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PERIODIC TRAVELLING WAVE SOLUTIONS OF
A CURVATURE FLOW EQUATION IN THE PLANE

BENDONG LOU
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Abstract. In the plane, we consider a curvature flow equation in heterogeneous media
with periodic horizontal striations, the periodicity in space is expressed by periodic (in vertical
direction) coefficients in the equation. We prove the existence and uniqueness of a curve which
travels upward periodically with an average speed. At each time, the graph of the curve is
a periodic undulating line at a finite distance from a straight line with a given inclination
angle. We also show that the average speed depends on the inclination angle monotonously.
Moreover, for homogenization problem as the spatial period tends to zero, we estimate the
average speed by the inclination angle and some means of the periodic coefficients.

1. Introduction. In this paper we will be concerned with periodic travelling wave
solutions of a curvature flow equation

V = a
(y
ε

)
κ + b

(y
ε

)
(1)

in the xy-plane, where V is the normal velocity of a plane curve, κ is the curvature, ε > 0 is
a parameter, a and b are 1-periodic positive functions, which are continuously differentiable.
To avoid sign confusion, the normal to the curve will always be chosen upward (toward y-
direction), and the sign of V and κ will be understood in accordance with this choice of the
direction of the normal. Consequently, V is positive when the curve moves upward and κ is
positive at those points where the curve is convex (see Figure 1).

We will only consider the case where each curve is the graph of a function y = u(x, t),
so (1) is equivalent to

ut = a
(u
ε

) uxx

1 + u2
x

+ b
(u
ε

)√
1 + u2

x , x ∈ R , t > 0 .(2)

If b ≡ b0 > 0, then it is easily seen that, for any given α ∈ [0, π/2), the straight line
y = tanα · x + (b0/ cosα)t is a solution of (2) with b ≡ b0. This solution starts at line
lα : y = tanα · x and travels in the y-direction with speed c = b0/ cosα; In other words, it
travels in its normal direction with speed b0. Now in (1) and (2), b is periodic, so it is natural
to conjecture that for any given α ∈ (0, π/2), undulating the line tanα · x + (b0/ cosα)t may
give a solution of (2). Moreover, such a solution is expected to be periodic in time according to
“Periodicity in space generates a periodic-in-time regime”. In the following a solution u(x, t)
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FIGURE 1. Propagation of a curve in heterogeneous media with peri-
odic horizontal striations.

of (2) is called a periodic travelling wave solution if

u(x, t + T ) = u(x, t)+ ε ,(3)

for some T > 0, and c := ε/T is called the average speed of u in y-direction.
In this paper, we try to seek for solutions of (2)–(3) of the form

u(x, t) ≡ v(x + ct cotα) = v(ξ) with v(ξ + ε cotα) = v(ξ) + ε ,(4)

where ξ := x + ct cotα and c = ε/T . In this case, for each t > 0 the graph of u is a periodic
undulating line with “inclination angle” α (see Figure 1). (It should be pointed out that the
solution of (2)–(3) does not necessarily have to be such a form as v. In fact, [6] studied V-
shaped travelling wave solutions of V = κ + b0. V-shaped periodic travelling wave solutions
of (1) will be the object of a forthcoming paper).

Periodic travelling wave solutions correspond to the propagation of fronts in striated
media where the striations are disposed in a periodic fashion (cf. [3]). Equations in such a
medium generally contain spatially periodic coefficients, like a and b in (1). Motivated by
“periodicity in space generates a periodic-in-time regime”, many authors studied periodic
travelling wave solutions of parabolic equations with spatially periodic coefficients. Among
others, [1], [2], [3] and [5] studied problems similar to ours. More precisely, [1] studied
reaction diffusion equations in heterogeneous media with horizontal striations (eg., a = a(y)).
The travelling fronts they considered are also horizontal ones. It turns out that the propagation
front is flat (independent of x). [2] studied curvature flow equation (1) for a ≡ 1. The striation
in the heterogeneous media is also horizontal (b = b(y)), but the propagation direction they
considered is the −x-direction. In this case only travelling waves are possible. In [3] and
[5], propagation through oblique striations is considered. The equation is a modified form of
(1): replacing κ = uxx/(1 + u2

x)
3/2 by uxx/(1 + u2

x)
1/2, that is, they essentially considered

semilinear parabolic equations. Though the qualitative behavior of the propagation is similar
to the original problem (1), in the modified problem some technical difficulties can be avoided.
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In this paper we study Problem (1), and prove the existence and uniqueness of a periodic
travelling wave solution with form v as in (4). At each time, the graph of the solution is a
periodic undulating line (see Figure 1) which is in a finite distance from a straight line with
inclination angle α, so the propagation is just like that in oblique disposed striations as in [3]
and in [5].

In the study of periodic travelling waves, another more interesting problem is to charac-
terize the average speed. [3] gave some estimate on the average speed c as a ≡ a0 → 0, but
did not give the explicit relationship among c, α and the periodic coefficient b. In this paper,
we consider the homogenization problem as the period ε tends to 0, estimate c by cosα and
the arithmetic means of 1/a and b/a.

In Section 2 we consider the case α ∈ (0, π/2) and α satisfies some technical condi-
tions (see (6), (7) below). We prove the existence and uniqueness of periodic travelling wave
solution with a form as v in (4), and estimate the average speed c as ε → 0.

In Section 3 we consider two extreme cases: α = 0 and α = π/2. In case α = 0, the
periodic travelling wave solution is indeed a horizontal straight line, which travels in the y-
direction with average speed c0. In case when α = π/2, there exists travelling wave solution
(not periodic), which travels in the −x-direction with a speed depending on the arithmetic
means of 1/a and b/a.

2. The case α ∈ (0, π/2).
2.1. Existence of periodic travelling wave solutions. Using v(ξ) defined by (4), Prob-

lem (2)–(3) is rewritten as

cvξ cotα = a

(v
ε

) vξξ

1 + vξ 2
+ b

(v
ε

) √
1 + vξ

2 , ξ ∈ R ,

v(0)+ ε = v(ε cotα) , vξ (0) = vξ (ε cotα) , ξ ∈ R .

(5)

For any given α ∈ (0, π/2), a pair (c, v) solving (5) is called a solution of (5). In this
subsection, we prove the existence and uniqueness of the solution of (5). Without loss of
generality, we assume v(0) = 0 throughout the paper. Our approach is inspired by [3]. Denote
bm = min b(s), bM = max b(s). We make some technical assumptions on α:

bM sinα ≤ bm ,(6)

tan2 α ≥ 2

(
1 − bm

bM

)(
1 + b2

M

b2
m

)
.(7)

One can see that many α ∈ (0, π/2) satisfy these conditions provided bM − bm is small. For
instance, (7) is true if 1 + tan2 α ≥ b4

M/b
4
m.

THEOREM 2.1. (i) For any α ∈ (0, π/2) satisfying (6), Problem (5) has a unique
solution (c∗(α), v∗(ξ)). In addition, v∗

ξ (ξ) > 0 and

bm

cosα
≤ c∗(α) ≤ bM

cosα
.(8)

(ii) If we assume further that (7) holds, then c∗(α) is strictly increasing in α.
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We first give a preliminary lemma.

LEMMA 2.2. If (c, v) solves (5), then vξ is ε cotα-periodic, and c > 0, vξ > 0 in R.

PROOF. By (5), vξ is periodic with period ε cotα. So there exist ξ+, ξ− ∈ [0, ε cotα)
such that

vξ (ξ+) = max vξ (ξ) > 0 , vξ (ξ−) = min vξ (ξ) , vξξ (ξ+) = vξξ (ξ−) = 0 .

Considering the equation in (5) at ξ±, we have

cvξ (ξ±) cotα = b

(
v(ξ±)
ε

)√
1 + v2

ξ (ξ±) > 0 .

The inequality at ξ+ implies c > 0, since vξ (ξ+) > 0, and so the inequality cvξ (ξ−) > 0
implies vξ (ξ−) > 0. �

A direct verification shows the following

LEMMA 2.3. There is a solution (c, v(ξ)) to (5) if and only if there is a solution
(c,w(s)) to the following problem



w′(s) = ε(1 +w2 cot2 α)

a(s)
(b(s)

√
tan2 α +w2 − c) s ∈ (0, 1) ,

w(0) = w(1) , w > 0 in [0, 1] ,∫ 1

0
w(s)ds = 1 .

(9)

The transformation from v(ξ) to w(s) is given by vξ (ξ) = (cotα w(s))−1, s = v(ξ)/ε.

Hereafter ′ denotes derivative with respect to s. To show the existence of solutions of (9)
we first prove

LEMMA 2.4. For any given α ∈ (0, π/2) and p ≥ 0, the problem

w′(s) = ε(1 +w2 cot2 α)

a(s)
(b(s)

√
tan2 α + w2 − c) , s ∈ (0, 1) ,

w(0) = w(1) = p ,

(10)

has a unique solution (c(p, α),w(s, p, α)). Moreover,

bm

√
1 + maxw2(·, p, α) ≤ c(p, α) ≤ bM

√
1 + minw2(·, p, α) .(11)

PROOF. Consider the initial value problem for the ordinary differential equation:
W

′(s) = ε(1 +W 2 cot2 α)

a(s)
(b(s)

√
tan2 α +W 2 − c) =: G(s,W, c, α) , s ≥ 0 ,

W(0) = p .

(12)

Denote its solution by W(s, p, α, c), or, simply by W(s). For each c ≥ 0, denote the maxi-
mum existence interval of W(s, p, α, c) by [0, S(c)).



WAVE SOLUTIONS OF A CURVATURE FLOW EQUATION 369

(a) When c = c1 := bM
√

tan2 α + (p + 1)2, we have

W ′(s)
{
< 0 , when W ∈ [−p − 1, p + 1] ,
> 0 , when W < −W0 := −(c2

1/b
2
m − tan2 α)1/2 .

Hence S(c1) = ∞, and W(s, p, α, c1) ∈ (−W0, p) for all s ∈ (0,∞). In particular,
W(1, p, α, c1) < p.

(b) W(s, p, α, c) is decreasing in c. In fact, Wc := ∂W/∂c andWp := ∂W/∂p satisfy

W ′
p = GW ·Wp , Wp|s=0 = 1 ,

W ′
c = GW ·Wc +Gc , Wc|s=0 = 0 .

So Wp = exp(
∫ s

0 GWds) > 0. By the variation of constant technique, we have for µ :=
Wc/Wp,

µ′ = Gc

Wp

, µ|s=0 = Wc

Wp

∣∣∣∣
s=0

= 0 .

Since Gc < 0 we have µ′ < 0, and so µ < 0 for s > 0. Hence Wc < 0 for any s ∈ (0, S(c)).
(c) Set Z := {c ∈ [0, c1] | S(c) > 1 andW(1, p, α, c) < p}. SinceWs(s, p, α, 0) > 0,

we have 0 	∈ Z. The above (a) implies that c1 ∈ Z and (b) implies that if c2 ∈ (0, c1) ∩ Z,
then [c2, c1] ⊂ Z.

Fix a c ∈ Z. On the one hand, W(s, p, α, c) ≥ W(s, p, α, c1) > −W0. On the other
hand, if we put ν = max0≤s≤1W(s, p, α, c) = W(s1, p, α, c) for some s1 ∈ [0, 1] then
either ν ≤ p or ν > p. Assume that the latter occurs: ν > p. Then s1 ∈ (0, 1) and hence
Ws(s1, p, α, c) = 0. Thus we have b(s1)

√
tan2 α + ν2 = c. Since c ≤ c1, we get ν2 ≤ c2

1/b
2
m,

i.e., W ≤ c1/bm. Hence W(s, p, α, c) ∈ [−W0, c1/bm].
By the equation of W and by a, b ∈ C1, there exists a positive constant M1 =

M1(a, b, c1,W0) = M1(a, b, α, p) such that, for any c ∈ Z, W(s, p, α, c) satisfies

max
s∈[0,1] |W | ≤ M1 , max

s∈[0,1] |W
′| ≤ M1 , max

s∈[0,1] |W
′′| ≤ M1 .(13)

(d) Denote c3 := infZ c. Then (13) and (b) imply that there exists a function
w(s, p, α) ∈ C1([0, 1]) such that ‖W(s, p, α, c) − w(s, p, α)‖C1 → 0 as c → c3 + 0.
Letting c → c3 + 0 in (12) we have

ws(s, p, α) = G(s,w(s, p, α), c3, α) for s ∈ [0, 1] , w(0, p, α) = p .

So w(s, p, α) ≡ W(s, p, α, c3) on [0, 1]. Clearly, W(s, p, α, c3) satisfies (13) and
W(1, p, α, c3) ≤ p.

(e) We show that W(1, p, α, c3) = p. Otherwise, W(1, p, α, c3) < p − 2δ1 for some
δ1 ∈ (0, 1). Denote M2 := max{|GW | + |Gc| | s ∈ [0, 1],W ∈ [−M1 − 1,M1 + 1], c ∈
[0, c1]}. Consider (12) for c = c4 := c3 − δ2, where δ2 < min{δ1 exp (−M2), c3}.

First we show that

W(s, p, α, c3) ≤ W(s, p, α, c4) ≤ W(s, p, α, c3)+ 1 for s ∈ [0, 1] .(14)

In fact, the first inequality is true on [0, S(c4))∩ [0, 1]. The second inequality holds on [0, s2]
for some small s2. Set s3 := sup{s | the second inequality holds on [0, s]}. If s3 ≥ 1, then (14)
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is proved. If s3 < 1, thenW(s3, p, α, c4) = W(s3, p, α, c3)+1. Set W̃ (s) = W(s, p, α, c4)−
W(s, p, α, c3) ≥ 0. Then on [0, s3], there exists ζ(s) lying between W(s, p, α, c4) and
W(s, p, α, c3), and c5 ∈ (c4, c3) ⊂ (0, c1) such that

W̃ ′(s) = GW(s, ζ(s), c4, α)W̃ −Gc(s,W(s, p, α, c3), α, c5)δ2 .

Since s3 < 1, we have |W̃(s3)| ≤ δ2 exp (M2) ≤ δ1 < 1, in contradiction to the above
assumption. Therefore (14) holds.

Repeating the above discussion on [0, 1] we have W̃(1) ≤ δ1, that is, W(1, p, α, c4) ≤
W(1, p, α, c3) + δ1 < p − δ1. This means that c4 ∈ Z, contradicting the definition of c3.
ThereforeW(1, p, α, c3) = p, and so the pair c(p, α) := c3 and w(s, p, α) ≡ W(s, p, α, c3)

is the unique solution of (10).
(f ) Finally, we verify (11). Since w(s, p, α) is 1-periodic, for any ν ∈ [minw(·, p, α),

maxw(·, p, α)], there exist s4, s5 ∈ [0, 1) such that w(s4, p, α) = w(s5, p, α) = ν,

(∂/∂s)w(s4, p, α) ≥ 0, (∂/∂s)w(s5, p, α) ≤ 0, i.e.,

bm

√
tan2 α + ν2 ≤ b(s5)

√
tan2 α + ν2 ≤ c(p, α)

≤ b(s4)
√

tan2 α + ν2 ≤ bM

√
tan2 α + ν2 .

Since ν ∈ [minw(·, p, α),maxw(·, p, α)] can be chosen arbitrarily, the left and the right
inequalities hold indeed for any ν2 ∈ [minw2(·, p, α),maxw2(·, p, α)], this proves (11). �

LEMMA 2.5. For any given α ∈ (0, π/2), there exists a unique p = p(α) > 0 such
that the corresponding unique solution of (10), that is, the pair

c∗(α) := c(p(α), α) and w∗(s, α) := w(s, p(α), α) = W(s, p(α), α, c(p(α), α))(15)

satisfies
∫ 1

0 w
∗(s, α)ds = 1 andw∗(s, α) > 0. Hence (c∗(α),w∗(s, α)) is the unique solution

of (9).

PROOF. For any p ≥ 0, recall the solution of (10) is w(s, p, α) ≡ W(s, p, α, c(p, α)).
Set I (p, α) = ∫ 1

0 w(s, p, α)ds, we need to show that there exists a unique p = p(α) such
that I (p(α), α) = 1.

(a) By (11) we have

bm

√
tan2 α + p2 ≤

{
bM

√
tan2 α + minw2(·, p, α) , when minw(·, p, α) > 0 ,

bM tanα , when minw(·, p, α) ≤ 0 .

The second inequality is impossible when p > 0 is large. Hence, when p → +∞,
minw(·, p, α) > 0 and minw(·, p, α) → +∞ by the first inequality. This means that
I (p, α) → +∞ as p → +∞.

(b) When p = 0, by (11) we have bm
√

tan2 α + maxw2(·, p, α) ≤ c(p, α) ≤
bM tanα, and so by (6),

maxw2(·, p, α) ≤ tan2 α · (b2
M − b2

m)/b
2
m ≤ 1 , i.e. , |w(·, p, α)| ≤ 1 .

Clearly, w(s, p, α) 	≡ 1, hence I (0, α) = ∫ 1
0 w(s, p, α)ds < 1.
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(c) Denote W̄ (p, α, c(p, α)) := W(1, p, α, c(p, α)), then by W̄ (p, α, c(p, α)) = p

we have W̄p + W̄c · cp = 1, and so cp = (1 − W̄p)/W̄c. Using the notation µ in the proof of
Lemma 2.4, we have

Ip =
∫ 1

0
(Wp +Wc · cp)ds =

∫ 1

0

WpW̄c +Wc −WcW̄p

W̄c

ds

=
∫ 1

0

µ(1)WpW̄p + µ(s)Wp − µ(s)WpW̄p

µ(1)W̄p

ds > 0 .

The above assertions imply that there exists a unique p(α) > 0 such that I (p(α), α) = 1.
Finally, a proof similar to that in (b) also shows that minw(·, p(α), α) > 0, since∫ 1

0 w(s, p(α), α)ds = 1. Thus (c∗(α),w∗(s, α)) defined by (15) is the unique solution of
(9). �

PROOF OF THEOREM 2.1 (i). Lemma 2.5 shows that there exists a unique solution
(c∗(α),w∗(s, α)) of (9). This solution corresponds to a solution (c∗(α), v∗(ξ)) of (5) by
Lemma 2.3, and v∗(ξ) is defined implicitly by∫ v∗(ξ)

v∗(0)
w∗

(
v

ε
, α

)
dv = ξ

cotα
.

The uniqueness of v∗(ξ) follows from our assumption v∗(0) = 0 (Without this assumption,
v∗ will be unique up to a translation).

As mentioned in the proof of the previous lemma,
∫ 1

0 w
∗(s, α)ds = 1 impliesw∗(s, α) >

0. So we indeed have 0 < minw∗ < 1 < maxw∗. By (11) we have

bm

cosα
≤ bm

√
tan2 α + (maxw∗)2 ≤ c∗(α) ≤ bM

√
tan2 α + (minw∗)2 ≤ bM

cosα
.

REMARK 2.6. By the last inequality in the above proof, we know that |w∗| ≤ M3

for some M3 = M3(α, b) and c∗(α) ≤ bM/ cosα. Hence |G(s,w∗, c∗, α)| ≤ εM4 for some
M4 = M4(α, a, b), that is, |w∗′| ≤ εM4. This means that maxw∗(·, α)−minw∗(·, α) ≤ εM4.
Combining with

∫ 1
0 w

∗(s, α)ds = 1 we have |w∗ − 1| ≤ εM4 on [0, 1]. Therefore,

(1 −M4ε) tan α ≤ v∗
ξ = tanα

w∗ ≤ (1 + 2M4ε) tanα as long as ε ≤ 1

2M4
.(16)

PROOF OF THEOREM 2.1 (ii). First we show

Gα = ε
cosα

a(s) sin3 α
[b(s)(tan2 α − 2w∗2

)
√

tan2 α + w∗2 + 2c∗w∗2] > 0 .

Set

G1 =
(

2c∗ − 2bm
bM

b(s)
√

tan2 α + w∗2
)
w∗2

,

G2 = b(s)

(
tan2 α − 2w∗2 + 2bm

bM
w∗2

)√
tan2 α +w∗2 .

By (11), c∗/bm ≥
√

tan2 α +w∗2, so G1 ≥ 2c∗w∗2 (1 − b(s)/bM) ≥ 0.
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Since 0 < minw∗ < 1 < maxw∗, (11) implies that maxw∗2 < [(b2
M − b2

m) tan2 α +
b2
M ]/b2

m. So by assumptions (6) and (7) we have

G2

b(s)
√

tan2 α +w∗2
= tan2 α − 2

(
1 − bm

bM

)
w∗2

> tan2 α − 2

(
1 − bm

bM

)(
b2
M − b2

m

b2
m

tan2 α + b2
M

b2
m

)

≥ tan2 α − 2

(
1 − bm

bM

)(
1 + b2

M

b2
m

)
≥ 0 .

Hence Gα > 0.
Next we prove dc∗(α)/dα > 0. Since∫ 1

0
W(s, p(α), α, c∗(α))ds = 1 , W̄ (p(α), α, c∗(α)) = p(α) .

Differentiating them with respect to α we have

dp(α)

dα
=

∫ 1

0
Wαds + dc∗(α)

dα

∫ 1

0
Wcds

−
∫ 1

0
Wpds

,
dc∗(α)
dα

· W̄c = (1 − W̄p)
dp(α)

dα
− W̄α .

Therefore,

dc∗(α)
dα

=

∫ 1

0
(W̄pWα − W̄αWp −Wα)ds∫ 1

0
(W̄cWp −WcW̄p +Wc)ds

.

Note that
∂

∂s
Wα = GW ·Wα +Gα , Wα|s=0 = 0 .

Hence, if we write Wα = ρ(s)Wp , then

ρ′(s) = Gα/Wp , ρ(0) = 0 .

Since Gα > 0 and Wp > 0 we have ρ′ > 0, and so ρ(s) > 0 on (0, 1]. Thus

dc∗(α)
dα

=

∫ 1

0
[(ρ(s)− ρ(1))W̄pWp − ρ(s)Wp]ds∫ 1

0
[(µ(1)− µ(s))W̄pWp + µ(s)Wp]ds

> 0 .

In other words, c∗(α) is strictly increasing in α.
2.2. Estimate of average speed. In this section we consider homogenization problem

as ε → 0, and estimate c∗(α) by using an average method.
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LEMMA 2.7. Let u1, u2, ε1, ε2 be constants satisfying u2 > u1, ε2 > ε1 ≥ 0. For any
ε ∈ [ε1, ε2]\{0}, let u(x) ∈ R be the solution of

du

dx
= εf (ε, x, u) , u(0) = u0 ∈ (u1, u2) ,(17)

where f ∈ C1([ε1, ε2] × [0,∞)× [u1, u2]), and is X-periodic in x. Define f0 as f0(ε, v) =
(1/X)

∫ X
0 f (ε, x, v)dx. Let v(x) ∈ R be the solution of

dv

dx
= εf0(ε, v) , v(0) = u0 .(18)

Then there exist C1 = C1(ε1, ε2, u1, u2, u0) > 0 and C2 = C2(ε1, ε2, u1, u2, u0) > 0 such
that

|u(x)− v(x)| ≤ C2ε for 0 ≤ x ≤ C1/ε .

PROOF. In the special case where f and f0 are independent of ε, this lemma is the well
known average method (cf. [4] or [7]). Our proof is similar to that for the special case.

First, if we set F = F(ε1, ε2, u1, u2) := maxΩ |f (ε, x, u)|, where Ω := [ε1, ε2] ×
[0,∞)× [u1, u2], then the general theory of ordinary differential equations implies that (17)
(resp. (18)) has a unique solution u(x) ∈ [u1, u2] (resp. v(x) ∈ [u1, u2]) for x ∈ [0, C1/ε],
where C1 = C1(ε1, ε2, u1, u2, u0) := min{u2 − u0, u0 − u1}/F .

Set δ(x, v) = ∫ x
0 [f (ε, z, v) − f0(ε, v)]dz, and w(x) = v(x) + εδ(x, v(x)) for x ∈

[0, C1/ε]. Then δ(x, v) and δv(x, v) are X-periodic in x and |δ(x, v(x))| ≤ 2FX,

|δv(x, v(x))| =
∣∣∣∣
∫ x

0
[fv(ε, z, v(x))− (f0)v(ε, v(x))]dz

∣∣∣∣ ≤ 2F1X ,

where F1 = F1(ε1, ε2, u1, u2) := maxΩ |fv(ε, x, v)|. Since

dw

dx
= εf0(x, v)+ ε[f (ε, x, v)− f0(ε, v)] + ε2δv f0(x, v) ,

we have
du

dx
− dw

dx
= εf (ε, x, u)− εf (ε, x, v)− ε2δvf0(x, v)

= ε[f (ε, x, u)− f (ε, x,w)] + ε[f (ε, x,w)− f (ε, x, v)] − ε2δvf0(x, v) .

Thus ∣∣∣∣dudx − dw

dx

∣∣∣∣ ≤ εF1|u− w| + 4FF1Xε
2 .

Hence

|u−w| =
∣∣∣∣
∫ x

0

(
du

dx
− dw

dx

)
dx

∣∣∣∣ ≤ εF1

∫ x

0
|u(x)−w(x)|dx + 4FF1Xε

2x ,

that is,

|u−w| + 4FXε ≤ εF1

∫ x

0
[|u(x)−w(x)| + 4FXε]dx + 4FXε .

By Gronwall’s lemma we have |u− w| + 4FXε ≤ 4FXε exp(εF1x). Then

|u(x)− v(x)| ≤ 2FXε + 4FXε
(
eF1C1 − 1

) =: C2ε for x ∈ [0, C1/ε] . �
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THEOREM 2.8. Assume (6) holds. Then

c∗(α) = d̄

ā cosα
+O(ε) as ε → 0 ,

where

ā =
∫ 1

0

ds

a(s)
, d̄ =

∫ 1

0

b(s)

a(s)
ds .

PROOF. Recall (c∗(α),w∗(s, α)) is the unique solution of (9), which corresponds to the
unique solution (c∗(α), v∗(ξ)) of (5). For simplicity, we write c∗(α) = c∗ in the following.
Set

θ = ξ

ε
, ϕ(θ) = v∗(ξ)

ε
= v∗(εθ)

ε
.

At the beginning of Subsection 2.1 we assume v∗(0) = ϕ(0) = 0, then ϕ satisfies

a(ϕ)

ϕθθ

1 + ϕθ 2 = ε
(
c∗ cotα ϕθ − b(ϕ)

√
1 + ϕθ

2
)
, θ ∈ R ,

ϕ(0) = 0 , ϕ(cotα) = 1 , ϕθ (0) = ϕθ (cotα) = 1/(p(α) cotα) =: ψ0 , θ ∈ R ,

(19)

where p(α) = w∗(0, α) > 0 (see Lemmas 2.4 and 2.5 above). Denote ϕθ = ψ > 0. Then

ψθ = ε
(
c∗ cotα ψ − b(ϕ)

√
1 + ψ2

)1 + ψ2

a(ϕ)

and hence (19) implies that ψ(ϕ) is a 1-periodic function and it solves

dψ

dϕ
= ε

(
c∗ cotα

a(ϕ)
− b(ϕ)

a(ϕ)

√
1 + ψ2

ψ

)
(1 + ψ2) , ϕ ∈ [0,∞) ,

ψ|ϕ=n = ψ0 , n ∈ N .

(20)

By Remark 2.6 we have ψ = ϕθ = v∗
ξ ∈ [(1 −M4ε) tanα, (1 + 2M4ε) tanα]. Then for

h := (1 − sin α)/(3 sinα) and for some M5 = M5(α, a, b) > 0 we have

−3h−M5ε ≤ 1 −
√

1 + ψ2/ψ ≤ −3h+M5ε for ϕ ∈ [0,∞) ,(21)

as long as ε is sufficiently small.
Denote by ω(ϕ) the solution of


dω

dϕ
= ε

(
āc∗ cotα − d̄

√
1 + ω2

ω

)
(1 + ω2) =: F0(ω) , ϕ ≥ 0 ,

ω|ϕ=0 = ψ0 .

(22)

Notice that c∗ in (20) and (22) depends on ε; but since c∗ ∈ [bm/ cosα, bM/ cosα],
we have sup{|F0(ω)/ε| | ε > 0, ω ∈ [ψ0/2, 2ψ0]} < +∞. Recall also the remark on ψ
immediately after (20), so that [ψ0/2, 2ψ0] ⊂ [(tanα)/4, 4 tanα] since M4ε ≤ 1/2.

Applying Lemma 2.7 to (20) and (22), we have C1, C2 > 0 depending on α, a, b but
independent of ε such that ω exists on [0, C] (where C denotes the largest integer less than or
equal to C1/ε), ω(ϕ) ≥ ψ0/2, and

|ψ(ϕ)− ω(ϕ)| ≤ C2ε for ϕ ∈ [0, C] .(23)
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Combining with (21) we have, for sufficiently small ε > 0,

1 −
√

1 + ω2/ω ≤ −2h for ϕ ∈ [0, C] .(24)

Case 1. If āc∗ cotα ≤ d̄(1 + h), then by (24) we have

F0(ω) ≤ εd̄

(
1 + h−

√
1 + ω2

ω

)
(1 + ω2) ≤ −εd̄h(1 + ω2) < −εd̄h for ϕ ∈ [0, C] .

Using this inequality and integrating the equation in (22) on [0, C] we have ω (C) − ω(0) ≤
−εd̄hC < −d̄hC1/2 as long as ε is small. This is in contradiction to (23), since ω(0) = ψ0 =
ψ (C). Therefore, Case 1 is impossible.

Case 2. We assume āc∗ cotα > d̄(1 + h) and denote by l the root of āc∗ cotα =
d̄
√

1 + l2/l, then
√

1 + l2/l > 1 + h and so 0 < l < h−1. Note that

ζ0 := 1

ζ 2
√

1 + ζ 2

∣∣∣∣∣
ζ=tanα+h−1

≤ 1

ζ 2
√

1 + ζ 2
for all ζ ∈ (0, tanα + h−1] .(25)

Subcase 2.1. Assume ψ0 ≥ l + 2C2ε/(C1ζ0d̄). Then

F0(ψ0)

1 + ψ2
0

= ε

(
āc∗ cotα − d̄

√
1 + ψ2

0

ψ0

)
> ε

(
āc∗ cotα − d̄

√
1 + l2

l

)
= 0 .

So ω ≥ ψ0 and hence, for some ζ lies between l and ψ0,

F0(ω) ≥ F0(ψ0) ≥ ε

(
āc∗ cotα − d̄

√
1 + ψ2

0

ψ0

)

= εd̄

(√
1 + l2

l
−

√
1 + ψ2

0

ψ0

)
= εd̄

ψ0 − l

ζ 2
√

1 + ζ 2
≥ εd̄

2C2ε

C1d̄
= 2C2

C1
ε2 .

Therefore,

ω(C) ≥ ω(0)+ 2C2

C1
ε2 · C ≥ ψ(C)+ 2C2

C1
ε2 ·

(
C1

ε
− 1

)
= ψ(C)+ 2C2ε − 2C2

C1
ε2 ,

this contradicts (23) when ε is sufficient small.
Subcase 2.2. Assumeψ0 ≤ l−2C2ε/(C1ζ0d̄). Then a similar discussion as in Subcase

2.1 also induces a contradiction.
Subcase 2.3. If l − 2C2ε/(C1ζ0d̄) < ψ0 < l + 2C2ε/(C1ζ0d̄), then

dω

dϕ
= εd̄

(√
1 + l2

l
−

√
1 + ω2

ω

)
(1 + ω2) = εd̄

1 + ω2

ζ 2
√

1 + ζ 2
(ω − l) = εD(ϕ)(ω − l) ,

where ζ(ϕ) lies between l andω(ϕ), andD(ϕ) = d̄(1+ω2)ζ−2(1+ζ 2)−1/2 satisfies |D(ϕ)| ≤
M6(α, d̄). Therefore, ω(ϕ)− l = (ω(0)− l) exp

(∫ ϕ
0 εD(ϕ)dϕ

)
on [0, C], and so

|ω(ϕ)− l| ≤ |ψ0 − l| exp(εM6ϕ) ≤ 2C2ε

C1ζ0d̄
exp (M6C1) = M7ε for ϕ ∈ [0, C] ,
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whereM7 = 2C2(C1ζ0d̄)
−1 exp (M6C1). This means that ω = l+O(ε), and by (23) we have

ψ = l + O(ε). Since we have known ψ = tanα +O(ε) above, we have l = tan α + O(ε),
that is,

āc∗ cotα = d̄

√
1 + tan2 α

tanα
+O(ε) or , c∗ = d̄

ā cosα
+O(ε) as ε → 0 . �

REMARK 2.9. In §2.1 we give the unique solution (c∗(α), v∗(ξ)) of (5). Then u∗
defined by v∗ as in (4) is a solution of (2)–(3). It is easily seen that the graph of v∗ is a
periodic undulating line at finite distance from the line ξ tanα. So, for each t > 0, the graph
of u∗(x, t) is a periodic undulating line near the graph of x tanα + h(t) for some h(t). We
call (− sinα, cos α) the global normal direction of the graph of u∗, since (− sinα, cosα) is
the normal vector of line x tanα + h(t). Along this direction, the average speed of u∗ is

c∗norm = c∗(α) cosα = d̄/ā +O(ε) .(26)

In other words, the homogenized average speed in global normal direction does not depend
on α, just like the trivial case b ≡ b0.

3. Two extreme cases.
3.1. The case α = 0. Define u0(t) := εF−1(t/ε), where F(s) = ∫ s

0 b(τ)
−1dτ is an

increasing function and F−1 is its inverse function. Then u0(t) is a solution of (2)–(3), for
each t > 0, its graph is a horizontal line. The average speed c0 of u0 is the harmonic mean of
b: c0 = ( ∫ 1

0 b(τ)
−1dτ

)−1.
On the other hand, since (6) holds even for α → 0+, the results in §2.1 (except for

Theorem 2.1 (ii)) remain to hold for α → 0+. One can see that, formally, the graph of
u∗(x, t) := v∗(x + c∗(α)t cotα) tends to the graph of u0(t) as α → 0+. Moreover,

c∗(α) = d̄

ā cosα
+O(ε) → d̄

ā
+O(ε) as α → 0+ .

But this limit is different from c0 even in the special case a ≡ 1. We believe that, this
difference comes from our estimate for c∗(α). Because in the proof of Theorem 2.8, when
we use average method we indeed require that cotα = O(1). However, in the limit process
α → 0+, cotα may becomes larger and larger and even cotα · ε � 1. In such a case, average
method is not valid, and the estimate for c∗(α) given as above is not accurate.

3.2. The case α = π/2. As α → π/2, (6) is not satisfied, Theorem 2.1 does not
include the existence of periodic travelling wave solutions in this case. On the other hand,
when α = π/2, [2] proved the existence of travelling wave solutions of (1) with the form
x = −ũ(y)− c̃t (not periodic), which is a solution of


c̃ = a

(y
ε

) ũyy

1 + ũ2
y

+ b
(y
ε

) √
1 + ũ2

y , y ∈ R , t > 0 ,

ũ(0) = ũ(ε) , ũy(0) = ũy(ε) .

Though the equation considered in [2] is the case a ≡ 1, the result is also true for periodic a.
Moreover, when a ≡ 1, [2] gave a rough estimate for c̃: bm < c̃ < bM .
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In fact, as in the proof of Theorem 2.8, using average method one can show that c̃ =
d̄/ā +O(ε). On the other hand, (26) implies that the periodic travelling wave solution of the
form v∗(ξ) travels in its global normal direction with average speed d̄/ā+O(ε), approximat-
ing c̃.

Acknowledgments. The author thanks the referee and Professor Baojun Bian for their helpful
suggestions on the proof of Lemma 2.4 and that of Theorem 2.8.
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