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Periodic travelling waves in cyclic
populations: field studies and
reaction–diffusion models

Jonathan A. Sherratt* and Matthew J. Smith
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Periodic travelling waves have been reported in a number of recent spatio-temporal field
studies of populations undergoing multi-year cycles. Mathematical modelling has a major
role to play in understanding these results and informing future empirical studies. We review
the relevant field data and summarize the statistical methods used to detect periodic waves.
We then discuss the mathematical theory of periodic travelling waves in oscillatory reaction–
diffusion equations. We describe the notion of a wave family, and various ecologically
relevant scenarios in which periodic travelling waves occur. We also discuss wave stability,
including recent computational developments. Although we focus on oscillatory reaction–
diffusion equations, a brief discussion of other types of model in which periodic travelling
waves have been demonstrated is also included. We end by proposing 10 research challenges
in this area, five mathematical and five empirical.
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1. INTRODUCTION

Over the last decade, a number of spatio-temporal field
studies have reported periodic travelling waves in
populations undergoing multi-year cycles (table 1).
The same period has seen significant advances in the
mathematical understanding of periodic travelling
wave solutions of oscillatory reaction–diffusion
equations. In this article, we review these develop-
ments, highlighting existing and unrealized synergies
between ecology and mathematics, and suggesting key
research challenges for the future.

Although cyclic populations could oscillate
uniformly across their habitat, data indicate that this
is often not the case (e.g. table 1). Rather, the cycles
have different phases at different locations, so that a
peak in density at one location occurs simultaneously
with a trough at another. The term ‘periodic travelling
wave’ refers to a particular type of non-uniform
distribution, in which the population density varies
periodically in one spatial direction, as well as in time,
with the spatial and temporal oscillations combining to
give the appearance of a wave in population density.
However, there is no net propagation of individuals
with this wave; the wave speed is simply the ratio of the
space and time periods. Note that the time period is

the number of years for one complete population cycle
at a fixed point in space, and space period is
more commonly called wavelength. The significance of
a periodic travelling wave is the correlated spatial
and temporal density variations that it implies. A
useful analogy is the ‘Mexican wave’ seen in sports
stadia. Here each spectator raises and lowers their arms
in a manner that is slightly out of phase with the
oscillations of their neighbours’ arms. The result is that
a wave appears to run around the stadium, although
none of the spectators is actually moving. Similarly,
phase differences in population cycles at nearby
locations generate a periodic wave travelling across
the domain.

Detection of periodic travelling waves in field
studies requires extensive spatio-temporal data and
specific methods of statistical analysis. In §2 we give
an overview of these methods, and review the
ecological systems for which they have demonstrated
periodic travelling waves. Many different types of
mathematical model for cyclic populations show
periodic travelling waves when simulated numerically,
but there is a significant body of mathematical theory
for such waves in only one class of model: oscillatory
reaction–diffusion equations. This review will concen-
trate on this type of model, and in §3 we will describe
the basic theory focusing on the notion of a wave
family. Periodic travelling waves are certainly not a
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å
s
2
0
0
6a

)

re
g
io
n
a
l
sy
n
ch
ro
n
y
in

so
m
e
y
ea
rs

( C
a
tt
a
d
o
ri
et

a
l.
2
0
0
5)
,
T
W

( M
o
u
g
eo
t
et

a
l.
2
0
0
5)

se
a
so
n
a
l
fo
rc
in
g
( C

a
tt
a
d
o
ri
et

a
l.
2
0
0
5)
,

h
a
b
it
a
t
b
o
u
n
d
a
ry

(S
h
er
ra
tt

et
a
l.

2
0
0
3
),
p
ro
d
u
ct
iv
it
y
g
ra
d
ie
n
t

(J
o
h
n
so
n
et

a
l.
2
0
0
6)

F
en
n
o
sc
a
n
d
ia
n
v
o
le
s,

M
ic
ro
tu
s
sp
p
.
a
n
d

C
le
th
ri
o
n
o
m
ys

sp
p
.

3
–
5
y
ea
rs

(T
u
rc
h
in

2
0
0
3
)

p
re
d
a
to
r–
p
re
y
(K

le
m
o
la

et
a
l.
1
9
9
7;

K
o
rp
im

ä
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feature of all populations undergoing multi-year cycles,
and in §4 we describe model predictions of the various
scenarios in which periodic travelling waves will occur,
and their ecological relevance. In §5 we discuss the
important issue of the stability of periodic travelling
waves. Finally, in §6 we give some examples of model
types other than oscillatory reaction–diffusion models
in which periodic travelling waves have been demon-
strated, before listing the questions that we see as the
key drivers for future research in this area.

2. FIELD DATA ON PERIODIC TRAVELLING
WAVES

Spatio-temporal patterns in cyclic populations are
characterized by the way in which the synchrony in
population dynamics changes across the landscape
(Bjørnstad et al. 1999; Koenig 1999; Liebhold et al.
2004). This synchrony can occur through both biotic
and abiotic mechanisms (Liebhold et al. 2004). The
biotic mechanisms may be the dispersal of individuals
belonging to the cyclic populations themselves
(Bjørnstad et al. 2002), or they could be the dispersal
of some other organism that plays an important role in
the dynamics of the cyclic populations (Ims &
Andreassen 2000). The abiotic mechanisms could be
large-scale stochastic perturbations in the environment
that set all cyclic populations to the same cycle phase
(the Moran effect (Moran 1953): see Koenig (2002) and
Royama (2005) for details, and Cattadori et al. (2005)
for a recent example) or could be multi-year oscillations
in some important environmental factor, such as the
North Atlantic Oscillation (Stenseth et al. 2004) or
10-year sunspot cycles (Selås 2006a). In recent decades,
analyses of the dynamics of cyclic populations have
revealed a variety of spatio-temporal behaviours
(table 1). We will first give a brief overview of the
techniques used to distinguish periodic travelling waves
from other spatio-temporal patterns, before discussing
the systems in which they have been found and possible
reasons for their occurrence.

2.1. Methods for detecting travelling waves

in empirical data

The raw material required to detect periodic travelling
waves in the field is estimates of population size, at
different sites in space, over time. Such datasets are
rare due to the considerable investment of time and
money required for data collection. Some of the best
long-term datasets on the spatial dynamics of cyclic
populations were, at least initially, collected for
purposes other than ecological research (Krebs et al.
2001; Shaw et al. 2004). For example, the legendary
10-year cycles in Canadian lynx were originally
inferred from the fur trading records kept by the
Hudson’s Bay Company (Krebs et al. 2001). Targeted
ecological surveys commonly collect indices of abun-
dance, such as signs of activity, as well as more direct,
but more resource intensive, measures of abundance
such as can be obtained through capture–mark–
recapture methods. A variety of statistical techniques
have been developed to allow potential bias and

uncertainty to be taken into account when estimating
abundance from these different sources of data
(Greenwood & Robinson 2006).

Prior to analysis, a dataset is usually modified in
some way to remove spurious trends that are not of
interest (Koenig 1999; Turchin 2003, ch. 7). For
instance, time series of population growth rates rather
than population densities are typically used in sub-
sequent analyses because it is the synchrony in the
change in population sizes, rather than in absolute
abundance, which is of primary interest. Sometimes it
may be possible to detect spatio-temporal patterns by
simply arranging the temporal datasets of each site or
location according to its spatial position and comparing
the dynamics by eye (Moss et al. 2000; Mackinnon et al.
2001). Usually the first quantitative analysis of the
spatio-temporal patterns in a dataset is to measure how
the correlation between the dynamics of paired
populations changes with the distance (Liebhold et al.
2004). If population oscillations are synchronous across
the study area, then the oscillations at any two sites will
be significantly positively correlated, regardless of their
distances apart. More typically, however, cross-site
synchrony tends to decrease with distance (Liebhold
et al. 2004). For example, for field vole populations in
Kielder Forest (northern UK), figure 1a illustrates how
cross-site synchrony declines with the Euclidean
distance between the sites.

Mantel tests are used to assess whether cross-site
synchrony changes significantly with the distance
(Legendre & Legendre 1998; Koenig 1999; Liebhold
et al. 2004). In general, this technique tests for a
significant correlation between two sets of data in
matrix format. For the purpose of detecting spatio-
temporal patterns in population data, one matrix is the
distance between sites and the other is the correlation
between the population dynamics of site pairs (usually
Pearson’s moment correlation; see Bjørnstad et al.
(1999) for details). The Mantel test gives a value,
similar to Pearson’s correlation coefficient, which
indicates the sign and strength of the correlation
between the two matrices. The significance of the
resulting statistic is tested by permutation. Rows or
columns in one of the matrices are randomly shuffled
and reanalysed to give a comparison with the original
data (see Legendre & Legendre (1998) and Koenig
(1999) for details). This is repeated a large number of
times to enable the calculation of the probability that
the original relationship is significantly different from
random (see Koenig (1999) and Liebhold et al. (2004)
for further discussion of this technique). For periodic
travelling waves, one would expect cross-site synchrony
to initially decline with distance relatively steeply in
the direction of wave propagation, and then rise again
as the site separation approaches one wavelength. In
contrast, one would expect sites to remain relatively
synchronous as their separation increases perpen-
dicular to the direction in which the wave is travelling.
Such directionally biased patterns in synchrony can be
revealed by analysing how cross-site synchrony declines
with projected distance: the distance between the
perpendicular projections of the site locations onto a
straight line. In figure 1b, we show the results of such an

Review. Periodic waves in cyclic populations J. A. Sherratt and M. J. Smith 485

J. R. Soc. Interface (2008)



analysis for the field vole dataset. In this figure, cross-
site synchrony only declines significantly with the
projected distance for some projection angles. Such
evidence is supportive of a unidirectional travelling
wave; cross-site synchrony declines most strongly with
projected distance in the direction of wave propagation
(as shown in figure 1c), and does not significantly
decline in the perpendicular direction (as shown in
figure 1d ). Note that, in some studies of other datasets,
nonlinear relationships between synchrony and
distance have been fitted (Ranta et al. 1997; Bjørnstad

et al. 2002). This is appropriate since synchrony will
oscillate with distance in the direction of wave
propagation, with the same wavelength as the periodic
wave. However, for field voles in Kielder Forest, the
wavelength is significantly greater than the width of the
habitat so that a linear relationship is anticipated.
(Kielder Forest is approx. 30 km wide, while the wave
speeds of 19 and 14 km yrK1, reported by Lambin et al.
(1998) and Mackinnon et al. (2001), respectively,
correspond to wavelengths of approx. 76 and
56 km, respectively.)
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Figure 1. Spatio-temporal patterns can be partly revealed by measuring how the synchrony between the population dynamics of
different sites varies with the distance between sites. To illustrate this we present analysis of data on the field vole populations in
Kielder Forest (see Lambin et al. (1998, 2000), Mackinnon et al. (2001) and Bierman et al. (2006) for more details of this system
and more detailed analysis). The raw data consist of average population density estimates from abundance indices (see Lambin
et al. (2000) for a methodological description) for a range of sites, over the period 1984–1992. These are the years for which
evidence of periodic travelling waves is the strongest: more recent data are not so indicative of a unidirectional wave (see Bierman
et al. 2006 for details). We selected the spring (March–May) and autumn (September–November) population estimates for the
Kielder Forest area only. We divided the map of Kielder Forest into 1 km squares and averaged the estimated population
densities of sites if they occurred within the same 1 km square. We then used the centre of the 1 km squares as site locations. For
each square we then calculated the time series for the rate of change of the population over the six-month interval between
observations. We then analysed how the synchrony in the time series of population growth rates varies with distance. The degree
of synchrony was indicated by the cross-correlation between the time series; we calculated this only between sites with six or
more measurements made over the same time period. (a) The cross-correlation between the time series of population growth
rates significantly declines with the Euclidean distance between sites. The Mantel test (see the main text for a description)
indicates that the relationship between distance and correlation is significant in (a) (Mantel statistic RZK0.26, p!0.05). We
have added a linear regression line to highlight the general trend in the dataset. Directionality in spatial pattern can be revealed
by calculating the Mantel R statistic for projected distance: the distance between the perpendicular projections of the site
locations onto a straight line. (b) The Mantel R statistic varies with projected distance between sites in Kielder Forest (crosses,
n.s.; circles, p!0.05; the latter indicates the Mantel R statistic is significant). (c) Cross-correlation between population growth
rate against site distance when projected at 858 N, the most significant projection angle (as indicated in (b); RZK0.41,
p!0.001). In contrast, in (d ), in which the angle of projection is perpendicular to that in (c) (1758 N, RZK0.13, pZ0.11), the
cross-correlation between site time series does not decline significantly with projected distance.
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Once evidence of travelling waves has been obtained,
a variety of statistical techniques can then be used to
estimate the wavelength and speed of the waves.
Analysis of the time-lagged synchrony between sites is
a relatively straightforward extension to Mantel test-
based techniques, enabling the estimation of wave
characteristics. Here the dynamics at one of the sites is
shifted in time prior to analysis (Bjørnstad et al. 2002).
If there is a travelling wave, then the lagged cross-site
synchrony will peak at a distance and direction
corresponding to wave propagation, over the given
period of time. Another method is to fit the statistical
models of travelling waves to the data (Moss et al. 2000;
Mackinnon et al. 2001). This has the additional
advantage of allowing the estimation of the extent to
which wave characteristics vary through space and
time. Wavelet phase analysis is another recently
developed and powerful technique for detecting travel-
ling waves and estimating any variation in their
properties through space and time (see Liebhold et al.
(2004) for a description this technique and Johnson
et al. (2004) for a recent application). This technique
has advantages over the more traditional Mantel test-
based techniques, especially for detecting spatio-
temporal patterns in cyclic populations (as summarized
in Liebhold et al. 2004). For example, Liebhold et al.
(2004) argue that this method is unaffected by the
relative amplitudes of the time series in question, and
can be used to identify multiple periodic patterns
within datasets, such as simultaneous seasonal and
multi-year cycles.

2.2. Empirical evidence for travelling waves

Using the approaches outlined above, travelling waves
have been detected in a variety of cyclic animal
populations. Indeed, where such analyses have been
conducted, travelling wave phenomena appear to be
common, as illustrated in table 1.

The larch budmoth populations in the European
Alps are one system for which there is strong evidence
of periodic travelling waves. The almost metronomic
multi-year dynamics of larch budmoth populations has
fascinated ecologists for decades (Turchin et al. 2002,
ch. 9). Recent studies have shown that these cycles are
organized into travelling waves that move at approxi-
mately 250 km yrK1, although there is considerable
variation in this estimate (Bjørnstad et al. 2002;
Johnson et al. 2004). Johnson et al. (2004) also
estimated how the speed and direction of the travelling
waves change across space. This revealed that travel-
ling waves appear to move away from epicentres of
high-productivity habitat towards the surrounding
lower quality habitat.

A study of the spatio-temporal dynamics of cyclic
red grouse populations in one area of Scottish moorland
(Moss et al. 2000) also revealed periodic travelling
waves in abundance (moving at 2–3 km yrK1). In
contrast, studies of cyclic red grouse populations in
five different regions in northern England showed that
climatic conditions in May and January can force the
populations within each region to oscillate in synchrony
(Cattadori et al. 2005). This study does not report any

travelling wave phenomena and instead suggests that,
in these red grouse populations, cycles are synchronized
by a Moran effect (Koenig 2002; Royama 2005). The
differences in the findings of these two studies may be
due in part to differences in the scale and the type of
analysis. However, the mechanisms driving the popu-
lation cycles are also thought to differ in the Scottish
and English populations (Turchin 2003, ch. 11).

Contrasting spatio-temporal dynamics have also
been reported in the various cyclic rodent populations.
Studies of vole and lemming populations in Scandinavia
indicate wide-scale synchrony (Ims &Andreassen 2000;
Angerbjörn et al. 2001), although there is some
evidence that travelling waves may occur in cyclic
vole populations in Finland (Ranta & Kaitala 1997). In
contrast, data from the cyclic populations of field voles
in Kielder Forest (northern UK) show that the 3–5 year
cycles in population density are spatially organized into
unidirectional periodic travelling waves (Lambin et al.
1998; Mackinnon et al. 2001). Again, there are
differences in what is believed to be causing these
cycles. In Scandinavia, there is evidence that some vole
population cycles are caused by a specialist-predator–
prey interaction (Oli 2003; see also Selås (2006b) for an
alternative hypothesis, and Lambin et al. (2006) for a
more general discussion). However, experiments in
Kielder Forest have suggested that the cycles are not
generated in this way (Graham& Lambin 2002; see also
the related correspondence in Korpimäki et al. (2003)
and Lambin & Graham (2003)).

Bierman et al. (2006) analysed the temporal trends
in the spatial and temporal dynamics in the Kielder
Forest field vole dataset. They restricted the dataset to
particular time frames and studied what happened to
their estimates as the time frame was shifted. They
found that evidence for both population cycles and
travelling waves was strong at the start of the dataset
but absent at the end. Such changes were associated
with dramatic reductions in the length and severity of
the winter. Changes through time in spatial dynamics
were also found recently for the cyclic autumnal moth
populations in northern Scandinavia (Nilssen et al.
2007; Tenow et al. 2007). Studies by Selås et al. (2001,
2004) suggest that synchrony in the population cycles
may be induced by region-wide synchrony in their food
supply, which is possibly connected to sunspot activity.
In contrast, Tenow et al. (2007) showed that the
population cycles of the autumnal moth were some-
times organized into periodic travelling waves, and
on other occasions the cycles occurred synchronously
over wide areas. Nilssen et al. (2007) and Tenow et al.
(2007) argue that, since the dispersal rates of the
autumnal moth are relatively low in relation to the
speed of movement of the periodic travelling wave,
dispersal cannot account for the region-wide synchrony
in the population dynamics. Instead they argue that
the populations could become synchronized through
the effects of the North Atlantic Oscillation.

Of all population datasets, the annual records of fur
returns of the Canadian lynx (Lynx canadensis)
populations, made by the Hudson’s Bay Company in
Canada, are unique for the length of time (over 100
years) and spatial scale (the whole of Canada) over
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which they have been collected (Krebs et al. 2001).
Several studies of this dataset, and of more recent data
collected by Statistics Canada (www.statcan.ca), have
demonstrated population synchrony across large dis-
tances (Smith 1983; Ranta et al. 1997; Stenseth et al.
1999; Schwartz et al. 2002). In particular, Stenseth et al.
(1999, 2004) showed that the populations could be
grouped into three areas with broadly synchronous
dynamics, according to three different climatic regions.
Ranta et al. (1997) presented an analysis of this dataset
showing significant U-shaped changes in cross-site
synchrony with distance. These results have been
cited as evidence of periodic travelling waves, although
the authors did not mention periodic travelling waves
in their paper, and did not extend their analysis to look
at any directionality in the variation of cross-site
synchrony with distance. A very approximate estimate
from the graphs presented by Ranta et al. (1997)
suggests that, if travelling waves are present, then they
will have a wavelength of approximately 4000 km,
which is close to the width of Canada! This highlights
that periodic travelling waves may not be detected in
some systems simply because the habitat is too small
for the travelling waves that would arise or because the
spatial scale required for analysis is too large. However,
it seems plausible that the upturn in synchrony at large
between-site distances reported by Ranta et al. (1997)
may be an artefact of the fact that the Pacific and
Atlantic regions, on either side of Canada and hence the
furthest apart, tend to fluctuate more in synchrony
with each other than with the populations in the central
continental region (Stenseth et al. 2004).

The handful of studies that have now been under-
taken show that travelling wave phenomena occur in
some cyclic populations, while others show region-wide
synchrony or patchy dynamics. Studies are also
beginning to focus on why such dynamics occur, and
why they might change through space and time.
Theoretical studies are a crucial complement to such
investigations owing to the time and expense of
gathering the necessary field data, and because they
enable testing of hypotheses in a way that is not
possible in the field.

3. MATHEMATICS OF PERIODIC TRAVELLING
WAVES I: WAVE FAMILIES

The simplest reaction–diffusion models for cyclic
populations involve two interacting species, with
densities u and v say, at different trophic levels

vu

vt
ZDu

v
2u

vx2
C

v
2u

vy 2

� �

C fuðu; vÞ; ð3:1aÞ

vv

vt
ZDv

v
2v

vx2
C

v
2v

vy2

� �

C fvðu; vÞ: ð3:1bÞ

Thus, u and v may be predator and prey, host and
parasite, herbivore and grazer, etc. Here x and y are
spatial coordinates and t denotes time. Our focus on
cyclic populations means that we assume that the local
dynamics fu and fv are such that the spatially uniform
equations du=dtZ fuðu; vÞ, dv=dtZ fvðu; vÞ have a stable
periodic solution (limit cycle), which oscillates either
side of an unstable coexistence steady state. The theory

of periodic travelling waves is essentially the same for
models with three or more interacting species. A classic
example of such a system is the 10 year cycles in
snowshoe hare and lynx in North America. These are
thought to be driven by a combination of hare
predation by lynx, and the hare–vegetation interaction
(see Turchin (2003, ch. 13) for review, and King &
Schaffer (2001) and Stone & He (2007) for modelling).

Throughout this paper, we will use the Rosenzweig &
MacArthur (1963)model for predator–prey interactions
as a specific example of (3.1a) and (3.1b). When
rescaled so that the parameters have no units, the
model has the form

predators
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: ð3:2bÞ

The local dynamics in this model are described in a
number of textbooks (e.g. Murray 2002; Britton 2003;
Turchin 2003). The variables u and v are the densities of
predators and prey, respectively; a is the ratio of prey
and predator dispersal coefficients; m is the predator
death rate; s is the prey to predator conversion rate;
and k is the half-saturation constant in the rate of prey
consumption by predators. There is a critical value of k
at which the kinetics have a Hopf bifurcation, with a
stable limit cycle for values of k below this critical
value. This is illustrated in figure 2; note that the cycles
are approximately sinusoidal and of low amplitude for k
close to the Hopf bifurcation value of 0.5; they increase
in amplitude and become non-sinusoidal as k is reduced.
For consistency, all of the illustrative figures in this
review are for equations (3.2a) and (3.2b), with small
enough k that the kinetics are cyclic.

The special relationship between the space and the
time dependence of a periodic travelling wave means
mathematically that the solution is a function of a single
‘travelling wave’ variable zZx=cKt, where c is the wave
speed. Thus, u ðx; tÞZUðzÞ and vðx; tÞZV ðzÞ, and
(3.1a) and (3.1b) imply

ðDu=c
2Þd2U=dz 2 CdU=dzC fuðu; vÞZ 0; ð3:3aÞ

ðDv=c
2Þd2V=dz 2 CdV=dzC fvðu; vÞZ 0: ð3:3bÞ

A periodic travelling wave is a limit cycle solution of
this ordinary differential equation system. The basic
properties of such solutions were established in a
landmark paper by Kopell & Howard (1973), and we
now summarize their results. Kopell & Howard showed
that, under certain conditions (detailed below), there is
a one-parameter family of periodic travelling wave
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solutions of (3.1a) and (3.1b). This notion of a wave
family is key to an understanding of periodic travelling
waves and therefore merits discussion. For a given set of
ecological parameters (a, m, s and k in the case of (3.2a)
and (3.2b)), there is a range of possible values for the
speed, (spatial) wavelength, time period and amplitude
of periodic travelling wave solutions. For example, the
amplitude can take any value between zero and the
amplitude of the spatially homogeneous oscillations
implied by the kinetics. Fixing a value of the amplitude
in this range then determines the speed, wavelength and
time period. It is in this sense that the family is ‘one-
parameter’: a contrasting example is nonlinear water
waves, for which amplitude and wavelength can be
specified independently, with time period then deter-
mined (i.e. a two-parameter wave family; Billingham &
King 2000). For periodic travelling waves in (3.1a) and
(3.1b), any one of amplitude, speed, wavelength and
time period can typically be used to parametrize the
family. Figure 3a illustrates the periodic travelling
wave families for five different parameter sets in
(3.2a) and (3.2b), via plots of the time period against
wave speed. Note that the limiting case of infinite
wave speed corresponds to spatially homogeneous

oscillations. We also show (figure 3b) an example of a
periodic travelling wave: this is one member of one of
the families.

More specifically, Kopell & Howard proved two
separate results on the existence of a periodic
travelling wave family: (i) there is a family of large-
amplitude waves in any oscillatory reaction–diffusion
system and (ii) there is a family of small-amplitude
waves provided that the dispersal coefficients Du and
Dv are sufficiently close. Intuitive expectation, and
extensive numerical evidence, indicates that these
results characterize the two ends of a single wave
family, although, to the best of our knowledge, this
remains unproven for general reaction–diffusion
equations. To prove (ii), Kopell & Howard showed
that (3.3a) and (3.3b) has a Hopf bifurcation at some
positive value of the wave speed c, and the Hopf
theorem then implies a one-parameter family of
periodic solutions of (3.3a) and (3.3b) as c increases
above this Hopf bifurcation value. A reworking of this
proof for the specific equations (3.2a) and (3.2b) is
given by Huang et al. (2003), giving more explicit
constraints on the diffusion coefficients (and kinetic
parameters). More generally for (3.1a) and (3.1b), one
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Figure 2. (a– f ) An illustration of the local dynamics of the Rosenzweig–MacArthur predator–prey model (3.2a) and (3.2b). We
take sZ0.15 and mZ0.05. In this case, the kinetics have a Hopf bifurcation at kZ0.5, with a stable limit cycle for smaller values
of k. We plot predator and prey densities u and v as functions of time and against one another, allowing a large solution time prior
to plotting, to allow the solutions to settle on their long-term behaviour. (a,b) kZ0.49, (c,d ) kZ0.40, (e, f ) kZ0.20. (a,c,e) Solid
curve, v; dotted curve, u.
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requires closeness of Du and Dv because, when these
are sufficiently different, there may not be a Hopf
bifurcation as c is varied. Numerical computations for
(3.2a) and (3.2b) indicate that, in such cases, there is
again a one-parameter family of waves, with speeds
taking any positive value. However, the generality of
this finding remains an important open question.

Kopell & Howard (1973) were able to compute
numerically some periodic travelling wave families, but
this was a challenging numerical problem at the time.
The basic difficulty is that the limit cycle corresponding
to a periodic travelling wave is unstable as a solution of
(3.3a) and (3.3b), irrespective of its stability as a solution
of the partial differential equation (PDE) (3.1a) and
(3.1b); therefore the limit cycle cannot be calculated
directly. Note that we postpone discussion of PDE
stability until §5. Fortunately, subsequent compu-
tational advances make the calculation of an unstable
limit cycle relatively straightforward. The key tool is
numerical bifurcation software, and we use the package
AUTO (indy.cs.concordia.ca/auto; Doedel 1981, 1997);
other numerical packages such as TRILINOS (trilinos.
sandia.gov; Heroux et al. 2003) can also be used. The
basic approach is to increase c from zero, and use
AUTO to detect the value of c at which (3.3a) and (3.3b)
has a Hopf bifurcation. We then restart AUTO at this
Hopf bifurcation point, and use it to track the limit
cycle (i.e. the periodic travelling waves) as c is increased.
During this continuation, the detailed form of the
periodic travelling wave can be output at any required
value of the speed. This approach is effective provided
thatDu andDv are such that (3.3a) and (3.3b) has a Hopf
bifurcation at some cO0; this is guaranteedwhenDu and
Dv are sufficiently close. Otherwise, we set DuZDv and
follow that wave family. Starting from a point on that
family, we then use AUTO to track the periodic travelling

wave solution with time period fixed but c and Du/Dv

varying, until the required ratio Du/Dv is reached. We
can thendetermine the requiredwave family byfixingDu

and Dv, and varying the time period (and c). An
example AUTO code that illustrates the use of these
methods to determine the wave families shown in
figure 3a is available at www.ma.hw.ac.uk/wjas/
supplements/ptwreview/index.html.

3.1. Behaviour close to Hopf bifurcation

For (3.2a) and (3.2b) and most other reaction–diffusion
models, periodic travelling wave families can be found
only via numerical computation. However, there are
some particular systems with explicit wave solutions
(Kopell & Howard 1973, §II.4; Cope 1979). By far the
most important of these is the system

vp=vtZ v
2p=vx2 Cv

2p=vy2 Cð1Kp2Kq2Þp

Kðu0Ku1p
2
Ku1q

2Þq; ð3:4aÞ

vq=vtZ v
2q=vx2 Cv

2q=vy2 Cðu0Ku1p
2
Ku1q

2Þp

Cð1Kp2Kq2Þq; ð3:4bÞ

where u0 and u1 are parameters satisfying
u0(u0Ku1)O0. This is a special case of the l–u class
of equations, introduced by Kopell & Howard (1973).
Crucially, the mathematical theory of normal forms
(Hassard et al. 1981; Guckenheimer & Holmes 1983)
implies that any standard1 oscillatory reaction–
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Figure 3. (a) Comparison of travelling wave families for predator–prey equations (3.2a) and (3.2b) with different values of the
parameter a (labelled). The other parameter values are sZ0.15, mZ0.05 and kZ0.2. Grey-filled circles indicate the position of
the Hopf bifurcation in equations (3.3a) and (3.3b) from which the wave family emanates. This Hopf bifurcation does not exist
for the lines with no filled circles. Grey lines denote unstable waves and black lines denote stable waves. These lines were
drawn, and their stability profiles calculated, using the software package AUTO (see text for an explanation). The AUTO code is
available at www.ma.hw.ac.uk/wjas/supplements/ptwreview/index.html. The labelled crosses denote the periodic travelling
waves selected in simulations of equations (3.2a) and (3.2b) that are illustrated in (b) and in figure 7a. In (b), equations (3.2a)
and (3.2b) were solved numerically on a one-dimensional domain with uZvZ0 at xZ0 (zero Dirichlet boundary conditions,
simulating a landscape obstacle) and vu/vxZvv/vxZ0 at xZ2000 (zero Neumann boundary conditions), with randomly
chosen initial values for u and v. The zero Dirichlet condition forces the system away from spatially uniform oscillations and
generates a periodic travelling wave.

1By this, we mean that the Hopf bifurcation is of a standard
supercritical type. Periodic travelling waves in reaction–diffusion
systems close to a subcritical Hopf bifurcation are considered by
Ermentrout et al. (1997).
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diffusion system (3.1a) and (3.1b) with DuZDv can be
transformed into (3.4a) and (3.4b) close to the Hopf
bifurcation in the kinetics; p and q are functions of the
population densities. Thus, when the spatially homo-
geneous population cycles are of low amplitude, and
DuZDv, all aspects of periodic travelling wave
behaviour can be studied via (3.4a) and (3.4b). The
mathematical technique of ‘reduction to normal form’
can be used to determine formulae for u0 and u1 in
terms of ecological parameters. This is a rather
cumbersome algebraic calculation that is greatly
facilitated by computer algebra; it is described in detail
in the appendices of Sherratt (2001) and Sherratt et al.
(2003), with web addresses of computer programs that
implement the calculation using the package MAPLE

(www.maplesoft.com; Monagan et al. 2007).
For (3.4a) and (3.4b), the periodic travelling wave

family has the simple form

pZA cos q0G
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1KA2
p

xCðu0Ku1A
2Þt

h i

; ð3:5aÞ

qZA sin q0G
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1KA2
p

xCðu0Ku1A
2Þt

h i

; ð3:5bÞ

where q0 is an arbitrary constant. Here we take the
x -axis as the direction of wave propagation. The wave
amplitude A lies between 0 and 1, with
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>>>>>>>>>=

>>>>>>>>>;

ð3:6Þ

This shows clearly that asA/1K, the wavelength/N
and the periodic travelling waves approach the
spatially uniform cycles of the local dynamics. Taken
together with the expressions foru0 and u1 obtained via
reduction to normal form, these formulae can be used to
determine how wave properties vary within the family,
provided that DuZDv and that the kinetics are
sufficiently close to Hopf bifurcation.

4. GENERATION OF PERIODIC
TRAVELLING WAVES

Kopell & Howard’s (1973) paper initiated a large
volume of mathematical research over the following
decade. At the time there was no suggestion of periodic
travelling waves in ecology, and authors had in mind
applications in oscillatory chemical reactions (for
reviews of this area see Scott (1994), Epstein &
Showalter (1996) and Scott et al. (2000)). When these
remarkable reactions occur in a very clean or well-
stirred reaction vessel, the concentrations of the
reactants oscillate periodically with time, and uniformly
in space. However, in the presence of impurities, spatio-
temporal oscillations develop, consisting of target or
spiral patterns (movies illustrating this are available at
heracles.chem.wvu.edu/gallery.html).

Periodic travelling waves are the one-dimensional
analogue of these patterns, and this provided the
motivation for research on periodic travelling waves

in the 1970s and 1980s. Thus, there was a major focus
on solutions that approach a periodic travelling wave as
distance increases in either direction away from a
central ‘core’; these are the one-dimensional equivalent
of a spiral if the two periodic travelling waves move in
the same direction and of a target pattern if the
directions of motion are opposite (Ermentrout & Rinzel
1980; Hagan 1981; Kopell 1981; Kopell & Howard
1981). There was also extensive work on extending
basic results such as those of Kopell & Howard (1973) to
actual two-dimensional waves (Greenberg 1978, 1981;
Kuramoto & Koga 1981; Hagan 1982; Koga 1982). The
particular case of radially symmetric waves has been
the subject of a more recent and very detailed study by
Scheel (2003; for a general review of more recent work,
see Fiedler & Scheel 2003).

Impurities in a chemical reactionvessel have anatural
analogue in ecological applications, namely spatial noise
in parameter values. One can expect this to be present in
any ecological system and, if it is sufficiently strong, it
can generate periodic travellingwaves: results on this for
the model (3.2a) and (3.2b) are given in Kay & Sherratt
(2000). However, as in the chemical applications, the
result is a series of bands of periodic travelling waves,
each one relatively small in extent. The experimental
precision possible in the chemistry laboratory means
that this level of fine detail can easily be detected, but
there is little prospect of detection in ecological field
data. Rather, the fine-grained spatio-temporal patterns
generated by spatial noise would just be perceived as
spatially uniform population cycles.

There are, however, two other mechanisms that have
been shown to generate periodic travelling waves in
oscillatory reaction–diffusion systems: boundary effects
and invasion. In contrast to spatial noise in the
environment, both these mechanisms have the
potential to generate large-scale regions with a single
periodic travelling wave, and thus provide possible
explanations for the waves seen in ecological field data.

4.1. Periodic travelling wave generation by

boundaries with hostile environments

When an ecological habitat is surrounded by a hostile
environment, the appropriate boundary condition is of
Robin type, vu=vxZCu, say, where C is a positive
constant whose size reflects the hostility of the
surroundings (Ludwig et al. 1979; Cantrell et al.
1998). Intuitively, this boundary condition states
that, in any given time interval, a fixed proportion of
individuals located close to the boundary are lost to the
hostile surroundings. Since C is typically very large, it
is common to approximate the boundary condition by a
simpler one of Dirichlet type: uZ0.

Boundary conditions of these types may be appro-
priate at one or both ends of a habitat, or at the edge of
an obstacle in the interior, and may apply to both
interacting species in (3.1a) and (3.1b) or to just one. In
any of these cases, numerical simulations of (3.2a) and
(3.2b) and other equations of the form (3.1a) and (3.1b)
show that periodic travelling waves develop. For the
Dirichlet condition, this was first studied in an isolated
paper of Auchmuty & Nicolis (1976) on a model of an
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oscillatory chemical reaction, and more recently by
Sherratt et al. (2002, 2003) in the work on cyclic
populations. Extension to the Robin boundary con-
dition, which is more complicated mathematically, has
been studied by Sherratt (submitted). A general
classification of periodic travelling waves generated by
boundary conditions is possible based on their group
velocity far from the boundary; see Sandstede & Scheel
(2004) for details of this, and Kollár & Scheel (2007,
§1.3) for a brief summary.

Figure 3b illustrates the generation of a periodic
travelling wave byDirichlet boundary conditions for the
predator–prey model (3.2a) and (3.2b). Except for a
narrow region close to the boundaries, the entire domain
contains a single periodic travelling wave solution. We
have described the existence of a wave family for a given
set of ecological parameters. The Dirichlet boundary
condition acts to select a particular member of this
family, thereby fixing wave speed, wavelength, time
period and amplitude. Changes in initial conditions, for
example, do not alter these wave properties. In figure 3b,
the wave moves away from the boundary at xZ0, on
which the Dirichlet condition is applied; in fact this is
always the case for the Rosenzweig–MacArthur model
(3.2a) and (3.2b). However, for other models, the wave
can move towards the boundary for some parameter
values (see Sherratt 2003 for examples). Therefore, the
direction ofwave propagation relative to the boundary is
not a test of this mechanism of wave generation,
although it may be usable as a test if the underlying

cause of the population cycles has been established and
parameter values can be reliably estimated.

For the l–u system (3.4a) and (3.4b), a simple
formula can be derived for the wave amplitude A that
is selected by zero Dirichlet boundary conditions
(Sherratt 2003). This in turn yields formulae for other
wave properties, using (3.6). The reduction to normal
form calculation, described in §3, enables these formulae
to be extended to other reaction–diffusion systems
(3.1a) and (3.1b) with DuZDv close to Hopf bifurcation
in the kinetics. However, there is a complication because
a conversionmust be applied to the boundary condition;
this is discussed in Sherratt et al. (2003).

The solution shown in figure 3b is for a one-
dimensional idealization, but in reality landscape
obstacles in ecological domains are of course two
dimensional. Target patterns then develop, which
approach a one-dimensional periodic travelling wave
far from the obstacle (figure 4). An important finding is
that this wave varies according to the size of the
obstacle, with wavelength and amplitude decreasing as
obstacle size increases (Sherratt et al. 2003; Smith et al.
2008). Thus, different members of the periodic travel-
ling wave family are selected by obstacles of different
sizes. The particular case of very small obstacles has
been studied in detail by Kollár & Scheel (2007).

There is no conclusive evidence for any specific wave
generation mechanism applying in a particular ecologi-
cal system that exhibits periodic travelling waves.
However, generation by a boundary with a hostile

Figure 4. Solutions of the predator–prey model (3.2a) and (3.2b), showing the generation of periodic travelling waves by three
separate obstacles. Each obstacle generates waves, but those from the largest obstacle dominate the solution. (This is a general
finding: see Sherratt et al. (2003) and Smith et al. (2008).) We plot prey and predator density in space at a single time point. The
boundary conditions are zero predator and prey densities at the edge of the obstacle, and zero flux at the edge of the domain. The
domain is a square with side-length 336 dimensionless space units, and the solution is plotted at a dimensionless time of 1000.
The parameter values were mZ0.46, sZ0.83, kZ0.204 and aZ0.5. The scale bar uses a linear scale, with preyminZ0.03,
preymaxZ0.84, predminZ0.007 and predmaxZ0.6. The equations were solved numerically using an alternating direction-implicit
Crank–Nicolson method. A movie clip corresponding to this figure is available at www.ma.hw.ac.uk/wjas/supplements/
ptwreview/index.html.
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surrounding environment is a plausible candidate in two
cases. Kielder Forest (northern UK) contains a large
central reservoir that is likely to act as a hostile
landscape obstacle for field voles owing to increased
hunting by avian predators (mainly short-eared owls)
around the reservoir edge. Hence, this boundary would
tend to generate periodic travelling waves. Figure 5a
illustrates this, via a solution of (3.2a) and (3.2b) on a
two-dimensional square domain containing a large
central obstacle in the shape of Kielder Water, on
which aDirichlet boundary condition has been imposed.
To emphasize the key role of the obstacle in generating
the waves, figure 5b shows their gradual disappearance

when the reservoir is removed. Note that for this
figure we use themodel (3.2a) and (3.2b), for consistency
with the other figures in this paper. However, the
predation hypothesis is in fact considered an unlikely
explanation for vole cycles in Kielder (see §2; Graham&
Lambin 2002). Despite this, the simulations in figure 5
demonstrate that, if the reservoir is generating the
waves, then one would expect that cross-site synchrony
will change with distance in a direction-dependent
manner, and furthermore that the waves travel in
different directions on opposite sides of the reservoir.

As discussed in §2, periodic travelling waves have
been detected in the red grouse populations on Kerloch

(a) (b)

Figure 5. Numerical simulation of periodic travelling wave generation by a large obstacle in the shape of KielderWater. In (a), we
solved the predator–prey model (3.2a) and (3.2b) on a two-dimensional square domain intended as a crude representation of
Kielder Forest, with zero Dirichlet boundary conditions applied at the edge of the central obstacle, which is based on a scanned
image of Kielder Water. Target pattern waves, which are a simple two-dimensional analogue of periodic travelling waves,
propagate outwards from the reservoir. In (b) we first solve as in (a) to allow this target pattern to develop, and we then remove
the reservoir by replacing it with empty habitat. It is rapidly colonized, and the target pattern then gradually disappears, to be
replaced by spatially uniform oscillations. This emphasizes the role of the reservoir, acting as a landscape obstacle, in generating
the waves. The kinetic parameters are mZ0.46, sZ0.83 and kZ0.204; these are based on estimates for a weasel–vole interaction
(see Sherratt 2001 for details), although we emphasize that the predation hypothesis is in fact considered an unlikely explanation
for vole cycles in Kielder (see §2; Graham & Lambin 2002; Brandt & Lambin 2007). The diffusion ratio aZ1, and the
dimensionless side length of the domain is 107. In (a), the solutions are shown at six equally spaced times (with time increasing
from left to right first; thus, for example, the panel in row 2, column 1, is third in the sequence), with a dimensionless time
separation of 3.3; under the parameter estimates of Sherratt (2001) for the weasel–vole interaction, this corresponds to a
dimensional separation of 1 year. The initial population densities were chosen randomly, and a dimensionless time of 300 was
allowed for transients to disappear before the first solution was plotted. In (b), the solution times are separated more widely and
unequally: they are chosen to best illustrate the disappearance of the target pattern. The colours indicate prey density (blue, low;
red, high). The equations were solved numerically using an alternating direction-implicit Crank–Nicolson method. Results of this
type could be used to compare model predictions with statistical analysis of field data, such as those presented in figure 1.
However, for this to be of value, it would be necessary to have a fully parametrized model for vole cycles based on current
ecological data, rather than the predation hypothesis, which is used here for consistency with other figures.
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moor (NE Scotland). The grouse habitat is bordered on
one side by farmland, which is known to be hostile to
grouse; specifically, DNA testing shows that grouse
almost never succeed in crossing the farmland
(Piertney et al. 1998). Therefore, the boundary between
moorland and farmland is a natural candidate for
periodic travelling wave generation. Note that in this
case the periodic travelling waves move towards the
boundary; as discussed above, this does not exclude
boundary-driven wave generation.

4.2. Periodic travelling wave generation

by invasion

In their simplest forms, ecological invasions result in
one uniform state being replaced by another. For
example, a prey population may be invaded by
predators, leading to a lower but constant and spatially
uniform prey density that coexists with a constant and
spatially uniform predator population. However, the
temporal complexity of cyclic populations translates
into spatio-temporal complexity following an invasion.
Again, predator–prey interactions are an ideal
example. A large body of theoretical work predicts
that, when the parameters of the interaction are such
that it generates population cycles, periodic travelling
waves develop behind the invasion (Sherratt et al.
1995, 1997; Petrovskii et al. 1998; Petrovskii &
Malchow 2000; Sherratt 2001; Garvie 2007). Figure 6
shows a typical example of this mechanism of wave
generation, in which a small population of predators
has been introduced (near xZ0 at time tZ0) into an
otherwise uniform prey population. An invading front
of predators and a corresponding receding front of prey
are clearly visible. Behind this, the populations settle
towards a coexistence state, even though this state is
unstable; Petrovskii & Malchow (2000) have termed
this phenomenon ‘dynamical stabilization’. Further
from the invading front, the solutions move away from

the coexistence state. One might expect spatially
uniform oscillations to develop since these are a stable
solution,2 but the oscillatory decay of the solutions
behind the invasion front forces a spatial component in
the behaviour, which consists instead of a band of
periodic travelling waves; in figure 6 these move in the
opposite direction to the invasion. As for boundary-
driven wave generation, the direction of propagation is
model dependent and parameter dependent: in some
cases, the periodic travelling waves move in the same
direction as the invasive front (see Smith & Sherratt
2007 for examples).

Other invasion processes can also generate periodic
travelling waves in cyclic populations. In particular, in
the Rosenzweig–MacArthur model (3.2a) and (3.2b), a
local disturbance of the coexistence steady state again
induces an invasion with periodic travelling waves in its
wake (Sherratt 1996a; Petrovskii & Malchow 1999,
2001). In this case, the system is in the coexistence
rather than prey-only state ahead of the invading front.
In applications, this would be relevant when a change in
environmental conditions alters the local dynamics
from non-cyclic to cyclic, so that the coexistence state
changes stability.

In general, numerical simulations of invasion-driven
waves are typically much more time consuming than for
boundary-driven waves, because large domains and
solution times are required. Efficient computational
methods are discussed in detail by Garvie (2007),
and corresponding computer codes are available at
www.uoguelph.ca/wmgarvie.

0 0200 200400 400600 600800

(a) (b)

800

space,

t = 1394

t = 1254

space,

Figure 6. Illustration of periodic travelling waves generated by the invasion of (a) a prey population by (b) predators in one space
dimension. We plot population densities as a function of distance from the centre of the obstacle, with the vertical separation of
the solutions proportional to the time intervals. There is a receding wavefront of prey, and a corresponding advancing wavefront
of predators, behind which there is a periodic travelling wave. We solved equations (3.2a) and (3.2b) numerically for parameter
values mZ0.083, sZ0.25, kZ0.33 and aZ1, using the method of lines and Gear’s method. The initial conditions corresponded to
a prey-only state everywhere, except at xZ0, where we introduced a small non-zero predator density.

2In equations of the form (3.1a) and (3.1b), the spatially homogeneous
oscillations corresponding to the limit cycle solution of the kinetics are
stable as a PDE solution when DuZDv , but can be unstable when Du

and Dv are sufficiently different (Kopell & Howard 1973; Ermentrout
1981). Numerical calculation of this stability is relatively straightfor-
ward, via a calculation of Floquet multipliers, and this confirms the
stability for the parameter values used in figure 6.
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When the kinetics are close to Hopf bifurcation and
the diffusion coefficients Du and Dv are equal, the
reduction to normal form calculation (see §3) can again
be used to obtain predictions of periodic travelling wave
properties as a function of parameters. In practice this
is straightforward, involving substitution of the normal
form coefficients into the formula for wave amplitude
derived by Sherratt (1994), namely

AinvasionZ
2

u2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Cu2
1

q

K1

� �� �1=2

:

The mathematical basis of this formula is rather
complicated. Immediately behind the invasion front,
the solution decays towards the (unstable) predator–
prey coexistence state via exponentially decaying
oscillations whose rate can easily be calculated. The
behaviour close to the coexistence state is much more
complicated, involving a modulated travelling tran-
sition wave in phase gradient, with repeated singu-
larities. This in turn implies the rate at which the
solution grows away from the coexistence state.
Finally, this rate feeds into a calculation of periodic
travelling wave generation in systems of l–u form
(3.4a) and (3.4b), to give the invasion amplitude. A full
account of this theory is given in Sherratt (1998).

With the current level of data, attribution of
invasion as a mechanism of wave generation in any
specific ecological system is highly speculative. The
most plausible case is the waves of the autumnal moth
Epirrita autumnata in Fennoscandia (Tanhuanpää
et al. 2002; Tenow et al. 2007) in which there are two
invasion processes. Firstly, very severe winters kill the
eggs, requiring de novo invasion of the mountain birch
forests by the moths, and secondly, major outbreaks
can cause total forest defoliation and even tree death,
requiring a re-establishment of vegetation prior to
invasion. One hypothesis for the population cycles in E.
autumnata is that they are driven by larval parasitism
(Tanhuanpää et al. 2002). It is unclear whether moth
invasions would be followed by a later invasion of
parasitoids or whether the two would occur simul-
taneously; comparative modelling of these two types of
invasion scenario is reviewed by Fagan et al. (2002).
Therefore, specific theoretical models, allied with new
field data, will be required to clarify the role of invasion
in establishing the periodic travelling waves in
E. autumnata. In addition, we are aware of two
examples of field data demonstrating spatio-temporal
oscillations behind ecological invasions: the invasion of
Daphnia by its crustacean predator Bythotrephes in
Lake Michigan (Lehman & Caceres 1993), and the
invasion of thistle populations by tephritid flies
Urophora carudi (Jeltsch et al. 1992). However, neither
dataset has been analysed for periodic travelling wave
behaviour in the manner described in §2.

5. MATHEMATICS OF PERIODIC TRAVELLING
WAVES II: WAVE STABILITY

In §§3 and 4, we have deliberately avoided discussion of
the very important issue of periodic travelling wave
stability. We have described the existence of a family of
periodic travelling wave solutions of (3.1a) and (3.1b)

for any given set of ecological parameters. Some
members of this family are in fact unstable as solutions
of the model equations (3.1a) and (3.1b) (figure 3).
Unstable waves cannot be a long-term solution, and
when the theories of boundary- or invasion-based wave
generation predict a periodic travelling wave that is
unstable, numerical simulations indicate irregular
spatio-temporal oscillations as the long-term behaviour
(figure 7). Careful numerical study suggests that these
oscillations are a genuine example of spatio-temporal
chaos (Sherratt 1995; Petrovskii & Malchow 1999,
2001). In figure 7a,b, bands of periodic travelling waves
are clearly visible close to the boundary/invasion front
that is generating the waves; however, instabilities
gradually grow and overwhelm these waves, leading to
spatio-temporal irregularities further behind. In con-
trast, figure 7c shows a case in which the instability of
the predicted waves is such that they are never seen, so
that the invasion appears to lead directly to spatio-
temporal irregularity. In figure 7d the invasive front has
a different form, with low-amplitude periodic travelling
waves immediately behind the invasion and moving at
the invasion speed. Mathematically, this corresponds to
invasion occurring via a ‘point-to-periodic’ transition
wave; the existence of such transitions has been studied
by Dunbar (1986) and Fraile & Sabina (1989). In
figure 7d the low-amplitude waves are unstable, and
further behind the invasion they break down into
irregular spatio-temporal oscillations.

One important caveat to the irregular oscillations in
figure 7 is that, when the population densities drop to
very low levels, they recover via in situ growth rather
than colonization. In some applications, this may be
unrealistic, with low population densities resulting in
local extinctions. This issue has been addressed in detail
by Gurney et al. (1998) for equations (3.2a) and (3.2b).
They imposed a threshold density for predators below
which their mortality is increased to cause local
extinction. The irregular oscillations are then lost,
and instead the prey-only steady state is re-established
behind the invasion front.

In §3, we described the use of numerical continuation
software such as AUTO to calculate periodic travelling
wave families. The same software can be used to
determine periodic travelling wave stability. However,
this is a much more difficult numerical problem that
was solved only recently (Sandstede & Scheel 2000;
Bordiougov & Engel 2006; Rademacher et al. 2007).
Rademacher et al. (2007) give a full but rather
mathematically oriented account of the method; it
involves applying AUTO to a boundary-value problem
for the eigenfunctions, and the theory underlying
numerical continuation of such problems is reviewed by
Champneys & Sandstede (2007). A less technical
summary, including computer programs written in a
tutorial style, is available at www.ma.hw.ac.uk/wjas/
supplements/ptwreview/index.html. These are for the
system (3.2a) and (3.2b), but can easily be adapted to
different equations.

Smith & Sherratt (2007) have applied this new
numerical method of calculating periodic travelling
wave stability to the Rosenzweig–MacArthur predator–
prey model (3.2a) and (3.2b), and typical results are
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illustrated in figure 8. Results of this type divide the wave
family into stable and unstable parts, and are essential for
accurate interpretation of numerical simulations of
periodic travelling wave generation. For example, the
circles in figure 8 indicate the wavelengths of the periodic
travelling waves selected by zero Dirichlet boundary
conditions, with filled/open circles corresponding,
respectively, to stable waves and to waves that break
down into irregular oscillations away from the boundary.
Without thebackgroundshading to indicate stability, the
pattern offilled and open circles appears rather arbitrary.

A general review of the mathematical theory of
wave stability is given by Sandstede (2002), and a
detailed classification of instabilities is presented in
Rademacher & Scheel (2007a). Analytical results on
conditions for wave stability are relatively few. In their
original paper, Kopell & Howard (1973) showed that
waves of sufficiently low amplitude are unstable
whenever the travelling wave equations (3.3a) and

(3.3b) have a Hopf bifurcation. Over the following
decade, a number of authors attempted to extend these
results, with some success. In particular, Maginu (1981)
showed that, for the special case of a finite domain with
periodic boundary conditions, waves of sufficiently high
amplitude are stable whenever the kinetics of (3.1a)
and (3.1b) have a stable limit cycle. Recently, a number
of papers have addressed the stability of high-ampli-
tude waves on unbounded domains when the kinetic
parameters are close to a bifurcation point (homoclinic
or saddle-node) for the spatially uniform oscillations
(Coullet et al. 2000; Risler 2001; Rademacher & Scheel
2007b). However, the crucial issue of the division of the
wave family into stable and unstable parts remains
completely open, with the single exception of l–u
systems such as (3.4a) and (3.4b). In that case, an exact
criterion for stability was derived by Kopell & Howard
(1973); for (3.4a) and (3.4b), this implies that waves are
stable if and only if their amplitude exceeds the critical
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Figure 7. Examples of the generation of unstable periodic travelling waves for the predator–prey model (3.2a) and (3.2b).
(a) Wave generation by a zero Dirichlet boundary condition at xZ0. (b –d ) Wave generation by the invasion of predators into
a uniform prey-only population. In (a,b,d ), a band of periodic travelling waves is visible transiently, before breaking down into
spatio-temporal irregularities. In (c), the instability of the predicted waves is such that they are never seen, so that the
invasion appears to lead directly to irregular oscillations. In (b,c) the invasion occurs via a simple transition front, with the
(unstable) coexistence steady state clearly visible immediately behind the front. In (d ) the invasion occurs via a ‘point-
to-periodic’ transition, with a band of (unstable) periodic travelling waves immediately behind the invasion, moving at the
invasion speed. The parameter values are: (a) sZ0.15, mZ0.05, kZ0.2, aZ100; (b) sZ0.833, mZ0.694, kZ0.077, aZ1;
(c) sZ0.15, mZ0.05, kZ0.2, aZ0.004; (d ) sZ0.15, mZ0.05, kZ0.2, aZ0.63. In all cases we plot prey density as a function of
space, with vertical separation corresponding to the time interval. The equations were solved numerically using a semi-implicit
Crank–Nicolson method.
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value ½ð2C2u2
1Þ=ð3C2u2

1Þ�1=2. Moreover, for some
cases of periodic travelling waves in l–u systems,
Kapitula (1994) has derived bounds on the decay rate
of perturbations.

It is important to emphasize that boundary- or
invasion-driven generation of an unstable periodic
travelling wave is only one of many ways in which
irregular spatio-temporal oscillations can arise in
ecological systems. A full discussion of this is outside
the scope of this review, and we mention just two
examples of other mechanisms that have particular
similarities to the results we have described. First,
Pascual (1993) and Pascual & Caswell (1997) showed
that, for the Rosenzweig–MacArthur model (3.2a) and
(3.2b) with aZ1, a spatial gradient in prey birth rate
can result in a series of bifurcations in which chaos
develops via quasi-periodicity as the domain size is
increased. There is no suggestion of periodic travelling
wave involvement in this behaviour. Secondly,
Morozov et al. (2004) studied a predator–prey model
without saturation in prey consumption by predators,
but with an Allee effect in the prey-only dynamics. The
Allee effect (Allee 1938) is that many natural popu-
lations shrink at very low densities because, on average,

individuals cannot reproduce themselves (see Taylor &
Hastings (2005) and Berec et al. (2007) for recent
reviews). Morozov et al. (2004) showed that, with a
sufficiently strong Allee effect, invasions can generate
solutions that are regular in space but temporally
chaotic. Again there is no suggestion of periodic
travelling wave involvement in this process. Sub-
sequent work by Petrovskii and co-workers has
revealed the highly novel phenomenon of ‘patchy
invasion’ in other predator–prey models that include
the Allee effect (Petrovskii et al. 2002, 2005; Morozov
et al. 2006). Here invasion occurs via the irregular
motion and interaction of separate population patches,
without a continuous invasion front.

Finally, we should mention that, when there are
three or more interacting populations, the local
dynamics themselves can be chaotic. (This is not
possible for two populations when time is continuous.)
Clearly, spatio-temporal chaos is then a natural
possibility for long-term solutions. However in some
cases, the spatial interactions act to stabilize the
solution. For instance, in their work on a model for
gypsy moth dynamics, Wilder et al. (1995) showed that
the combination of spatial diffusion and chaotic local
dynamics can cause periodic travelling waves to
develop. This is a very different mechanism of periodic
travelling wave generation from those we have dis-
cussed, and its mathematical basis is not understood to
the best of our knowledge.

6. DISCUSSION

The combination of recent mathematical advances in
the theory of periodic travelling waves and the
increasingly widespread identification of such waves
in ecological field data makes this an important and
exciting area of current research. In this review, we
have retained a relatively narrow focus on reaction–
diffusion models for systems with cyclic population
dynamics. As such, we have excluded three classes of
theoretical model exhibiting periodic travelling waves:
integrodifferential equations; excitable systems; and
discrete-time models. Comprehensive reviews of
these are outside our scope, and we give only a brief
description.

Integrodifferential equations have been in use as
ecological models for more than 30 years (May 1976),
but their recent study originates from the papers of
Britton (1989, 1990). In this work, an integral is used in
the term modelling intraspecific competition. Britton
argues that, since individuals are moving, this term will
in general depend on population levels across a local
neighbourhood. Moreover, a temporal average is also
appropriate, due to both the time taken for individuals
to move and the time taken for resources to recover
after consumption. Therefore Britton’s (1989, 1990)
model includes an integral over space and time.
Temporal delays have a long history in ecological
models, and can cause cycles in single, non-interacting
populations. The extension to integrodifferential
equations leads to periodic travelling wave solutions
(Britton 1990; Gourley & Britton 1993; Duehring &
Huang 2007). In fact, periodic travelling waves also
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Figure 8. The effect of a on the range of wavelengths in the
travelling wave family for equations (3.2a) and (3.2b), and on
the wavelength picked out by zero Dirichlet boundary
conditions in numerical simulations. The values of the kinetic
parameters are sZ0.15, mZ0.05 and kZ0.2. Light shaded
areas denote the region of unstable travelling waves and dark
shaded areas denote the region of stable travelling waves; in
unshaded areas there are no travelling waves. The solid line
corresponds to the position of the Hopf bifurcation of the wave
family. Circles correspond to the values predicted by
numerical simulations. Filled circles denote waves that
showed no evidence of instability. Open circles denote
waves that existed transiently before developing into irregular
spatio-temporal behaviour. Spatio-temporal dynamics for two
cases, aZ1 and 100, are shown in figures 3b and 7a,
respectively. Values reported for apparently unstable periodic
travelling waves were measured from the region of waves that
form directly behind the Dirichlet boundary, as is visible in
figure 7a. Note the log axis for a.
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occur in integrodifferential equations with non-local
terms but no time delay (Billingham 2004). Of
particular relevance to the present paper is work by
Ashwin et al. (2002), who demonstrate the development
of periodic travelling waves behind an invading
wavefront in an integrodifferential equation model for
a single population.

An excitable system is one in which sufficiently large
(above a threshold) perturbations of a steady state
induce a long transient away from the steady state,
prior to return. In a spatial setting, local dispersal
during the transient can act as an above-threshold
perturbation of a neighbouring site, leading to a
propagating ‘excitation’ wave. Such waves have been
very well studied in the context of physiology (see
Keener & Sneyd 1998 for review). The ecological
interactions most studied via excitable system models
are zooplankton–phytoplankton dynamics (Truscott &
Brindley 1994). Spatial versions of these models often
involve both diffusion and convection terms, with
the latter representing pursuit/evasion behaviour
(Tsyganov et al. 2004). A wide range of complex wave
phenomena have been reported for such models,
including spirals (Biktashev et al. 2004; Brindley et al.
2005). These are two-dimensional generalizations of
periodic travelling waves, strongly suggesting the
possibility of periodic travelling waves in ecologically
relevant contexts; however, to the best of our knowl-
edge these have yet to be explored.

Discrete-time models have been very widely used
to study spatial dynamics in ecological interactions.
Models may be continuous or discrete in space.
The former typically represent dispersal via contact
distributions, giving integrodifference equations
(Kot & Schaffer 1986; Kot et al. 1996). In discrete-
time/discrete-space models, population densities can
be either taken as continuous (coupled map lattices) or
restricted to a discrete set of values (cellular automata).
All these models have a rich variety of spatio-temporal
behaviours, including periodic travelling waves.
Examples with particular similarities to the reaction–
diffusion waves we have described include work of
Kot (1992) on periodic travelling waves in an integro-
difference predator–prey model, an application by
Sherratt et al. (2000) of coupled map lattice models to
periodic travelling waves of field voles in Kielder Forest,
and mathematically oriented work on periodic travel-
ling waves in cellular automata (Sherratt 1996b;
Courbage 1997; Courbage & Yasmineh 2001).

We end this review by listing what we regard as the
major research challenges for fieldwork on periodic
travelling waves in cyclic populations, and their study
via oscillatory reaction–diffusion equations. We pro-
pose five challenges for each community, beginning
with mathematics.

(i) What are the properties of periodic travelling
waves far from Hopf bifurcation in the kinetics?
For kinetics close to Hopf bifurcation, the basic
existence and stability properties of periodic
travelling waves were established in the 1970s.
However, understanding behaviour far from
bifurcation remains a major challenge for

mathematicians. Numerical determination of
travelling wave families is relatively straight-
forward (see §3), and wave stability can now
also be computed, using new numerical
methods (see §5). There is an urgent need for
the application of these methods to a wide
range of oscillatory reaction–diffusion systems.
We hope that the detailed presentation of one
implementation of this (available at www.ma.
hw.ac.uk/wjas/supplements/ptwreview/index.
html) will help to facilitate such work. In
addition, new analytical results on waves far
from Hopf bifurcation would be a major
advance. There are two special cases in which
there has been recent progress. Firstly, when
the ratio of diffusion coefficients is either zero
or infinity, periodic travelling waves can some-
times be constructed via singular perturbation
theory, with wave existence then extended
to sufficiently small or large diffusion ratios
using Conley index theory (Gardner & Smoller
1983; Gameiro et al. 2007). Secondly, when
the kinetic parameters are close to a bifur-
cation point (homoclinic or saddle-node) for
the spatially uniform oscillations, the stability
of high-amplitude waves can be studied
analytically (Coullet et al. 2000; Risler 2001;
Rademacher & Scheel 2007b). However, for
more general cases, appropriate mathematical
machinery appears to be lacking at the
present time.

(ii) Can one prove the existence of solutions
corresponding to periodic travelling wave
generation by obstacles and invasion? For the
reaction–diffusion system (3.4a) and (3.4b),
with kinetics in Hopf normal form and equal
diffusion coefficients, periodic travelling wave
generation by a zero Dirichlet boundary
condition has a simple, rigorous mathematical
basis: an exact solution of the PDEs, which
approaches a periodic travelling wave as
distance from the boundary tends to infinity.
There is strong numerical evidence that there
is a countably infinite family of other solutions
satisfying the Dirichlet condition and tending
to a periodic travelling wave (with a different
amplitude in each case), but that all of these
other solutions are unstable as PDE solutions
(see Sherratt 2003 for details). Proof of this
would provide a complete picture of this wave
generation scenario. For other equations, even
existence of the solution corresponding to wave
generation by an obstacle boundary remains
unproven: the case of (3.4a) and (3.4b) provides
a natural springboard for a proof. Wave gener-
ationby invasion ismore complexmathematically
(see §4). Current understanding is built on an
intuitive division of the solution into different
regions, with the regions and their interfaces
studied separately (Sherratt 1998; Petrovskii &
Malchow 2000). A more global investigation of
the solution would be a major advance. One
particularly important question to be answered
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is: for what range of invasion speeds is there a
solution corresponding to periodic travelling
wave generation?

(iii) What are the effects of temporal forcing on
periodic travelling waves? The parameters of
ecological systems vary in time, which is not
reflected by simple models of the form (3.1a) and
(3.1b). The most ubiquitous cause of temporal
forcing is seasonality, which is particularly
important in the more northerly latitudes in
which population cycles typically occur. Math-
ematically, it is straightforward to incorporate
seasonal forcing into (3.1a) and (3.1b), by
making parameter values vary explicitly with
time. However, the implications of this for
periodic travelling wave solutions have received
almost no attention. The only exception that we
are aware of is a preliminary study by Webb &
Sherratt (2004) on small temporal forcing of the
l–u system (3.4a) and (3.4b). They show that
the periodic travelling wave amplitude oscil-
lates, with the amplitude of these oscillations
increasing with the period of the forcing. More
generally, it seems probable that the relative
values of the forcing period (1 year) and the
period of the local population dynamics will be
critical, with the possibility of resonances.
Recent field data for Kielder Forest suggest
that changes in seasonal forcing have profound
effects on population cycles and periodic
travelling waves (Bierman et al. 2006), and
thus there is a pressing need to develop a
mathematical theory of periodic travelling
waves in seasonally forced systems. This theory
would also enable exploration of the effects of
less frequent but repeating external effects, such
as the North Atlantic Oscillation (Stenseth et al.
2004) or 10-year sunspot cycles (Selås 2006a).

A different type of external forcing is
occasional, pan-habitat synchronizing events,
such as unusually severe winter. This Moran
effect (Koenig 2002; Royama 2005) would tend
to reset the phase of the population cycles, so
that periodic travelling wave patterns would
have to be re-established. This demands a
detailed understanding of the transient
dynamics during periodic travelling wave gener-
ation, which is currently lacking.

(iv) What is the effect of spatial heterogeneity on
periodic travelling waves? Simple models of the
form (3.1a) and (3.1b) also neglect the spatial
heterogeneities that are a feature of all ecological
habitats. For single (scalar) reaction–diffusion
equations, there is now an established body of
literature on the propagation of wavefronts in
heterogeneous environments (reviewed compre-
hensively by Xin (2000)). Extension of these ideas
to periodic travelling waves in reaction–diffusion
systems would be a major advance, with signi-
ficant ecological implications. Some old literature
on models of oscillatory chemical reactions is
relevant in this context (e.g. Hagan 1981; Kopell
1981), but there has been almost no recent work

(an exception is Kay & Sherratt 2000). Strong
spatial noise will of course dominate periodic
travelling waves, and can in fact act as a
generator of small localized bands of periodic
travelling waves (see §4). However, weaker noise
can be expected to alter periodic travelling wave
behaviour while retaining the basic spatio-
temporal pattern, so that periodic travelling
waves would still be detectable in the field. A
particularly important specific question is: how
does weak spatial noise affect periodic travelling
wave generation by obstacle boundaries and
invasion?

(v) Are there other ecologically relevant mechanisms
of periodic travelling wave generation? We have
described periodic travelling wave generation by
obstacle boundaries and invasion. Strong spatial
noise can also generate periodic travelling waves
in reaction–diffusion systems, but this is
probably less relevant to ecological applications
(see §4). As field studies increasingly reveal
periodic travelling waves, identification of other
mechanisms of wave generation is urgently
required. One approach to this is via simulation
results from discrete-time models. For example,
in a coupled map lattice model for larch
budmoth dynamics, Johnson et al. (2004, 2006)
demonstrated periodic travelling waves originat-
ing in regions with a high density of habitat
patches aggregated around a single focus; the
waves travel towards the surrounding and more
isolated habitat patches. The natural analogue
of this for reaction–diffusion models would be
periodic travelling wave generation by spatial
gradients in parameter values; to the best of our
knowledge, this has not been investigated.

Our five proposed empirical research challenges are
as follows.

(i) Do periodic travelling waves occur through the
mechanisms predicted by reaction–diffusion
models? This review has highlighted a number
of predictions from mathematical studies that
require testing against empirical data. Some of
the necessary data already exist. One example is
the target pattern waves generated in
simulations of models with landscape obstacles.
This prediction implies that one should observe
waves moving in different directions at different
locations in space relative to the obstacle. For
example, if the large reservoir in the centre of
Kielder Forest is generating the periodic
travelling waves in field vole abundance (see
table 1; figure 5), then reaction–diffusion models
predict that waves should travel in opposite
directions on either side of the longest axis of the
reservoir. This prediction could be investigated
by re-analysing the data already gathered. For
example, if travelling waves move in the same
direction on both sides of the reservoir, then
this would imply a different mechanism of
wave generation.
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(ii) Do periodic travelling waves occur in other
populations involved in the cycles? Another
consistent prediction from reaction–diffusion
models is that if periodic travelling waves are
predicted in oscillatory biological systems, then
they should occur in all the component popu-
lations involved in generating the cycles. In
principle, periodic travelling waves may occur in
taxa that simply respond to the abundance of a
cyclic population, rather than driving it;
however, few ecological interactions are genu-
inely one directional. Therefore, the presence of
travelling waves in another population com-
ponent would provide evidence that it plays
some role in generating the population cycles.
Looking for such coincident travelling waves
provides a means of identifying the key players
in the population cycles and, to our knowledge,
this avenue has never been explored. For
example, plant–herbivore interactions have
been proposed as a hypothesis for many of the
population cycles detailed in table 1. If this is
indeed the case then, for the systems exhibiting
periodic travelling waves, we would expect
travelling waves in the relevant properties of
the vegetation (such as anti-herbivore defences).
Testing such a hypothesis would be compara-
tively straightforward, since it is easier to collect
the relevant data from plant communities than
from animals.

(iii) How general are periodic travelling waves in
cyclic populations? About half of the popu-
lations listed in table 1 show some evidence of
periodic travelling waves. It would be informa-
tive to understand how common periodic travel-
ling waves are in cyclic populations generally, in
contrast to behaviours such as homogeneous
oscillations, spatio-temporal irregularities or
crystal-lattice patterns. Such information
would provide valuable clues to the key factors
that underlie differences in the spatio-temporal
dynamics of different systems. For example, in
Fennoscandian rodent populations, there are
latitudinal gradients in the population cycles
(Hanski et al. 1991); are there also gradients
in characteristics of the spatio-temporal
dynamics? In many systems, more information
on the occurrence of periodic travelling waves
would also be given by data at a higher spatial
and temporal resolution than is currently
available. The larch budmoth populations in
the European Alps have been studied at a
particularly high resolution, and statistical
analysis has consequently been able to show
changes in the speed and direction of the waves
as they propagate (Bjørnstad et al. 2002;
Johnson et al. 2004, 2006).

(iv) Is dispersal important in maintaining cycles in
some populations? The paradigm adopted in
most of the studies described in this review is
that the populations exhibit cycles even in the
absence of dispersal. However, mathematical
studies of reaction–diffusion equations show

that periodic travelling wave-like phenomena
(and hence population cycles) can also occur in
non-self-oscillatory models, such as excitable
systems (see above). Do such mechanisms of
periodic travelling wave generation occur in any
populations that are currently labelled as
‘cyclic’? There is a clear case for experimental
studies focused on whether dispersal is ever
necessary for population cycles to occur. One
example of such experimental manipulation is
work on the ‘fence effect’ observed in some cyclic
rodent populations (reviewed in Krebs 1996).
Some studies have found that preventing rodent
dispersal into and out of a cyclic population not
only prevents the population cycles but also
causes the population to increase to uncharac-
teristically high densities and then crash (the
rodents over-exploit their food supply; see
Krebs (1996) for review). This may be because
density-dependent emigration has a regulating
effect on the local population dynamics
(Lidicker (1962), but see Ostfeld (1994) for
counter-arguments), a feature not commonly
incorporated into models of rodent cycles. While
the generality of this phenomenon remains
unclear, it does highlight that dispersal pro-
cesses can play a crucial role in the local
dynamics of cyclic populations.

(v) What are the implications of dispersal for
temporal behaviour in cyclic populations? One
consistent message from the study of reaction–
diffusion models of cyclic populations, and
indeed of spatial models more generally, is that
the incorporation of spatial dynamics can
fundamentally change the temporal dynamics
predicted by a non-spatial model. A consider-
able amount of effort has been put into
accurately parametrizing non-spatial models of
cyclic populations. However, even if these
parameter estimates were perfect, the predic-
tions of non-spatial models may be inaccurate if
the effects of dispersal have not been incorpor-
ated. For example, in figure 3b the non-spatial
model predicts a cycle period of approximately
85 time units, whereas the periodic travelling
waves generated by a one-dimensional landscape
obstacle in the same model have a period of
approximately 48 time units. There is a compel-
ling case for future empirical studies to estimate
the dispersal properties of the interacting taxa
thought to be important in population cycles;
this would allow them to be incorporated into
spatially extended versions of models, enabling a
detailed assessment of their importance.

Our hope and expectation is that research targeted
towards these 10 challenges will lead to a clear
understanding of the mechanisms that cause periodic
travelling waves in a range of specific ecological
systems. In our view, such research will be most
effective when it involves either mathematics that is
rooted firmly in ecological debate, or fieldwork whose
design is informed by mathematical theory. We expect
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the resulting insights into periodic travelling wave
dynamics and their ecological contexts to significantly
improve the understanding of both the mathematics of
oscillatory reaction–diffusion systems and the ecology
of cyclic populations.

This review constitutes the Adams Prize Essay, in connection
with the award of the prize to J.A.S. in 2006. M.J.S. was
supported by the NERC Environmental Mathematics and
Statistics Programme. We thank Xavier Lambin (University
of Aberdeen) for many helpful discussions. We are also
grateful to many others who have helped our understanding of
periodic travelling waves in recent years, in particular Gabriel
Lord (Heriot-Watt University), Simon Malham (Heriot-Watt
University), Jens Rademacher (CWI, Amsterdam) and Björn
Sandstede (University of Surrey).
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