider the Neumann boundary value
problem: 

uεt − ε2∆uε − F (x;uε, t) = 0, x ∈ Ω, t ∈ R,
∂
∂nu

ε = 0, x ∈ ∂Ω, t ∈ R.
uε(x, t+ T ) = uε(x, t), x ∈ Ω, t ∈ R,

(1.7)

where Ω is a bounded domain in RN (N ≥ 1) with C1 boundary ∂Ω. Here we
assume that, for every x ∈ Ω̄, F (x; ·, ·) satisfies the conditions placed upon f in the
previous theorems. We are concerned with the existence of patterned structures
given by solutions of (1.7), as ε↘ 0. We establish the following theorem:

Theorem 1.3. Assume that F (x;u, t) ∈ C2,2,1(Ω̄×R×R) and that for each x ∈ Ω̄,
f(·, ·) := F (x; ·, ·) satisfies (H1) and (H2) where T is independent of x. Denote by
α±(x) and α0(x) the fixed points of the period map associated with f(·, ·) = F (x; ·, ·)
given in (H2) and by c(x) the corresponding traveling wave speed given by Theorem
1.1. Define, for each ρ > 0,

Ω±ρ = {x ∈ Ω̄ : ±c(x) > ρ}.(1.8)

Then, there exist positive constants µ and ε0 such that for all ε ∈ (0, ε0], there
exists a solution uε of (1.7) satisfying

{
w(α−(x), t)− εµ ≤ uε(x, t) ≤ w(α+(x), t) + εµ ∀ (x, t) ∈ Ω̄× [0, T ],
|uε(x, t) − w(α±(x), t)| ≤ εµ ∀ (x, t) ∈ Ω̄∓εµ × [0, T ],

(1.9)

where w(α, t) = w(x;α, t) is the solution to (1.2).
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In addition to such solutions existing we can say something about their local
uniqueness, in an asymptotic sense. The second condition in (1.9) says that uε is
“strongly patterned” in the sense that it has large amplitude transitions between
the two stable states, and these transitions occur across a fairly narrow and well-
defined region within Ω. The following theorem essentially says that any solution
which is “weakly patterned” must actually have sharp interfaces as given in the
previous theorem.

Theorem 1.4. Under the assumptions above for any solution uε of (1.7), if there
exist y+ ∈ Ω+

εµ and y− ∈ Ω−εµ such that

{
uε(x, 0) ≤ α0(x) − εµ in {x ∈ Ω̄ : |x− y+| ≤ 6ε1/3},
uε(x, 0) ≥ α0(x) + εµ in {x ∈ Ω̄ : |x− y−| ≤ 6ε1/3},

(1.10)

then uε has the property (1.9). (Here, we assume, for simplicity, that Ω±εµ is con-
nected. Otherwise we need the existence of y± in each component of Ω±εµ .)

An immediate consequence of this is

Corollary 1.5. Assume that {uε}0<ε≤ε0 is a family of solutions of (1.7) such that
every uε satisfies (1.10) for some y± ∈ Ω±εµ . Then

lim
ε→0+

uε(x, t) =
{
w(α+(x), t), (x, t) ∈ Ω−0 × [0, T ],
w(α−(x), t), (x, t) ∈ Ω+

0 × [0, T ](1.11)

where the limit is uniform in Ω±ρ × [0, T ] for all ρ > 0.

Our technique of using sub- and super-solutions may also be used to show that
the patterns are robust. In fact, if an initial function has an interface within ∂Ω̄±εµ ,
then that interface must move until (1.9) holds (see Theorem 4.4 and Remark 4.5).

To put the above singular perturbation problem and the associated traveling
wave problem into historical context we mention a few works which have had sig-
nificant impact on developments in this field and have influenced us in particular.
We do not however intend to provide an exhaustive list of related work.

There is a vast literature on the traveling wave problem (1.4) in the autonomous
case (f independent of t), with the two prototypical nonlinearities being of Fisher-
type (u(1 − u)) or bistable (u(1 − u)(u − γ) with 0 < γ < 1.) Such problems were
introduced in the classic works of Fisher [15] and Kolmogorov-Petrovski-Piscounov
[23] in 1937. There have been numerous contributions since, including the im-
portant contribution by Kanel [22] and the celebrated papers of Fife & McLeod
[12, 13, 14] which settled most issues in great generality. Since that time there have
of course been some refinements and many applications of these results. The new
difficulty in our periodic case is that phase plane techniques are no longer available.
The impact of this is most evident on the existence issue, but it also impinges on
the techniques used to establish uniqueness. Periodicity also excludes variational
techniques which, in the autonomous case, have been employed for establishing
stability. Because of all these reasons, our approach had to be different from those
mentioned above. In fact, our method is similar to that of Berestycki & Nirenberg
[7]. The uniqueness part of our theorem above is very general; in particular it does
not presuppose monotonicity of the wave.

We should mention that another class of periodic solutions to autonomous
reaction–diffusion equations, rotating wave solutions, that is, those which are pe-
riodic both in space and time, have been studied by several authors. We refer to
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Angenent & Fiedler [4], Gardner [17] and the references therein. That type of solu-
tion is quite different from those we study here and, as far as we can tell, unrelated
to patterns in singularly perturbed reaction–diffusion equations.

The singular perturbation problem (1.7), but autonomous with respect to t,
also has a substantial history. Again the nonlinearities are typically of the form
m(x)u(1 − u) (Fisher) or u(1 − u)(u − γ(x)) (bistable.) For the bistable case in
a one-dimensional domain, Angenent, Mallet-Paret, and Peletier [5] characterized
the limits of all stable solutions as ε → 0. They showed that these may have
layers only where γ(x) = 1/2 and that the transition must be in the appropriate
direction according to the sign of γ′(x). Stable solutions with any collection of such
transitions exist. Independently, Fuji and Nishiura [16] obtained related results
(see also [1] and [2]). The question of existence of stationary layered solutions
to the autonomous bistable singular perturbation problem in higher dimensional
domains was settled in the 70’s in the paper of Fife & Greenlee [10] by employing,
in a rigorous way, the method of formal asymptotic expansions. They obtained
stationary solutions with interfaces tending to the locations where γ(x) = 1/2 as
ε → 0. Quite recently, del Pino [25] revisited the Fife–Greenlee problem and gave
an elegant solution which, in particular, does not require the smoothness of the
interface Γ := {x ∈ Ω̄ : c(x) = 0}, and simultaneously allows this set to intersect
∂Ω. Our treatment of (1.7) is close in spirit to del Pino’s work, which we extend
to the periodic setting. Although we do not prove this here, we suspect that the
convergence in (1.11) is exponential in ε, as suggested by the approach of Bardi &
Parthame [6].

To explain (1.11), we would like to mention the results of Chen [8] (in N dimen-
sions) and Fife & Hsiao [11] (in one dimension): If F (x;u, ε−1τ) does not vary in τ
very rapidly (τ = εt), then starting with “roughly layered” initial data, the solution
of (1.7a), (1.7b) becomes layered in O(| ln ε|) time (in the t–time); i.e., there exist
regions Ω± such that uε ∼ α±(x, 0) in Ω±, whereas Γ := Ω\ (Ω+∪Ω−) is a thin re-
gion connecting the states α+(x, 0) and α−(x, 0). Here α+(x, τ), α0(x, τ), α−(x, τ)
are the zeros of F (x; ·, ε−1τ). Thereafter, the α0(x, τ) level–set of uε moves with
normal velocity εc(x, τ) (in the t–time) where c(x, τ) is the traveling wave speed
for the autonomous potential f(·) = F (x; ·, ε−1τ). Since in the current case c(x, τ)
oscillates rapidly (with period εT ), Chen’s result cannot be applied here. On the
other hand, a certain homogenization should provide an “averaged” speed c̄(x).
Our Theorem 1.1 suggests that the average speed can be obtained by solving (1.4).
Therefore, the α0 level–set of uε will eventually settle down near {x : c̄(x) = 0}; in
other words, “layered” periodic solutions of (1.7) should have the property stated
in Theorem 1.3.

For Fisher-type nonlinearities, F (u, x, t) = m(x, t)h(u) where m > 0 is T–
periodic, h(0) = h(1) = 0, h′(1) < 0 < h′(0) and h(u) > 0 on (0, 1), related
results were obtained by Dancer & Hess [9], following earlier work by Alikakos and
Hess [3]. The main result in [9] is that if ξ(x) is the average over the period of
m(x, t), then any family of T–periodic solutions uε with values in (0, 1) converges
to the characteristic function of the set {x : ξ(x) > 0} as ε→ 0. The proof is based
on two abstract properties: strong monotonicity and the structure characterized by
two equilibria connected by a family of sub- or supersolutions. The bistable case is
considerably harder.

We would like to mention, in passing, two questions we consider of interest,
although we did not pursue them in the present paper. One is the characterization
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of all solutions of (1.7), which satisfy (1.11) since our result suggests but does not
prove local uniqueness of such solutions for ε > 0 but small. For one dimensional
bounded Ω, if one assumes, in addition to the assumptions in Theorem 1.3, that
Fx > 0, then it can be shown that when ε is sufficiently small, a non–trivial (not
identically constant) and stable T–periodic solution of (1.7) is unique, therefore
satisfies (1.11).

The other question concerns the stability of a general solution uε of (1.7). Sta-
bility is decided by the sign of the principle eigenvalue for the eigenvalue problem

ε2∆h+ Fu(x;uε, t)h = −µεh in Ω× [0, T ],
h(x, T ) = h(x, 0) in Ω,
∂
∂nh = 0 on ∂Ω× [0, T ].

Hess [21] developed the relevant theory for this kind of eigenvalue problem but here
a more detailed knowledge of Fu(x;uε, t) is needed.

Before we close this section, we would like to comment on the possibility of
constructing solutions in closed form for the periodic problem (1.4) out of solutions
of the autonomous problem when f has a particular form. Assume that

f(u, t) = p(u)(−p′(u)− γ(t)),(1.12)

where p ∈ C3 and γ ∈ C1 satisfy γ(· + T ) = γ(·), p(±1) = 0, and p(·) >
0 in (−1, 1). Define (c, U) by

c =
1
T

∫ T

0

γ(t) dt, U(ξ, t) = Ψ(ξ − a(t) + ct) for all (ξ, t) ∈ R2,

where a(t) =
∫ t
0
γ(τ) dτ and Ψ is determined by

∫ Ψ(z)

0
du
p(u) = z for all z ∈ R.

Then one can easily verify that U solves (1.4). Note that if p = 1− u2 and γ(t) is
a constant function, then (1.4) is autonomous and the traveling wave solution so
constructed is known as Huxley’s traveling wave and one can compute it explicitly
[18, p. 130]. It is even more remarkable that the profile of U is independent of γ(·).
This is an algebraic fact specific to potentials of the form (1.12).

In order to see that the traveling wave so constructed is unique in the case that
f is bistable, we now verify that f in (1.12) satisfies the assumption of Theorem 1.1
provided that p′′(·) < 0 in (−1, 1) and γ(t) ∈ (−p′(−1),−p′(1)) for all t ∈ [0, T ].
To this end, we consider the more general form f = p(u)q(u, t) where p and q are
smooth functions satisfying p(±1) = 0, ±p′(±1) < 0, p > 0 in (−1, 1), p < 0 in
(−∞,−1) ∪ (1,∞), q(·, · + T ) = q(·, ·), ±q(±u, t) > 0 for u ≥ 1 and all t ∈ [0, T ],
and qu(u, t) > 0 for all (u, t) ∈ (−1, 1)× [0, T ].

First we notice that, for this f , w(±1, t) ≡ ±1 are exact solutions of (1.2). In
addition, P ′(±1) := wα(±1, T ) = exp(

∫ T
0 p′(±1)q(±1, t) dt) < 1. Hence, ±1 are

stable fixed points of the period map P .
Next we observe that f < 0 for u ∈ (1,∞) and f > 0 for u ∈ (−∞,−1), so that

P (α) < α for α > 1 and P (α) > α for α < −1. That is, P has no fixed point in
(−∞,−1) ∪ (1,∞).

Finally, for every α ∈ (−1, 1), we have w(α, ·) ∈ (−1, 1), and P ′(α) = wα(α, T ) =
exp(

∫ T
0
puqdt+

∫ T
0
pqudt) = p(w(α,T ))

p(α) exp(
∫ T
0
p(w)qu(w, t)dt) >

p(w(α,T ))
p(α) . Hence, if

P (α) := w(α, T ) = α, then P ′(α) > 1. That is, in (−1, 1), P has exactly one fixed
point. Therefore, f satisfies (H1) and (H2) and so from Theorem 1.1 we know that
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the traveling wave constructed above for the case of (1.12) is the unique globally
attracting solution of (1.4).

Similarly for the higher dimensional problem (1.7), if

F (x;u, t) = p(u)(−p′(u)− γ(x, t))(1.13)

where p(u) and γ satisfy p(±1) = 0, ±p′(±1) < 0, p′′ < 0 on (−1, 1), γ(·, t+ T ) =
γ(·, t) for all t, and γ(x, t) ∈ (−p′(−1),−p′(1)) for all (x, t) ∈ Ω̄ × [0, T ], then the
traveling wave speed at point x is

c(x) = 1
T

∫ T
0
γ(x, t) dt.

Consequently, in this special case, interfaces for solutions to (1.7) will move with
normal velocity explicitly given to first order by εc(x).

2. Traveling wave problem

In this section, we shall prove the first theorem of the previous section, breaking
it up into smaller parts. To begin, we show uniqueness of the traveling wave solution
through a squeezing argument using sub– and super–solutions. These are built from
horizontal and vertical translates of traveling waves, the amount of the translations
evolving with time. Then we establish certain properties of solutions, not only
to more fully understand their structure, but also as an aid to proving stability
later. Following this we prove the existence of the traveling wave, first obtaining
approximations on bounded intervals and then taking the limit as the interval
expands to become the whole line.

2.1. Uniqueness of traveling solutions.

Theorem 2.1. Under the conditions of Theorem 1.1, problem (1.4) admits at most
one solution.

Proof. Let (c, U) and (c̄, Ū) be any two solutions of (1.4). We shall prove that c = c̄
and U = Ū in several steps. Without loss of generality, we assume that c̄ ≤ c.

Step 1. Set M± = supξ∈R(±U(ξ, 0)). Let w(α, t) be the function defined in
(1.2). Then by the comparison principle, w(−M−, t) ≤ U(ξ, t) ≤ w(M+, t) for all
ξ ∈ R, t ≥ 0. Hence, by periodicity, w(−M−, kT + t) ≤ U(ξ, t) ≤ w(M+, kT + t)
for all ξ ∈ R, t > 0, and all positive integers k. Since the Poincaré map P (α) is
monotonic and has only three fixed points with α± being stable, P (α) > α for all
α < α− and P (α) < α for all α > α+. It follows that limk→∞ w(±M±, t + kT )
= w(α±, t) =: W±(t). Therefore, we have that W−(t) ≤ U(ξ, t) ≤ W+(t) for all
ξ ∈ R and t > 0. Applying the strong maximum principle and using the periodicity
of U and W±, we then conclude that

W−(t) < U(ξ, t) < W+(t) ∀ ξ ∈ R, t ∈ R.

The same estimate holds also for Ū .
Step 2. Define

ν± = − 1
T

∫ T
0 fu(W±(t), t) dt, a±(t) = exp(ν

±t
2 +

∫ t
0 fu(W

±(τ), τ) dτ).

(2.1)
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Since P ′(α±) = exp(
∫ T
0
fu(W±(t), t) dt) < 1, we have ν± > 0 and a±(T ) =

exp(− ν±T
2 ) < 1. Let

δ0 :=
sup{η > 0 : |fu(u, t)− fu(W±(t), t)| ≤ ν±

2 ∀ t ∈ [0, T ], u ∈ [W±(t)− η,W±(t) + η]},
2‖a+(·)‖C0([0,T ]) + 2‖a−(·)‖C0([0,T ])

,

ξ0 := inf{ξ̂ ≥ 1 : |U(±ξ, t) −W±(t)| ≤ δ0
2 for all ξ ∈ [ξ̂,∞) and t ∈ [0, T ]}.

(2.2)

Since f ∈ C2,1 and one can show that U(±∞, t) = W±(t) uniformly for t ∈ [0, T ],
both δ0 and ξ0 are well–defined.

For every δ ∈ (0, δ0], define U±δ (ξ, t) = U(ξ, t) + δa±(t). Then,

LcU±δ := (U±δ )t − (U±δ )ξξ − c(U±δ )ξ − f(U±δ , t) = δa±t + f(U, t)− f(U + δa±, t)

= δa±[ ν
±
2 + fu(W±(t), t) −

∫ 1

0 fu(U + δθa±, t) dθ] > 0

in [ξ0,∞)×[0, T ] for the “+” sign and in (−∞,−ξ0]×[0, T ] for the “−” sign. Hence,
U+
δ and U−δ are super–solutions of LcU = 0 in [ξ0,∞)×[0, T ] and (−∞,−ξ0]×[0, T ],

respectively.
Step 3. Since Ū(±∞, t) = W±(t), there exists a large positive constant ẑ0 such

that

Ū(ξ − z + (c− c̄)t, t) ≤
{
U(ξ, t) if ξ ∈ [−ξ0, ξ0],
U(ξ, t) + δ0 if ξ 6∈ [−ξ0, ξ0], for all t ∈ [0, T ], z ≥ ẑ0.

(2.3)

Define

δẑ0 := inf{δ > 0 : Ū(ξ − z, 0) ≤ U(ξ, 0) + δ ∀z ≥ ẑ0, ξ ∈ R }.(2.4)

Clearly, δẑ0 ∈ [0, δ0]. We claim δẑ0 = 0. In fact, noting LcŪ(ξ − z+ (c− c̄)t, t) = 0,
we can use (2.3) on {ξ0}× [0, T ] and (2.4) on [ξ0,∞)×{0} to compare U+

δẑ0
(ξ, t) and

Ū(ξ−z+(c−c̄)t, t) in (ξ0,∞)×[0, T ] to obtain Ū(ξ−z+(c−c̄)t, t) ≤ U+
δẑ0

(ξ, t) for all
z ≥ ẑ0 and all (ξ, t) ∈ (ξ0,∞)×[0, T ]. Since z can be an arbitrary number in [ẑ0,∞)
and c ≥ c̄, we then have that Ū(ξ−z, T ) ≤ U+

δẑ0
(ξ, T ) for all ξ ∈ [ξ0,∞) and z ≥ ẑ0.

Using the periodicity of Ū and U , and the definition of U+
δẑ0

, we then have that for all
z ≥ ẑ0 and all ξ ∈ [ξ0,∞), Ū(ξ−z, 0) ≤ U(ξ, 0)+δẑ0a+(T ). In a similar manner, we
can show that for all z ≥ ẑ0 and all ξ ∈ (−∞,−ξ0], Ū(ξ−z, 0) ≤ U(ξ, 0)+δẑ0a−(T ).
Hence, from (2.3), Ū(ξ − z, 0) ≤ U(ξ, 0) + δẑ0 max{a+(T ), a−(T )} for all ξ ∈ R.
Therefore, by the definition of δẑ0 , δẑ0 ≤ δẑ0 max{a+(T ), a−(T )}. Recalling that
a±(T ) < 1, we must have δẑ0 = 0. In summary,

Ū(ξ − z, 0) ≤ U(ξ, 0) ∀ξ ∈ R, z ≥ ẑ0.(2.5)

Step 4. From (2.5) and a comparison principle, we have Ū(ξ− ẑ0 +(c− c̄)t, t) ≤
U(ξ, t) for all (ξ, t) ∈ R× [0,∞). Consequently, by the periodicity, for every positive
integer k,

α0 = U(0, 0) = U(0, kT ) ≥ Ū(−ẑ0 + (c− c̄)kT, kT ) = Ū(−ẑ0 + (c− c̄)kT, 0).

Sending k to ∞ and noticing that c̄ ≤ c and Ū(∞, 0) = α+ > α0, we conclude that
c̄ = c.

Step 5. Define

z0 := inf{z̃0 ∈ R : Ū(ξ − z, 0) ≤ U(ξ, 0) ∀z ≥ z̃0, ξ ∈ R }.
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Then, by (2.5), z0 is well–defined and is finite. We claim that Ū(ξ−z0, 0) = U(ξ, 0)
for all ξ. Assume that this is not true. Then by a strong maximum principle
and periodicity (recalling that c̄ = c), Ū(ξ − z, t) < U(ξ, t) for all (ξ, t) ∈ R2

and all z ∈ [z0,∞). Now let ε > 0 be a positive constant sufficiently small such
that (2.3) holds for ẑ0 := z0 − ε. Then proceed as in Step 3 to conclude that
Ū(ξ − z, 0) ≤ U(ξ, 0) for all z ≥ ẑ0. Thus by the definition of z0, ẑ0 ≥ z0, which is
impossible. Thus, we must have Ū(ξ − z0, 0) = U(ξ, 0) for all ξ ∈ R.

Step 6. We now show that z0 in Step 5 is zero. In fact, from the definition
of z0 and strong maximum principle, we have that Ū(ξ − z, 0) < U(ξ, 0) for all
ξ ∈ R and z > z0. Since U(ξ, 0) = Ū(ξ − z0, 0), we have U(ξ + z0 − z, 0) =
Ū(ξ− z, 0) < U(ξ, 0) for all z > z0; that is, U(·, 0) is strictly monotonic. Observing
that U(z0, 0) = Ū(0, 0) = α0 = U(0, 0), we must have z0 = 0. This completes the
proof of Theorem 2.1.

2.2. Basic properties of traveling wave solutions.

Theorem 2.2. Assume that (c, U) solves (1.4). Then the following holds:

1. Uξ(ξ, t) > 0 for all ξ, t ∈ R;
2. Define ν± as in (2.1) and β± := 1

2 (−c ∓
√
c2 + 4ν±). Then there exists a

constant C > 0 such that

|U(±ξ, t)−W±(t)|+|Uξ(±ξ, t)|+|Uξξ(±ξ, t)| ≤ Ce−|β±|ξ, ∀ξ ∈ [0,∞), t ∈ [0, T ].

Proof. (1) From Step 6 of the proof of Theorem 2.1, we know that Uξ ≥ 0. Hence,
applying a strong maximum principle for the equation satisfied by Uξ yields Uξ > 0
in R2.

(2) Let M be a large constant to be determined. Define

vM (ξ, t) = [W+(t)− U(ξ +M, t)] exp
(
− ν+t−

∫ t
0 f(W+(τ), τ)dτ

)
,

(ξ, t) ∈ [0,∞)× [0,∞).

By the definition of ν+, vM is T –periodic. Direct calculation yields

LcM (vM ) := (vM )t − (vM )ξξ − c(vM )ξ + ν+vM +Dv2
M = 0 in [0,∞)× [0,∞),

(2.6)

where D = D(M, ξ, t) is a function defined by

D(M, ξ, t)

:=
f(U, t)− f(W+, t)− fu(W+, t)(U −W+)

(U −W+)2
exp

{
ν+t+

∫ t
0 f(W+(τ), τ)dτ

}
.

Since U is bounded by W− and W+, by Taylor’s Theorem,

|D(M, ξ, t)| ≤ D0

:= sup
t∈[0,T ],s∈[W−(t),W+(t)]

{
1
2 |fuu(s, t)| exp

(
ν+t+

∫ t
0 f(W+(τ), τ)dτ)

)}
.

We shall find super–solutions of (2.6) to estimate vM .
Let δ1 = ν+

8D0
. For every δ2 ∈ (0, ν

+

2D0
] consider the function

Vδ2 (ξ) := δ1e
β+ξ(2− eβ+ξ) + δ2, ξ ≥ 0.
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For simplicity we write β for β+ and ν for ν+. Calculation shows

LcM (Vδ2) = 2δ1eβξ(−β2 − cβ + ν) + δ1e
2βξ[4β2 + 2cβ − ν + δ1D(2− eβξ)2]

+ δ2[ν + 2Dδ1eβξ(2 − eβξ) + δ2D].

Using the definition of β, we have that −β2 − cβ + ν = 0 and 4β2 + 2cβ − ν =
2β2 + ν > ν. Since |D| ≤ D0, it follows that

LcM (V +
δ2

) > δ1e
2βξ[ν − 4δ1D0] + δ2[ν − 4D0δ1 − δ2D0] ≥ 0

by the definition of δ1 and the constraint on δ2. Therefore, for every δ2 ∈ (0, ν
2D0

],
Vδ2 is a super–solution to (2.6) in [0,∞)× [0,∞).

Since U(∞, t) = W+(t), there exists M > 0 such that supξ∈[0,∞),t∈[0,T ] vM (ξ, t)
< δ1. Define

δ̂2 := inf{δ2 ∈ (0, ν
2D0

] : Vδ2 (ξ) ≥ vM (ξ, 0) in [0,∞)}.

Then by the definition ofM , δ̂2 is well defined. In addition, noticing that vM (0, t) <
δ1 ≤ Vδ̂2 (0) for all t ∈ [0, T ], we can apply the comparison principle for the functions
vM and Vδ̂2 in [0,∞) × [0, T ] to obtain that vM (ξ, t) < Vδ̂2(ξ) for all ξ ≥ 0 and
all t ∈ (0, T ]. Consequently, vM (ξ, 0) = vM (ξ, T ) < Vδ̂2(ξ) for all ξ ≥ 0. Since
vM (∞, t) = 0, by the definition of δ̂2, we must have δ̂2 = 0. Hence,

vM (ξ, t) ≤ V0(ξ) = δ1e
βξ(2− eβξ) ≤ 2δ1eβξ, ξ ∈ [0,∞).

It then follows by the definition of vM that 0 < W+(t) − U(ξ, t) < Ceβξ for some
positive constant C and all (ξ, t) ∈ [0,∞)× [0, T ]. Using local parabolic estimates
for vM , we can also derive that |Uξ| + |Uξξ| ≤ Ĉeβξ for all ξ ∈ [0,∞) and all
t ∈ [0, T ]. The case ξ ≤ 0 can be similarly treated. The second assertion of the
theorem thus follows.

2.3. Existence of traveling waves in bounded domains.
Let M ≥ 1 be any fixed constant. Set ΩM = (−M,M) and QM = ΩM × (0, T ].

For every constant c ∈ R, consider the following initial boundary value problem: Lc(V ) := Vt − cVξ − Vξξ − f(V, t) = 0, (ξ, t) ∈ QM ,
V (±M, t) = W±(t), t ∈ [0, T ],
V (ξ, 0) = g(ξ), ξ ∈ ΩM ,

(2.7)

where g is any element in the function class XM defined by

XM := {g ∈ C0([−M,M ]) : g(±M) = α±, g(0) = α0, gξ(·) ≥ 0 in ΩM}.

Lemma 2.3. Let M ≥ 1 be any fixed constant. The following hold:
1. For every c ∈ R and g ∈ XM , problem (2.7) admits a unique solution V =
V (g, c; ξ, t), and the solution satisfies

W−(t) < V (g, c; ξ, t) < W+(t), Vξ(g, c; ξ, t) > 0, Vc(g, c; ξ, t) > 0 ∀ (ξ, t) ∈ QM .

2. There exist constants C+(M) and C−(M) such that C−(M) < C+(M) and

inf
g∈XM

V (g, C+(M); 0, T ) ≥ α0, sup
g∈XM

V (g, C−(M); 0, T ) ≤ α0.

Consequently, for any g ∈ XM , there exists a unique c = C(M, g) ∈ R such
that V (g, c; · , T ) ∈ XM .
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3. There exists a unique gM ∈ XM such that V (gM , C(M, gM ); · , T ) = gM ;
namely, there exists a unique solution (VM , CM ) to the following problem:

 LCM

(VM ) := VMt − VMξξ − CMVMξ − f(VM , t) = 0 in QM ,

VM (±M, t) = W±(t) in [0, T ],
VM (·, 0) = VM (·, T ).

(2.8)

Proof. (1) Though f is nonlinear so that the solution of (2.7) may blow up, the
property of g in XM and a comparison principle yield the a priori estimate W−(t) <
V (ξ, t) < W+(t) for any (ξ, t) ∈ QM . Hence, (2.7) admits a unique solution V =
V (g, c; ξ, t). Since the a priori estimate implies that Vξ ≥ 0 at ξ = ±M , the
assumption gξ ≥ 0 and the maximum principle for the equation satisfied by Vξ
then immediately yield Vξ > 0 in QM . Notice that Vc := ∂

∂cV satisfies

(Vc)t − (Vc)ξξ − c(Vc)ξ − fu(V, t)Vc = Vξ > 0 in QM

and Vc = 0 on the parabolic boundary of QM ; it then follows that Vc > 0 in QM .
This establishes the first assertion.

(2) Let W (ξ, t) (depending on M) be any fixed function having the following
properties:

W (ξ, 0) < α− ∀ξ ∈ [−M,M ], W (±M, t) ≤W±(t) ∀ t ∈ [0, T ],

W (0, T ) = α0, Wξ(ξ, t) > 0 ∀ (ξ, t) ∈ [−M,M ]× [0, T ].

Since α− < α0 < α+, such a function can be easily constructed. For example,
pick any monotonic function ζ(ξ) satisfying ζξ > 0 in [−M,M ], ζ(±M) = α±,
ζ(0) = α0. Then the function W (ξ, t) := ζ(ξ) −K(T − t) with sufficiently large K
will satisfy all the properties needed. Define

C+(M) := sup
(ξ,t)∈[−M,M ]×[0,T ]

Wt −Wξξ − f(W, t)
Wξ

.

Then one can verify that when c = C+(M), W is a sub–solution of (2.7a), (2.7b) and
W (·, 0) < g for any g ∈ XM . Hence, by comparison, W (ξ, t) ≤ V (g, C+(M); ξ, t)
in QM for any g ∈ XM . Consequently, α0 = W (0, T ) ≤ V (g, C+(M); 0, T ). This
proves the existence of C+(M). The existence of C−(M) can be shown by a similar
construction.

Recall that for any fixed g ∈ XM , V (g, c; 0, T ) is strictly monotonic in c ∈
R. By the properties of C±(M), there exists a unique C = C(M, g) such that
V (g, C; 0, T ) = α0. Moreover, recalling that Vξ(g, c; ·, T ) > 0 in Ω and V (g, c;±M,T )
= W±(T ) = α±, we have that V (g, C(M, g); ·, T ) ∈ XM . The second assertion of
the lemma thus follows.

(3) For every g ∈ XM define a mapping T : XM → XM by

T (g) = V (g, C(M, g); ·, T ).

Then we know the following: a) XM is a closed convex subset of C0([−M,M ]) and
T maps XM into itself; b) Since Vc > 0 and the solution V (·, c; ξ, t) depends on
g continuously, C(M, g) is continuous in g and consequently T is continuous from
XM to XM ; c) By a parabolic estimate, T (XM ) is a bounded set in C2([−M,M ]),
so that T is compact. Therefore, by Schauder’s fixed point theorem, there exists
g ∈ XM such that T (g) = g.
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Uniqueness of solutions of (2.8) follows the same moving plane technique intro-
duced in Step 5 of the proof of Theorem 2.1 and is omitted. (In the current bounded
domain situation, one does not need the lifting technique introduced in Steps 2 and
3 in the proof of Theorem 2.1.) This completes the proof of Lemma 2.3.

Now we shall find estimates for the solution to (2.8) which are independent of
M so that we can take the limit as M →∞ to obtain a solution of (1.4). The basic
idea is to use the following comparison principle.

Lemma 2.4. Let M ≥ 1 be any fixed constant and (VM , CM ) be the solution to
(2.8).

1. If (V̄ , c̄) satisfies V̄t − V̄ξξ − c̄V̄ξ − f(V̄ , t) ≤ 0, (ξ, t) ∈ QM ,
V̄ (±M, t) ≤W±(t) ∀ t ∈ [0, T ], V̄ (0, 0) ≥ α0,
V̄ (ξ, 0) ≤ V̄ (ξ, T ), ξ ∈ [−M,M ],

(2.9)

then CM ≤ c̄.
2. If V̂ satisfies


V̂t − V̂ξξ − CM V̄ξ − f(V̂ , t) ≤ 0, (ξ, t) ∈ [0,M ]× [0, T ],
V̂ (M, t) ≤W+(t), V̂ (0, t) ≤ VM (0, t), ∀ t ∈ [0, T ],
V̂ (ξ, 0) ≤ max{α0, V̂ (ξ, T )}, ξ ∈ [0,M ],

(2.10)

then V̂ ≤ VM in [0,M ]× [0, T ].

Proof. (1) Assume for contradiction that CM > c̄. Then, since VMξ > 0 in QM ,

Lc̄(VM ) := (VM )t − VMξξ − c̄VMξ − f(VM , t) = (CM − c̄)V Mξ > 0 in QM .

Define

m0 = inf{m ∈ (−2M, 2M) : VM (ξ, 0) > V̄ (ξ −m, 0)

in (−M,M) ∩ (m−M,m+M) }.
Since VM (M, 0) = α+ > V̄ (−M, 0) and VM (0, 0) = α0 ≤ V̄ (0, 0), m0 ∈ [0, 2M). In
addition, there exists ξ0 ∈ ΩMm0

:= (m0 − M,M) such that VM (ξ0, 0) =
V̄ (ξ0 − m0, 0). Notice that the boundary conditions of VM and V̄ imply that
on the parabolic boundary of ΩMm0

× (0, T ], VM (ξ, t) ≥ V̄ (ξ −m0, t). Hence, ap-
plying a comparison principle to the functions VM (ξ, t) and V̄ (ξ − m0, t) in the
domain ΩMm0

× [0, T ], we have that VM (ξ, T ) > V̄ (ξ −m0, T ) for all ξ ∈ ΩMm0
. But

this is impossible since VM (ξ0, T ) = VM (ξ0, 0) = V̄ (ξ0 −m0, 0) ≤ V̄ (ξ0 −m0, T ).
Hence, we must have CM ≤ c̄.

(2) Define m0 = inf{m ≥ 0 : VM (ξ, 0) ≥ V̂ (ξ − m, 0) in [m,M ]}. Using a
comparison principle in (m0,M)× (0, T ], one can follow the idea in (1) to deduce
that m0 = 0.

Now we apply the first comparison principle in Lemma 2.4 to estimate CM .

Lemma 2.5. There exists M0 > 1 such that for any M ≥ M0, the solution
(VM , CM ) of (2.8) satisfies the estimate

|CM | ≤ 1 + 1
2 sup{(W+(t)−W−(t) + 2)|fuu(u, t)| :

u ∈ [W−(t)− 1,W+(t) + 1], t ∈ [0, T ]}.
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Proof. Let ζ(s) = 1
2 [1 + tanh( s2 )] so that ζ′ = ζ(1 − ζ) and ζ ′′ = ζ ′(1 − 2ζ). Set

w1(t) = W+(t) and w2(t) = w(α− − ε0, t) where ε0 is a small constant such that
w2(t) ≥W−(t)− 1 in [0, T ]. Consider the function

V̄ (ξ, t) = w1(t)ζ(ξ + ξ0) + w2(t)[1 − ζ(ξ + ξ0)]

where ξ0 is a constant such that ζ(ξ0) = α0−α−+ε0
α+−α−+ε0

. Since w1(T ) = w1(0) and
w2(T ) > w2(0), V̄ (·, T ) > V̄ (·, 0). Also, V̄ (0, 0) = α0, V̄ξ > 0, V̄ (∞, 0) = α+, and
V̄ (−∞, 0) = α− − ε0.

Observe, by Taylor’s expansion, that

ζf(w1, t) + (1 − ζ)f(w2, t)− f(ζw1 + (1− ζ)w2, t) =
1
2
ζ(1 − ζ)(w1 − w2)2fuu(θ, t)

for some θ ∈ (w2, w1). Taking c̄ = 1 + 2 sup{|fuu(u, t)| : u ∈ [w2(t), w1(t)], t ∈
[0, T ]}, we have that, for all (ξ, t) ∈ R× [0, T ],

Lc̄(V̄ ) = [−c̄ζ ′ − ζ′′](w1 − w2)

+ [ζf(w1, t) + (1− ζ)f(w2, t)− f(ζw1 + (1− ζ)w2, t)]

= −ζ(1− ζ)(w1 − w2)[c̄+ 1− 2ζ − 1
2 (w1 − w2)fuu(θ, t)] < 0.

Hence, by Lemma 2.4 (1), for all M satisfying ζ(−M) ≤ ε0
α+−α−−ε0 (so that

V̄ (−M, 0) ≤ α−), we have CM ≤ c̄. Similarly, one can establish the lower bound
of CM , thereby completing the proof of the lemma.

2.4. Existence of a periodic traveling wave.

Theorem 2.6. Problem (1.4) admits a unique solution (U, c), which can be ob-
tained by taking the limit, as M →∞, in the solution (VM , CM ) of (2.8).

Proof. From Lemma 2.5, we know that {CM}M≥M0 is uniformly bounded. Hence,
by parabolic estimates [24], supM≥M0

‖VM‖C2,1(QM ) is uniformly bounded also.
Therefore, we can select a subsequence {Mj}∞j=1 such that as j → ∞, Mj → ∞,
CMj → c∗, and VMj → U∗ (uniformly in any compact subset of R× [0, T ]), where
(c∗, U∗) satisfies the following equations:{

U∗t − U∗ξξ − c∗U∗ξ − f(U∗, t) = 0 in R× [0, T ],
U∗(0, 0) = α0, U∗(·, 0) = U∗(·, T ) in R, U∗ξ ≥ 0 in R× [0, T ].

Thus, to show that (c∗, U∗) solves (1.4), we need only show that U∗(±∞, t) =
W±(t).

Assume for the moment that U∗ is non–trivial; i.e., U∗(·, t) 6≡ w(α0, t). Then
U∗ξ 6≡ 0, so that by the condition U∗ξ ≥ 0 in R× [0, T ] and the strong maximum prin-
ciple, we have U∗ξ > 0 in R× [0, T ]. Consequently, U∗(±∞, t) := limξ→±∞ U∗(ξ, t)
exist and U∗(−∞, 0) < α0 < U∗(∞, 0). Since U∗(·, t) is monotonic, U∗ξ and U∗ξξ
approach zero weakly as |ξ| → ∞. It then follows that U∗(∞, t) and U∗(−∞, t) are
periodic solutions of wt = f(w, t). Hence, by the assumption on f , we must have
U∗(±∞, t) = W±(t). Since the solution of (1.4) is unique, we then know that the
whole sequence (VM , CM ) converges to (U∗, c∗) as M →∞.

Thus, to finish the proof, we need only show that U∗ is non–trivial. Without loss
of generality, we assume that c∗ ≥ 0. Also, we can assume that U∗(0, t) ≥ w(α0, t)
for all t ∈ [0, T ] since otherwise, U∗(0, t) 6≡ w(α0, t) so that U∗ is not trivial. Under
these assumptions, we have that

lim
j→∞

CMj ≥ 0, lim
j→∞

min
t∈[0,T ]

{VMj (0, t)− w(α0, t)} ≥ 0.
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We shall use Lemma 2.4 (2) to show that U∗ is non–trivial.
Since wα = exp(

∫ t
0
fu) > 0, K = max{ |wαα(α,t)|

wα(α,t) + 1 : α ∈ [α−, α+], t ∈ [0, T ]} is

finite. Take δ = min
{

1
16K ,

α+−α0

8

}
. Let ζ(s) ∈ C∞([0,∞)) be a function such that{

ζ(s) = α0 + (s+
√
δ)2 − 2δ if s ∈ [0,

√
δ],

0 ≤ ζ ′(s) < 5
√
δ, α0 + 2δ ≤ ζ(s) < α0 + 7δ, |ζ′′(s)| ≤ 2 if s ∈ [

√
δ,∞).

For any δ1 > 0, let ŵ(α, t) be the solution to

ŵt = f(ŵ, t)− δ1

(
max{0, ŵ − w(α0 + δ, t)}

)3

, ŵ(α, 0) = α.

Clearly, ŵ(α, t) = w(α, t) for all α ≤ α0+δ. Since P (α) > α for all α ∈ (α0, α+), for
every positive δ1 sufficiently small, ŵ(α, T ) > α for all α ∈ (α0, α0+7δ]. In addition,
by taking smaller δ1 if necessary, we have that maxα∈[α0−δ,α0+7δ],t∈[0,T ]

|ŵαα(α,t)|
ŵα(α,t) ≤

K. We henceforth fix such δ1 > 0. Also, we set δ2 := mint∈[0,T ]{ŵ(α0 + 2δ, t) −
ŵ(α0 + δ, t)}.

Let ε be a small positive constant to be determined. Consider the function
V̂ (ξ, t) = ŵ(ζ(εξ), t). One can calculate

LC
Mj (V̂ ) = −δ1

(
max{0, ŵ(ζ, t)−ŵ(α0+δ, t)}

)3

−ŵα
(
ε2ζ′′+εCMjζ′+ε2

ŵαα
ŵα

(ζ ′)2
)

where ŵ is evaluated at (ζ(εξ), t). We want to show LCMj (V̂ ) < 0 in [0,∞)× [0, T ]
by considering two cases: (i) ζ ≥ α0 + 2δ; (ii) ζ < α0 + 2δ.

In the first case,

LC
Mj (V̂ ) ≤ −δ1δ32 + εŵα

(
2ε− 5

√
δmin{CMj , 0}+ 25εKδ

)
≤ −δ1δ32 − Cε < 0

if we take ε small enough.
In the second case, with ε fixed as above, let s := εξ ∈ [0,

√
δ) so that ζ′′ = 2

and ζ ′ = 2(s+
√
δ) < 4

√
δ. It then follows that

LC
Mj (V̂ ) ≤ −ŵαε

(
2ε+ 4min{CMj , 0}

√
δ − 16εKδ) < 0

if we take j large enough such that CMj ≥ − ε
8
√
δ
.

In summary, there exist ε > 0 and J > 0 such that LCMj (V̂ ) < 0 in [0,∞)×[0, T ]
for all j ≥ J .

Finally, observe that, for all t ∈ [0, T ], V̂ (0, t) = ŵ(ζ(0), t) = ŵ(α0 − δ, t) =
w(α0 − δ, t) < VMj (0, t) if we take j large enough. Also, for any M ∈ [1,∞),
V̂ (M, t) ≤ ŵ(α0 + 7δ, t) < w(α0 + 7δ, t) < W+(t). Furthermore, if V̂ (ξ, 0) > α0,
then ζ = ζ(εξ) > α0 so that V̂ (ξ, 0) = ŵ(ζ(εξ), 0) = ζ(εξ) < ŵ(ζ(εξ), T ) = V̂ (ξ, T ).
Hence, by Lemma 2.4 (2), for all j large enough, VMj ≥ V̂ in [0,Mj] × [0, T ].
Consequently, U∗ ≥ V̂ in [0,∞) × [0, T ], and therefore U∗ cannot be trivial. This
completes the proof of Theorem 2.6.

3. Stability of the traveling waves

In this section we study the asymptotic behavior, as t→∞, for the initial value
problem (1.1) for a large class of initial conditions g, and we prove Theorem 1.2.
The analysis can be naturally divided into two parts. In the first part one shows
that a solution develops, after some time, a wave–like profile. In the second part,
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one shows that the solution converges exponentially in time to a translate of the
traveling wave solution constructed in Section 2. The result in the second part is
local in nature and can be deduced from very general facts on exponential stability
with asymptotic phase of invariant manifolds, established long ago by Henry [18] in
the context of reaction–diffusion equations, and known before that in the context of
ODE’s (Hale [19]). We will, for the convenience of the reader who may be unfamiliar
with these ideas, present a different self–contained approach. On the other hand,
the general abstract method in Henry [18], together with the necesssary spectral
theory, is natural in this problem and we include that approach in the Appendix.
One of the benefits of the abstract approach, besides conceptual clarity, is the
identification of the best exponent µ in (1.6).

In the sequel, we shall denote by Ug(ξ, t) the solution of

{
Lc(Ug) := Ugt − cUgξ − Ugξξ − f(Ug, t) = 0 in R× (0,∞),
Ug(·, 0) = g(·) on R,

(3.1)

where c is the speed of the unique traveling wave solution of (1.4). Clearly, the
solution u in (1.1) is given by u(z, t) = Ug(z − ct, t). We denote ‖ · ‖ = ‖ · ‖L∞(R).

We shall consider the evolution of a general “vaguely resembling front” (i.e., g
satisfying (1.5) ) in several stages.

3.1. Short time evolution of “vaguely resembling fronts”.

Lemma 3.1. Let (c, U) be the solution of (1.4) and let Ug(ξ, t) be the solution of
(3.1) for g ∈ L∞(R).

1. If there exist constants α1 ∈ (α+,∞) and α2 ∈ (α−, α0) such that

g(ξ) ≤ α1 in R, g(ξ) ≤ α2 in (−∞, 0),(3.2)

then for any ε > 0, there exist a positive number ẑ and a positive integer k̂
such that

Ug(ξ, k̂T ) ≤ U(ξ + ẑ, 0) + ε ∀ ξ ∈ R.
2. If g satisfies (1.5), then for every ε > 0, there exist a positive number ẑ =
ẑ(ε, g) and a positive integer k̂ = k̂(ε, g) such that

U(ξ − ẑ, 0)− ε ≤ Ug(ξ, k̂T ) ≤ U(ξ + ẑ, 0) + ε ∀ ξ ∈ R.(3.3)

Proof. (1) Set ζ(s) = 1
2 [1 + tanh s

2 ], w1(t) = w(2α1 − α2, t), and w2(t) = w(α2, t)
where w(α, t) is the solution of (1.2). Define

ĉ = c+ 1 + 1
2 sup{(w1(t)− w2(t))|fuu(θ, t)| : θ ∈ [w2(t), w1(t)], t ∈ [0,∞)},

V (ξ, t) = w1(t)ζ(ξ + ĉt) + w2(t)[1 − ζ(ξ + ĉt)].

Then, by (3.2), V (·, 0) ≥ g(·). The same computation as in the proof of Lemma 2.5
shows that Lc(V ) > 0 in R× [0,∞). A comparison principle then yields Ug(ξ, t) ≤
V (ξ, t) in R × [0,∞). The first assertion of the lemma thus follows from the fact
that limk→∞ w2(kT + t) = W−(t), limk→∞ w1(kT + t) = W+(t).

(2) The second assertion follows from (1) and a similar estimate on the lower
bound of the solution.

Lemma 3.1 (2) reveals that a “vaguely resembling wave front” evolves into a
“resembling wave front” (i.e., close to W±(t) for ξ near ±∞) after a certain time.
We now study its subsequent evolution.
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3.2. Evolution of “resembling wave fronts”.

Lemma 3.2. 1. There exist positive constants ε0, K0, ρ0 such that if for some
ε ∈ (0, ε0] and ẑ ∈ R

g(·) ≤ U(·+ ẑ, 0) + ε
(
or g(·) ≥ U(· − ẑ, 0)− ε

)
,

then for all t ≥ 0,

Ug(·, t) ≤ U(·+ẑ+K0ε, t)+K0εe
−ρ0t

(
or Ug(·, t) ≥ U(·−ẑ−K0ε, t)−K0εe

−ρ0t
)
.

2. There exists a positive constant K1 such that if ‖g(·)− U(·, 0)‖ ≤ ε for some
ε ∈ (0, ε0], then

‖Ug(·, t)− U(·, t)‖ ≤ K1ε ∀ t ≥ 0.

Proof. We need only prove (1) since (2) is a direct consequence of (1). Without
loss of generality, we assume that ẑ = 0.

Let ν±, a±(t), δ0, ξ0 be as in (2.1) and (2.2). Let ζ(s) be any C2(R) function
satisfying

ζ(s) = 1 in [3,∞), ζ(s) = 0 in (−∞, 0], 0 ≤ ζ′(s) ≤ 1 and |ζ′′(s)| ≤ 1 in R.

Define

A(ξ, t) = ζ(ξ)a+(t) + (1− ζ(ξ))a−(t),
(3.4)

B(t) =
∫ t
0 max{a+(τ), a−(τ)} dτ,(3.5)

K =
(
ν+ + ν− + 1 + |c|+ 2‖fu‖

)/(
min

t∈[0,T ],ξ∈[−ξ0,ξ0]
Uξ(ξ, t)

)
,(3.6)

V (ξ, t) = U(ξ +KεB(t), t) + εA(ξ, t),

where ‖fu‖ = max{|fu(u, t)| : t ∈ [0, T ], u ∈ [W−(t)− 1,W+(t) + 1]}. Note that

a±(t) ≤ C exp(−ν
±t
2

) for all t ∈ [0,∞),

where C = supt∈[0,T ] exp(ν±t+
∫ t
0
fu(W±, τ) dτ). It follows that as t → ∞, a±(t)

and ‖A(·, t)‖C0(R) approach zero exponentially fast, and B(t) is uniformly bounded.
We take ε0 = δ0/(2KB(∞)). We want to show that Ug(·, ·) ≤ V (·, ·) in R× [0,∞).

When t = 0, V (·, 0) = U(·, 0) + ε ≥ g(·) = Ug(·, 0). Also, we can calculate

Lc(V ) = KεBtUξ+ε[At−cAξ−Aξξ−Afu(U+εθA, t)] for some θ(ξ, t) ∈ (0, 1).

Now we claim that LcV ≥ 0 for all ε ∈ (0, ε0]. We consider three cases: (i)
ξ ∈ [ξ0,∞), (ii) ξ ∈ (−∞,−ξ0], and (iii) ξ ∈ [−ξ0, ξ0].

In the first case, ζ = 1, Aξ = Aξξ = 0, BtUξ > 0, |fu(U+εθA, t)−fu(W+(t), t)| ≤
ν+

2 , and At = A[ ν
+

2 +fu(W+(t), t)]. It then follows that LcV ≥ 0 in [ξ0,∞)×[0,∞).
Similarly, LcV ≥ 0 in the second case.

In the third case, i.e., ξ ∈ [−ξ0, ξ0], we have that

|At− cAξ−Aξξ−Afu(U + εθA, t)| ≤ max{a+(t), a−(t)}(ν+ + ν−+2‖fu‖+ |c|+1).

On the other hand, we have that

BtUξ ≥ max{a+(t), a−(t)}min{Uξ : t ∈ [0, T ], ξ ∈ [−ξ0, ξ0]}.
Hence, by the definition of K, LcV ≥ 0 in [−ξ0, ξ0]× [0,∞).
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In conclusion, LcV ≥ 0 in R × [0,∞). Therefore, by the comparison principle,
Ug ≤ V in R× [0,∞). The assertion of the lemma thus follows.

The first part of Lemma 3.2 (1) shows that a “resembling wave front” preserves
this structure uniformly for all t ∈ (0,∞). We now show that this forces convergence
to a translate of the traveling wave.

3.3. Nonlinear stability of the traveling wave.

Lemma 3.3. Assume that g ∈ L∞(R) satisfies (1.5). Then there exists zg ∈ R,
such that

lim
t→∞ ‖U

g(·, t)− U(·+ zg, t)‖ = 0.

Proof. By Lemmas 3.1 and 3.2 (1), there exist a positive integer k̂ and a large
number ẑ such that for all (ξ, t) ∈ R× [k̂T,∞),

U(ξ − ẑ −K0ε0, t)−K0ε0e
−ρ0t ≤ Ug(ξ, t) ≤ U(ξ + ẑ +K0ε0, t) +K0ε0e

−ρ0t.
(3.7)

Notice that {Ug(·, kT )}∞k=1 is a bounded sequence in C1(R). Also notice that U(ξ, t)
approaches W±(t) as ξ → ∞, uniformly in t ∈ [0, T ]. Consequently there exist an
integer sequence {kj}∞j=0 and a function h(ξ) such that as j → ∞, kj → ∞ and
‖Ug(·, kjT )− h(·)‖ → 0. In addition, U(·, t) satisfies

U(ξ − ẑ −K0ε0, 0) ≤ h(ξ) ≤ U(ξ + ẑ +K0ε0, 0) ∀ξ ∈ R.

Set

zg := sup{z : h(·) ≥ U(·+ z, 0) in R}.
Clearly, h ≥ U(· + zg, 0). By translation if necessary, we can, without loss of
generality, assume that zg = 0. We claim that h(·) = U(·, 0). Assume that this is
not true. Then, by the strong maximum principle, Uh(·, T ) > U(·, 0). Let ξ̂ be a
large constant such that δ̂ := sup|ξ|≥ξ̂−1 Uξ(ξ, 0) ≤ 1

4K0
. Since Uh(·, T ) > U(·, 0),

there exists ε > 0 such that Uh(ξ, T ) > U(ξ+ε, 0) for all ξ ∈ [−ξ̂, ξ̂]. Consequently,

Ug(·, (kJ + 1)T )− U(·+ ε, 0)

≥ −‖Ug(·, kJT + T )− Uh(·, T )‖+ Uh(·, T )− U(·+ ε, 0)

≥ −C‖Uh(·, kJT )− h‖ −max
|ξ|≥ξ̂

[U(ξ + ε, 0)− U(ξ, 0)] ≥ −2εδ̂

if we take J large enough. Thus, by Lemma 3.2 (1),

Ug(·, kJT + T + t) ≥ U(·+ ε− 2εδ̂K0, t)− 2K0εδe
−ρ0t ∀ t > 0.

Sending t→∞ along an appropriate sequence we deduce that

h(·) ≥ U(·+ ε− 2εδ̂K0, 0) ≥ U(·+ 1
2ε, 0)

by the definition of δ̂. But this contradicts the definition of zg. Hence, we must
have h(·) = U(·+ zg, 0). The assertion of the lemma thus follows from Lemma 3.2
(2).
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3.4. Linear exponential stability of the traveling wave.
To complete the proof of Theorem 1.2, we first establish the exponential stability

of the linearized equation of (1.1) near the traveling wave (c, U).
For each ψ ∈ L∞(R), we define v(ψ; ξ, t) as the solution to the linear problem{

Lv := vt − cvξ − vξξ − fu(U(ξ, t), t)v = 0 in R× (0,∞),
v(ψ; ·, 0) = ψ(·) in R.

Notice that LUξ = 0.

Lemma 3.4. There exists a constant C1 such that, for all g ∈ L∞(R),

‖v(ψ; ·, t)‖ ≤ C1‖ψ‖ ∀ t ≥ 0.(3.8)

In addition, there exists zψ ∈ R such that

lim
t→∞ ‖v(ψ; ·, t)− zψUξ(·, t)‖ = 0.

Proof. Let A(ξ, t), B(t), and K be as in (3.4)–(3.6). Define

Ψ(ξ, t) := KB(t)Uξ(ξ, t) +A(ξ, t).(3.9)

Performing the same calculation as in the proof of Lemma 3.2, we have that LΨ > 0
in R × [0,∞). Since Ψ(ξ, 0) = 1, a comparison principle shows that for any ψ ∈
L∞(R),

|v(ψ; ξ, t)| ≤ Ψ(ξ, t)‖ψ‖ ∀ (ξ, t) ∈ R× [0,∞).(3.10)

Defining C1 := supt≥0 ‖Ψ(·, t)‖ yields estimate (3.8).
Since {v(ψ, ·, kT )}∞k=1 is a bounded set in C1(R × [0,∞)), from (3.10) and the

fact that
lim

z→∞,k→∞
‖Ψ(·, ·)‖C0(((−∞,−z]∪[z,∞))×[kT,∞)) = 0,

there exist an integer sequence {kj}∞j=1 and a smooth function h ∈ L∞(R) such
that as j →∞, kj →∞ and ‖v(ψ; ·, kjT )− h(·)‖ → 0. In addition,

|h(ξ)| ≤ KB(∞)‖ψ‖Uξ(ξ, 0) ∀ ξ ∈ R.(3.11)

We now want to show that for some zψ ∈ R, h(·) = zψUξ(·, 0).
To this end, let

z∗ := sup{z : h(·) ≥ zUξ(·, 0)}.
Clearly, |z∗| ≤ KB(∞)‖ψ‖. We want to show that h = z∗Uξ(·, 0). By working with
ψ−z∗Uξ if necessary, we can without loss of generality, assume that z∗ = 0, so that
h ≥ 0. We use a contradiction argument. Assume that h 6≡ 0. Then, by the strong
maximum principle, v(h; ·, T ) > 0 so that there exists ε > 0 such that v(h; ξ, T ) ≥
εUξ(ξ, 0) in [−ξ̂, ξ̂] where ξ̂ is a constant such that KB(∞) sup|ξ|≥ξ̂ Uξ(ξ, 0) ≤ 1

4 .
Consequently,

v(ψ; ·, kJT + T )− εUξ(ξ, 0)

≥ −‖v(ψ; ·, kJT + T )− v(h; ·, T )‖+ v(h; ·, T )− εUξ(ξ, 0)

≥ −C1‖v(ψ; ·, kJT )− h‖ − ε sup|ξ|≥ξ̂ Uξ(ξ, 0)

≥ −2ε sup|ξ|≥ξ̂ Uξ(ξ, 0)

for some J large enough. Consequently, by the comparison principle, for any t ≥ 0,

v(ψ; ·, kJT + T + t)− εUξ(·, t) ≥ −[2ε sup|ξ|≥ξ̂ Uξ(ξ, 0)]Ψ(·, t).
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Hence, taking t = kjT − kJT − T and sending j to ∞, we have that

h(·, t)− εUξ(·, 0) ≥ −[2ε sup
|ξ|≥ξ̂

Uξ(ξ, 0)]KB(∞)Uξ(·, 0) ≥ −ε
2
Uξ(·, 0)

by the definition of ξ̂. Therefore, h(·) ≥ ε
2Uξ(·, 0), which contradicts the definition

of z∗. Hence, we must have h ≡ 0. The second assertion of the lemma thus follows
from the first.

Now for each ψ ∈ L∞(R), we define

T ψ = v(ψ; ·, T )−z1(ψ)Uξ(·, 0) where z1(ψ) :=
∫

R
v(ψ; ·, T )Uξ(·, 0)

/∫
R
U2
ξ (·, 0).

Since LUξ = 0, one can see that for any positive integer k,

T k =

k︷ ︸︸ ︷
T · · · T ψ = v(ψ; ·, kT )− zk(ψ)Uξ(·, 0)

where zk(ψ) :=
∫

R
v(ψ; ·, kT )Uξ(·, 0)

/∫
R
U2
ξ (·, 0).

Lemma 3.5. 1. If {ψj}∞j=1 is a bounded sequence in C0(R) and limj→∞ ψj = 0
uniformly in every compact subset of R, then

lim
j→∞,k→∞

‖T kψj‖ = 0.

2. There exists a large integer k∗ such that

λk∗ := sup
‖ψ‖=1

‖T k∗ψ‖ < 1.(3.12)

Proof. (1) For every ε > 0, let k̃ be a constant such that max{a+(k̃T ), a−(k̃T )} ≤ ε.
Since limj→∞ ψj = 0 uniformly in every compact subset of R, there exists J > 0
such that

sup
j≥J

‖v(ψj , ·, ·)‖C0([−ξ0,ξ0]×[0,k̃T ]) ≤ min
t∈[0,k̃T ]

{a+(t), a−(t)}.

Hence, comparing v(ψj ; ξ, t) with a+(t) in [ξ0,∞) × [0, k̃T ] and with a−(t) in
(−∞, ξ0]× [0, k̃T ], respectively, we have that

|v(ψj ; ξ, t)| ≤ max{a+(t), a−(t)} ∀ t ∈ [0, k̃T ], |ξ| ≥ ξ0.

Hence, supj≥J ‖v(ψj ; ·, k̃T )‖ ≤ max{a+(k̃T ), a−(k̃T )} ≤ ε. Consequently,

sup
j≥J

sup
t≥k̃T

‖v(ψj ; ·, t)‖ ≤ C1ε.

Since |zk(ψ)| ≤ C‖v(ψ; ·, kT )‖ for all integers k and all ψ ∈ L∞, we have that
supj≥J supk≥k̃ ‖T kψj‖ ≤ (C1+CC1)ε. This proves the first assertion of the lemma.

(2) Assume that the second assertion is not true. Then there exists {ψk}∞k=1

such that
‖ψk‖ = 1, ‖T kψk‖ ≥ 1− 1

2k
∀ k = 1, 2, · · · .

Since |v(ψk; ·, kT )| ≤ Ψ(·, kT ) and |zk(ψk)| ≤ C‖v(ψ; ·, kT )‖, we have |T kψk| ≤
(1 +C)Ψ(·, kT ). Also, noting that {T kψk}∞k=1 is a bounded sequence in C1(R), we
can find a subsequence {kj}∞j=1 and a function h such that as j →∞, kj →∞ and
‖T kjψkj −h‖ → 0. Clearly, we have that ‖h‖ ≥ 1, |h(ξ)| ≤ (1+C)KB(∞)Uξ(ξ, 0),
and

∫
R h(·)Uξ(·, 0) = 0.
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Notice that {T ψkj}∞j=1 is a bounded sequence in C1(R), so we can select a
subsequence, which we still denote by {kj} such that T ψkj → ψ̂ uniformly in every
compact subset of R, for some ψ̂ ∈ C1(R). Therefore,

lim
j→∞

‖T kj−1ψ̂ − h‖ ≤ lim
j→∞

‖T kjψkj − h‖+ lim
j→∞

‖T kj−1(T ψkj − ψ̂)‖ = 0

by the first assertion of the lemma. Since by Lemma 3.4,

lim
k→∞

‖v(ψ̂; ·, kT )− ẑUξ(·, kT )‖ = 0

for some ẑ ∈ R, we must have h = ẑUξ(·, 0), which, by the assumption
∫

R hUξ = 0,
yields h ≡ 0. This contradicts the assumption that ‖h‖ = 1. Hence, there exists a
positive integer k∗ such that (3.12) holds.

3.5. Nonlinear exponential stability of the traveling wave.
We are now prepared to prove Theorem 1.2, restated as

Theorem 3.6. There exists a positive constant µ > 0 such that for every g ∈
L∞(R) satisfying (1.5), the solution Ug(ξ, t) of (3.1) satisfies, for some constants
zg and Cg,

‖Ug(·, t)− U(·+ zg, t)‖ ≤ Cge
−µt ∀ t ≥ 0.

Proof. By Lemma 3.3, we can assume that ‖g(·)− U(·, 0)‖ is sufficiently small for
our purposes.

Assume that η0 := ‖g − U(·, 0)‖ = minz∈R ‖g − U(· + z, 0)‖. Set V (·, t) =
Ug(·, t)− U(·, t). Then, we have LV = EV 2 where

‖E‖L∞(R×[0,∞)) ≤
1
2

sup{|fuu(θ, t)| : θ ∈ [W−(t)− 1,W+(t) + 1], t ∈ [0, T ]}.

Let k∗ be as in Lemma 3.5. Then by parabolic estimates [24], there exists a constant
C(k∗) such that

‖V (·, k∗T )− v(V (·, 0); ·, k∗T )‖ ≤ C(k∗)‖V 2‖L∞(R×[0,∞)) ≤ C(k∗)K2
1η

2
0

by Lemma 3.2 (2). Consequently, decomposing v(V (·, 0); ·, k∗T ) = T k∗V (·, 0) +
zk∗Uξ, we have

‖V (·, k∗T )− zk∗Uξ(·, 0)‖ ≤ ‖V (·, k∗T )− v(V (·, 0); ·, k∗T )‖+ ‖T k∗V (·, 0)‖
≤ (λk∗ + C(k∗)K2

1η0)η0.

Noticing that |zk∗ | ≤ CC1‖V (·, 0)‖ ≤ CC1η0, it then follows that

‖Ug(·, k∗T )− U(·+ zk∗ , 0)‖
≤ ‖U(·+ zk∗ , 0)− U(·, 0)− zk∗Uξ(·, 0)‖+ ‖V (·, k∗T )− zk∗Uξ(·, 0)‖
≤ C‖Uξξ(·, 0)‖|zk∗ |2 + ‖V (·, k∗T )− zk∗Uξ(·, 0)‖
≤ (λk∗ + C(k∗)K2

1η0 + CC1η0)η0 = (λk∗ + C(k∗)K2
1η0 + CC1η0)‖g − U(·, 0)‖.

Let δ∗ be a positive constant such that µ∗ := λk∗ +C(k∗)K2
1δ
∗+CC1δ

∗ < 1. Then
for any g satisfying minz∈R ‖g − U(·+ z, 0)‖ ≤ δ∗, we have that

min
z∈R

‖Ug(·, k∗T )− U(·+ z, 0)‖ ≤ µ∗ min
z∈R

‖g − U(·+ z, 0)‖.

From this, one can easily derive the assertion of the theorem. Details are omitted.
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4. The singular perturbation problem

Now we study the singular perturbation problem (1.7). For each fixed x ∈ Ω̄,
we denote by w(x;α, t) the solution of (1.2) with f(·, ·) = F (x; ·, ·), by α+(x),
α0(x), and α−(x) the three fixed points of the period return map P (x; ·) :=
w(x; ·, T ), and by W±(x; t) and W 0(x; t) the corresponding functions w(x;α±(x), t)
and w(x;α0(x), t). Also, we denote by (c(x), U(x, ξ, t)) the traveling wave solution
of (1.4) with f(u, t) = F (x;u, t). For any ρ > 0, we define

Ω±ρ := {x ∈ Ω̄ : ±c(x) > ρ}, Ωρ := {x ∈ Ω : dist(x, ∂Ω) > ρ}.

Finally, we denote by B(x,R) the ball in RN centered at x with radius R. For
brevity, we write ‖v, w‖ in place of max{‖v‖, ‖w‖}. Other similarly abbreviated
notation will also be used.

In the sequel ε is a positive constant as small as we wish and C is a generic
positive constant independent of ε.

We first consider the following initial value problem, for u = u(g;x, t):


Lεu := ut − ε2∆u − F (x;u, t) = 0, (x, t) ∈ Ω× [0,∞),
∂
∂nu = 0, (x, t) ∈ ∂Ω× [0,∞),
u(x, 0) = g(x), x ∈ Ω.

(4.1)

We assume that g is bounded and write

‖g‖C0(Ω) ≤M0(4.2)

where M0 ≥ max{‖α+(x)‖C0(Ω), ‖α−(x)‖C0(Ω)} is a fixed positive constant inde-
pendent of ε. Set

M = 1 + sup{|w(x;α, t)| : x ∈ Ω, |α| ≤M0, t ∈ [0,∞)}.
Since P (x;α) < α when α > α+(x) and P (x;α) > α when α < α−(x), M is finite.
In the sequel, the norm of F is always taken on

Q = Ω̄× [−M,M ]× [0, T ].

We begin by constructing two super–solutions based on those constructed in [8].
The corresponding sub–solutions can be constructed in an analogous way but this
is omitted here.

The first super–solution, obtained by modifying w(x; g(x), t), deals with arbi-
trary initial data with no “sharp” layer; i.e., it deals with the time stage of “gener-
ation of interfaces” (cf. [8]).

For any small positive δ (which may depend on ε), let F δ be a modification of
F such that F δ has the following properties:


F δ(x;u, T + t) = F δ(x;u, t) ∀(x, u, t) ∈ Q;
δ ≤ F δ − F ≤ 2δ ∀(x, u, t) ∈ Q;
∂
∂nF

δ = 0 ∀(x, u, t) ∈ ∂Ω× [−M,M ]× [0, T ];
‖F δu ,∇xF δ, F δuu, δD2

xF
δ‖L∞(Q) ≤ C

(4.3)

where C is independent of δ. Such F δ can be obtained by modifying F + 3
2δ near

(x, t) ∈ ∂Ω× [0, T ].
Now let wδ(x;α, t) be the solution to

wδt = F δ(x;w, t), wδ(x;α, 0) = α.
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Denote by α±δ (x), α0
δ(x) the fixed points of P δ(x; ·) := wδ(x; ·, T ), preserved

by the nondegeneracy condition (1.3), and by W±
δ (x, t),W 0

δ (x, t) the functions
wδ(x;α±δ (x), t) and wδ(x;α0

δ(x), t), respectively. Then one can verify the follow-
ing estimates (but we leave this to the reader)

‖wδα, wδαα,∇xwδ,∇xwδα, δ∆xw
δ‖C0(Ω×[−M,M ]) ≤ Ceµ1t;

For any ρ1 > 0, |wδ(x;α, t) −W±
δ (x, t)| ≤ C

ρ1
e−µ2t if ± (α− α0

δ) > ρ1;
∂
∂nw

δ(x;α, t) = 0 ∀ (x, α, t) ∈ ∂Ω× [−M,M ]× [0, T ];
C−1δ ≤W±

δ (x, t)−W±(x, t) ≤ Cδ ∀(x, t) ∈ Ω̄× [0, T ],

where C, µ1, and µ2 are positive constants independent of δ.

Lemma 4.1. Assume that ḡ ∈ C2(Ω̄) satisfies ∂
∂n ḡ = 0 on ∂Ω and ‖ḡ‖C0(Ω) ≤M0.

Then for every integer k > 0, the function

V δ1 (ḡ;x, t) := wδ(x; ḡ(x), t), (x, t) ∈ Ω̄× [0,∞)

is a super–solution to (4.1a), (4.1b) in Ω× [0, kT ] provided that

δ ≥ εM1 exp(µ1kT
2 )

√
δ‖∆ḡ‖C0(Ω) + δ‖∇ḡ‖2C0(Ω) + 1(4.4)

where M1 is a constant independent of ε, k, δ, and ḡ.

Proof. Clearly, we have that ∂
∂nV

δ
1 = 0 on ∂Ω× [0,∞). Also, we can calculate

LεV δ1 := V δ1t − ε2∆V δ1 − F (x;V δ1 , t)

= (F δ − F )− ε2(wδα∆ḡ + wδαα|∇ḡ|2 + 2∇xwδα∇ḡ + ∆xw
δ)

≥ δ − ε2Ceµ1t(‖∆g‖+ ‖∇g‖2 + δ−1) > 0 in Ω× [0, kT ]

by the assumption on δ. The assertion of the lemma thus follows.

Using this lemma, we can show the following concerning the generation of inter-
faces:

Theorem 4.2. There exist ε-independent positive constants µ ∈ (0, 1/3) and K
such that the following hold:

1. If ‖g‖C0(Ω̄) ≤M0, then

W−(x, t)− ε2µ ≤ u(g;x, t) ≤W+(x, t) + ε2µ ∀x ∈ Ω̄, t ≥ K| ln ε|.
(4.5)

2. If ‖g‖C0(Ω̄) ≤M0 and for some y ∈ Ω̄

g(x) ≤ α0(x) − εµ
(
or g(x) ≥ α0(x) + εµ

)
in B(y, 6ε1/3) ∩ Ω,

(4.6)

then

|u(g;x, t)−W−(x, t)| ≤ Cε2µ
(
or |u(g;x, t)−W+(x, t)| ≤ Cε2µ

)
in (Ω ∩B(y, 5ε1/3))× [K| ln ε|, K| ln ε|+ 2T ].

Proof. We only establish the upper bounds. The lower bounds can be established
in a similar manner.

(1) Set δ = M1ε
2/3, k1 = 1

3µ1T
| ln ε|, and ḡ ≡ M0. Then (4.4) holds. Hence,

comparing u(·, ·) with V δ1 (ḡ; ·, ·) in Ω̄× [0, k1T ], we obtain

u(g;x, t) ≤ V δ1 (ḡ;x, t) ∀ (x, t) ∈ Ω̄× [0, k1T ].
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The first assertion for t ∈ [k1T − T, k1T ] follows from the fact that

V δ1 (g;x, k1T − T + t) ≤W+
δ (x, t) + Ce−µ2k1T ≤W+(x) + Cε2µ

where µ = min{1/4, µ2
6µ1
}.

Observe that V δ1 (ḡ; ·, T ) < M0, so that u(g; ·, T ) < M0. Hence, a mathematical
induction argument shows that u(g; ·,mT + t) ≤ V δ1 (ḡ; ·, t) for all positive integers
m and all t ∈ [0, k1T ]. The first assertion of the theorem thus follows.

(2) We refine the upper bound near y. We still take k1 = 1
3µ1T

| ln ε| but we take
δ = 8M2

1 ε
2/3 and a different ḡ. Let ḡ be a modification of g such that

ḡ ≥ g in Ω̄; ∂
∂n ḡ = 0 on ∂Ω;

ḡ(x) ≤ α0
δ(x)− 1

2ε
µ in B(y+, 5ε1/3);

‖∆ḡ‖C0(Ω) + ‖∇ḡ‖2C0(Ω) ≤ 15ε−2/3.

As before, (4.4) holds, so that u(g;x, t) ≤ V δ1 (ḡ;x, t) in Ω̄× [0, k1T ]. In particular,
in B(y, 5ε1/3)× [k1T − 2T, k1T ],

u(g;x, t) ≤ V δ1 (ḡ;x, k1T − 2T ) ≤ wδ(x;α0
δ − 1

2ε
µ, k1T − 2T )

≤ α−δ (x) + Cε−µe−µ2k1T ≤W−(x, t) + Cε2µ.

The assertion of the theorem thus follows.

To see how the region {x : |u(g;x, t)−W±(x, t)| ≤ εµ} expands, we now construct
the second super–solution dealing with the “propagation of interfaces” (cf. [8]).

For any fixed x ∈ Ω̄, let (cδ(x), U δ(x, ξ, t)) be the traveling wave solution to
U δt − cδUξ − U δξξ − F δ(x;U δ, t) = 0, (ξ, t) ∈ R× [0,∞),
U δ(x,±∞, t) = W±

δ (x, t), U δ(x, 0, t) = W 0
δ (x, t),

U δ(x, ξ, t+ T ) = U δ(x, ξ, t), (ξ, t) ∈ R× [0,∞).

Then one can show, as in Section 2, the following:
‖U δ(·,±ξ, ·)−W±

δ ‖+ ‖U δξ , U δξξ,∇xU δξ ‖C0(Ω×[0,T ]) ≤ Ce−µ3ξ ∀ξ > 0;
‖∇xU δ, δ∆xU

δ‖C0(Ω×R2) + ‖∇xcδ‖C0(Ω) ≤ C,
∂
∂nU

δ(x, ξ, t) = 0 ∀(x, ξ, t) ∈ ∂Ω× R2;
‖cδ(·)− c(·)‖C0(Ω) ≤ Cδ.

Here C is a positive constant independent of δ.
Let ζ be a C2(R) function satisfying

ζ(s) = s if |s| ≤ 1, ζ(s) = ±3/2 if ± s > 2, 0 ≤ ζ′ ≤ 1 and |ζ′′| ≤ 2 on R.

For every z ∈ RN , we define

d(z, x) := ε1/3ζ
(
|x−z|
ε1/3 − 3

)
.(4.7)

One can directly verify that d(z, x) has the following properties:
d(z, x) = 3/2ε1/3 if |x− z| ≥ 5ε1/3;
d(z, x) = −3/2ε1/3 if |x− z| ≤ ε1/3;
|∇xd| = 1 if |d| ≤ ε1/3;
ε|∆xd|+ ε1/3|∇xd|2 ≤ Cε1/3 in RN .

We claim that
∂

∂n
d(z;x) := ζ ′

x− z

|x− z| · n(x) ≥ 0 ∀ z ∈ Ωε1/3 , x ∈ ∂Ω,(4.8)
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where n(x) is the outward unit normal to ∂Ω at x. In fact, when |x−z| ≥ 5ε1/3, ζ′ =
0, so that the claim automatically holds. When |x− z| ≤ 5ε1/3, since dist(z, ∂Ω) ≥
ε1/3 and ∂Ω ∈ C1, the line segment from z to x intersects ∂Ω only at the end point
x, so that (x− z) · n(x) ≥ 0. Hence, (4.8) holds.

In the following, C is taken to be greater than the previous C’s in this section
and also greater than 6.

Lemma 4.3. Let M2 > C2. For any small δ ≥ ε1/3 and any z0 ∈ Ω+
M2δ

∩ Ωε1/3 ,
the function

V δ2 (z(t);x, t) := U δ
(
x,
d(z(t), x)

ε
, t

)
is a super–solution of (4.1a),(4.1b) in the domain Ω̄ × [0,∞) provided that the
function z(t) : [0,∞) → Ωε1/3 satisfies

|zt(t)| ≤ ε[c(z(t))− C2δ], ∀t ≥ 0, z(0) = z0.

Proof. Since z(t) ∈ Ωε1/3 for all t ≥ 0, from (4.8), ∂
∂nV

δ
2 (z;x, t) ≥ 0 on ∂Ω× [0,∞).

Also,

LεV δ2 = U δt + U δξ (ε−1dt − ε∆xd)− U δξξ|∇xd|2 − 2ε∇xd∇xU δξ − ε2∆xU
δ − F

= F δ − F + U δξ [ε
−1dt + cδ − ε∆xd] + U δξξ[1− |∇xd|2]

− 2ε∇xd∇xU δξ − ε2∆xU
δ

≥ δ + U δξ [c
δ(x)− ε−1|zt| − Cε1/3]− CU δξξχ{|d|≥ε1/3} − Cε[1 + ε/δ].

If |d| ≥ ε1/3, then |U δξ |, |U δξξ| ≤ Ce−µ3|d|/ε ≤ ε2, so that LεV δ1 > 0.
If |d| ≤ ε1/3, then |x− z| ≤ 4ε1/3, so that

cδ(x)− ε−1|zt| − Cε1/3 ≥ [c(z)− C(δ + |x− z|)]− [c(z)− C2δ]− Cε1/3 > 0,

which implies LεV δ2 > 0. The assertion of the lemma thus follows.

In the next theorem µ and K are those constants given in Theorem 4.2.

Theorem 4.4. Assume that ‖g‖C0(Ω) ≤M0. Also assume that there exists y ∈ Ω+
εµ(

or y ∈ Ω−εµ

)
such that (4.6) holds. Set t1 := K| ln ε|. Then for any τ ≥ t1, a

point x ∈ Ω̄ satisfies

|u(g;x, τ)−W−(x, τ)| ≤ Cεµ
(
or |u(g;x, τ)−W+(x, τ)| ≤ Cεµ

)(4.9)

provided that there exists a curve z(·) : [t1, τ ] → Ωε1/3 such that
(i) x ∈ B(z(τ), 2ε1/3),
(ii) |zt| ≤ ε[c(z(t))− C2εµ]

(
or |zt| ≤ −ε[c(z(t)) + C2εµ]

)
for all t ∈ [t1, τ ].

Proof. For any t ≥ 0, define Ω+(t) by

Ω+(t) = {ẑ ∈ Ωε1/3 : u(g, ·, t) ≤ V ε
µ

2 (ẑ; ·, t) in Ω̄}.
Then, from Theorem 4.2, y ∈ Ω+(t1). In addition, by Lemma 4.3 and the

comparison principle, z(τ) ∈ Ω+(τ).
Observe that V ε

µ

2 (ẑ;x, t) ≤ W−(x, t) + Cεµ for all x ∈ B(ẑ, 2ε1/3). Thus, we
obtain the assertion of the theorem.
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Remark 4.5. (1) The theorem asserts that the region {x : u(g; ·, t) ∼ W−} ex-
pands with a normal velocity εc in the set where c > 0, and the region {u ∼ W+}
expands with a normal velocity ε|c| in the set where c < 0.

(2) By replacing the function d defined in (4.7) by

d(z, x, r(t)) = ε1/3ζ(
|x − z| − r(t)

ε1/3
− 3)

where r(t) is any function satisfying rt < −maxB(z,r(t)) ε|c|−C2εµ and B(z, r(0)) ⊂
Ωε1/3 , one can show that the set {u ∼W−} shrinks with a normal velocity no bigger
than ε[|c| + εµ] in the set where c < 0. Similarly, one can show that the region
{u ∼W+} shrinks with a normal velocity no bigger than ε[c+ εµ] in the set where
c > 0. Hence, we conclude that the interface between the set {u ∼ W+} and the
set {u ∼W−} moves with a normal velocity εc. For a more detailed discussion and
rigorous mathematical statement, we refer interested readers to [8].

We now have enough to give the proofs of Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Let y+ ∈ Ω+
εµ∩Ωε1/3 be arbitrary. Set g(x) = V ε

µ

2 (z(0);x, 0)
where z(t) = y+ + ε1+2µt~e, t ∈ [0, T ], and |~e| ≤ 1. Taking all possible ~e, we
then obtain by Lemma 4.3, u(g; ·, T ) ≤ minz∈B(y+,ε1+2µT ) V

εµ

2 (z;x, T ) ≤ g. It
then follows from the comparison principle that u(g; ·, T + t) ≤ u(g; ·, t) for all
t ≥ 0. Consequently, the family of smooth functions {u(g; ·, kT+ ·)}∞k=1 is pointwise
monotonic on Ω̄× [0, 2T ]. Hence, there exists a periodic function uε(x, t) such that
as k → ∞, u(g; ·, kT + t) → uε(·, t) for all t ∈ [0, 2T ]. Clearly, uε is a solution of
(1.7). Notice that for every x ∈ Ω satisfying |x−y+| > 5ε1/3, g(x) = V δ2 (y+;x, 0) ≥
α+−Cδ ≥ α0+εµ, Theorem 4.2 then implies that uε satisfies (1.9). This establishes
the theorem.

Theorem 1.4 now follows from Theorem 4.4.

Appendix A. Stability via spectral theory

In Section 2, we established the existence of a traveling wave solution (c, U(ξ, t))
for (1.1a). Since (1.1a) is translation invariant in z, this traveling wave solution
provides a one dimensional manifold of special solutions to (1.1a):

M̃ = {u(z, t) = U(z − ct− z0, t) : z0 ∈ R}.
In this appendix, we study the local, nonlinear stability of M in the class of

solutions of (1.1). This appendix can be considered as an alternative to the analysis
presented in Sections 3.4 and 3.5.

Traveling wave coordinates. We change to the traveling coordinates (ξ, t)
where ξ = z − ct. Then equation (1.1a) takes the form

vt − cvξ − vξξ − f(v, t) = 0, ξ ∈ R, t > 0.(A.1)

The original problem now can be recast as the stability of the manifold of stationary
states:

M := {v(ξ, t) = U(ξ − ξ0, 0) : ξ0 ∈ R}
in the class of solutions of (A.1).

The period map. Let X ⊂ L∞(R) be a Banach space. For definiteness, we
take X = C(R) with the L∞(R) norm. Given v0(·) ∈ X , we define the period map
Π by

Π(v0) = v(·, T ),
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where v(ξ, t) is the unique solution of (A.1) with initial condition v(·, 0) = v0(·).
Notice that any element in M is a fixed point of Π. Hence, M is an invariant
manifold of Π. We are interested in the linearisation dΠ of Π about points in M.
Without loss of generality, we need only consider the point U0 = U(·, 0). One can
easily show that dΠ(U0) is given by the following recipe:

dΠ(U0)v = H(·, T )

where H is the solution of{
Ht − cHξ −Hξξ − fu(U0, t)H = 0, ξ ∈ R, t > 0,
H(·, 0) = v(·).(A.2)

Notice that v = Uξ(·, 0) is an eigenfunction of dΠ(U0) with eigenvalue 1. This is a
simple geometric fact since Uξ(·, 0) is the tangent to the one dimensional invariant
manifold M at U(·, 0). Hence, if we can show that 1 is a simple eigenvalue of
dΠ(U0), and the rest of the spectrum of dΠ(U0) is contained in a disk of radius
ρ̃(dΠ(U0)) strictly less than 1, then it is well–known, and in a variety of contexts,
that the manifold M is locally exponentially stable with asymptotic phase; namely,
with the help of Lemma 3.3, we obtain the conclusion of Theorem 1.2. In addition,
the exponent µ in (1.6) can be taken arbitrarily close to − ln(ρ̃(dΠ(U0))). We refer
the reader to Henry [18, §9.2] and Hale & Massatt [20].

Hence, we need only analyze the spectrum of the operator dΠ(U0).
Spectral analysis. From the above discussion, we can see that the following

two lemmas are sufficient to establish the (local) exponential stability of M, the
reduction from global stability to local stability coming from Lemma 3.3.

Lemma A.1. Let

ν± = − 1
T

∫ T

0

fu(W±(t), t)dt, ν0 = min{ν+, ν−}.

Then the essential spectrum of dΠ(U0) is contained in the disk {λ ∈ C : |λ| ≤
e−ν0T }. Thus, if λ is in the spectrum of dΠ(U0) and |λ| > e−ν0T , then λ is an
eigenvalue, and for any r > e−ν0T , there are only a finite number of eigenvalues of
dΠ(U0) in {λ ∈ C | |λ| ≥ r}.

Lemma A.2. Assume that λ is an eigenvalue of dΠ(U0) with eigenfunction v. If
v 6∈ span{Uξ(·, 0)}, then |λ| < 1.

Proof of Lemma A.1. Let ζ(ξ) be a C∞(R) function satisfying ζ(ξ) = 0 for ξ ≤ −1,
ζ(ξ) = 1 for ξ ≥ 1, and ζ ′ ≥ 0 in R. Consider an operator K defined, for every
bounded v, by Kv = Ĥ(·, T ) where Ĥ(ξ, t) is the solution to{

Ĥt − cĤξ − Ĥξξ + [ν+ζ + ν−(1− ζ)]Ĥ = 0, ξ ∈ R, t > 0,
Ĥ(·, 0) = v(·).

Since ν+ζ + (1 − ζ)ν− ≥ ν0, the maximum principle shows that ‖Ĥ(·, t)‖L∞(R) ≤
e−ν0t‖v‖L∞(R) for all t > 0. In particular, ‖Kv‖L∞(R) ≤ e−ν0T ‖v‖L∞(R). Therefore,
the spectral radius of K is at most e−ν0T .

To connect the essential spectrum of dΠ(U0) with that of K, we make the fol-
lowing transformation for the solution of (A.2):

H(ξ, t) = H̄(ξ, t)P (ξ, t)
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where

P (ξ, t) = p+(t)ζ(ξ) + p−(t)(1 − ζ(ξ)), p±(t) = exp
(∫ t

0

fu(W±(τ), τ)dτ + ν±t
)
.

Note that p+(t), p−(t), P (·, t) are positive and periodic in t, and p±(T ) = 1, P (·, T )
≡ 1. It then follows that dΠ(U0)v = H(·, T ) = H̄(·, T ). Direct calculation shows
that H̄ satisfies

H̄t − c̄(ξ, t)H̄ξ − H̄ξξ − q̄H̄ = 0
where
c̄(ξ, t) = c+ c̃(ξ, t), c̃(ξ, t) = 2(p+ − p−)ζ ′/P,

q̄ = fu(U0, t) + [c(p+ − p−)ζ ′ + (p+ − p−)ζ ′′ − p+
t ζ − p−t (1− ζ)]/P

= −ν+ζ − ν−(1− ζ) + q̃(ξ, t),

q̃(ξ, t) =
{
[fu(U0, t)− fu(W+(t), t)]p+ζ + [fu(U0, t)− fu(W−(t), t)]p−(1− ζ)

+ ζ(1 − ζ)(ν+ − ν−)(p− − p+) + (p+ − p−)(cζ′ + ζ′′)
}
/P.

Notice that c̃ ≡ 0 if |ξ| ≥ 1 and q̃ approaches zero exponentially fast as |ξ| →
∞. One can show that K − dΠ(U0) is compact from X into X . The proof is
straightforward provided that one is familiar with the fact that parabolic equations
are smoothing. We omit the details.

Now by Weyl’s well–known result, the essential spectrum of dΠ(y0) is the same
as that of K. Hence, the radius of the essential spectrum of dΠ(U0) is not bigger
than e−ν0T .

Proof of Lemma A.2. Assume that λ is an eigenvalue with eigenfunction v ∈ X
and v 6∈ span{Uξ(·, 0)}. Denote by H the solution of (A.2) with initial value v. Let

h(ξ, t) = eµtH(ξ, t) where µ = − 1
T

Logλ.

Then an easy calculation shows that (µ, h) satisfies{
ht − chξ − hξξ − fu(U0, t)h = µh, ξ ∈ R, t > 0,
h(·, 0) = h(·, T ).(A.3)

Hence, (A.3) can be viewed as the spectral problem associated with the operator

L := ∂t − c∂ξ − ∂ξξ − fu(U0, t)(A.4)

in an appropriate space of periodic functions.
The eigenvalue λ of the linearized period map dΠ(U0) is called a characteristic

multiplier, while the associated µ is called a characteristic exponent. Since Log is
multi–valued, it is easy to see that if (µ, h) is a characteristic exponent/eigenfunction
pair, so is (µ+ 2πin

T , he
2πint

T ), where i =
√
−1. Notice that all these exponents pro-

duce the same multiplier.
Clearly, to show that |λ| < 1, we need only to show that Re(µ), the real part of µ,

is positive. Our proof is by contradiction. Assume that µ1 := Re(µ) ≤ 0. Consider
the polar representation of h: h = reiθ where both r and θ are real and r ≥ 0. In
the set where r does not vanish, θ is well–defined and is smooth. Substituting this
polar representation into (A.3) and taking the real part, we obtain

Lr = (µ1 − θ2ξ)r ≤ 0

on the set where r > 0.
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First we claim that r ≤ MUξ for some M large enough. For this purpose, con-
sider the periodic functions Q±(ξ, t) := eγ

±ξ exp(
∫ t
0
fu(W±(τ), τ)dτ + ν±t) where

γ± = (−c ±
√
c2 + 2ν±)/2. An easy calculation shows that, for some ξ0 large

enough,

LQ± = Q±[fu(W±(t), t)− fu(U0, t) + ν± − cγ± − (γ±)2]

= Q±[fu(W±(t), t)− fu(U0, t) + ν±/2] > 0 for all |ξ| ≥ ξ0 and t ∈ R.

Now let M1 be a large constant such that M1Uξ(±ξ0, t) > r(±ξ0, t) for all t ∈ [0, T ].
We claim that r < M1Uξ in [ξ0,∞)× [0, T ]. In fact, if this is not true, then, since
ν+ > 0 we have Q+ → ∞ as ξ → ∞, and so there exists δ ≥ 0 and (ξ1, t1) ∈
(ξ0,∞) × [0, T ) such that r ≤ M1Uξ + δQ+ in [ξ0,∞) × [0, T ] and the equal sign
holds at (ξ1, t1). Set w = M1Uξ+δQ+−r. Then Lw > 0 in [ξ0,∞)×[0, 2T ]∩{r 6= 0}.
In addition, w ≥ 0 in [ξ0,∞) × [0, 2T ] and w > 0 on {r = 0}. Hence, applying
locally the Harnack inequality to each of the components where r does not vanish,
we have that w > 0 in [ξ0,∞) × (t1, t1 + T ]. This contradicts, by the periodicity
of w, the assumption that 0 = w(x1, t1) = w(x1, t1 + T ). Hence, r < M1Uξ in
[ξ0,∞)× [0, T ]. Similarly, this inequality holds also on (−∞,−ξ0]× [0, T ]. Hence,
there exists a positive M such that r ≤MUξ in R× [0, T ].

Now let M0 be the minimum real number such that r ≤ M0Uξ in R × [0, T ].
Consider the case that r 6≡ M0Uξ. Then applying locally Harnack’s inequality in
the set where r does not vanish, we obtain r < M0Uξ in R× [0, T ]. Consequently,
there exists ε ∈ (0,M0) such that r < (M0−ε)Uξ in [−ξ0, ξ0]×[0, T ]. Then as before,
utilizing the function Q±, we can conclude that r < (M0− ε)Uξ in R× [0, T ], which
contradicts the definition of M0. Hence, r ≡M0Uξ > 0 in R× [0, T ]. Consequently,
(µ1 − θ2ξ)r ≡ 0. Thus, µ1 = 0 and θξ ≡ 0. Using the θ equation, we then conclude
that θt ≡ 0 and hence θ is a constant function. That is, h = reiθ is a multiple of
Uξ, which contradicts the assumption that h 6∈ span{Uξ}. This contradiction shows
that Re(µ) > 0, i.e., |λ| < 1. This completes the proof of Lemma A.2.
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