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Abstract—Periodicity mining is used for predicting trends in time series data. Discovering the rate at which the time series is periodic

has always been an obstacle for fully automated periodicity mining. Existing periodicity mining algorithms assume that the periodicity

rate (or simply the period) is user-specified. This assumption is a considerable limitation, especially in time series data where the

period is not known a priori. In this paper, we address the problem of detecting the periodicity rate of a time series database. Two types

of periodicities are defined, and a scalable, computationally efficient algorithm is proposed for each type. The algorithms perform in

Oðn lognÞ time for a time series of length n. Moreover, the proposed algorithms are extended in order to discover the periodic patterns

of unknown periods at the same time without affecting the time complexity. Experimental results show that the proposed algorithms are

highly accurate with respect to the discovered periodicity rates and periodic patterns. Real-data experiments demonstrate the

practicality of the discovered periodic patterns.

Index Terms—Periodic patterns mining, temporal data mining, time series forecasting, time series analysis.
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1 INTRODUCTION

TIME series data captures the evolution of a data value
over time. Life includes several examples of time series

data. Examples are meteorological data containing several
measurements, e.g., temperature and humidity, stock prices
depicted in financial market, power consumption data
reported in energy companies, and event logs monitored in
computer networks. Periodicity mining is a tool that helps
in predicting the behavior of time series data [23]. For
example, periodicity mining allows an energy company to
analyze power consumption patterns and predict periods of
high and low usage so that proper planning may take place.

Research in time series data mining has concentrated on

discovering different types of patterns: sequential patterns

[3], [21], [12], [6], temporal patterns [8], periodic association

rules [20], partial periodic patterns [14], [13], [25], [4], and

surprising patterns [17] to name a few. These periodicity

mining techniques require the user to specify a period that

determines the rate at which the time series is periodic.

They assume that users either know the value of the period

beforehand or are willing to try various period values until

satisfactory periodic patterns emerge. Since the mining

process must be executed repeatedly to obtain good results,

this trial-and-error scheme is clearly not efficient. Even in

the case of time series data with a priori known periods,

there may be obscure periods and, consequently, interesting

periodic patterns that will not be discovered. The solution

to these problems is to devise techniques for discovering

potential periods in time series data. Research in this

direction has focused either on devising general techniques
for discovering potential periods [15], [7] or on devising
special techniques for specific periodicity mining problems
[24], [19]. Both approaches require multiple phases over the
time series in order to output the periodic patterns
themselves.

In this paper, we address the problem of discovering
potential periods in time series databases, hereafter referred
to as periodicity detection. We define two types of periodi-
cities: segment periodicity and symbol periodicity. Whereas
segment periodicity concerns the periodicity of the entire
time series, symbol periodicity concerns the periodicities of
the various symbols or values of the time series. For each
periodicity type, a convolution-based algorithm is proposed
and is analyzed, both theoretically and empirically.
Furthermore, we extend the symbol periodicity detection
algorithm so that it can discover the periodic patterns of
unknown periods, termed obscure periodic patterns. Hence,
we detect periodicity rates as well as frequent periodic
patterns simultaneously.

The rest of the paper is structured as follows: In Section 2,
we outline the related work with the main emphasis to
distinguish themain contributions of this paper. In Section 3,
we introduce the notation used throughout the paper, and
we formally define the periodicity detection problem as well
as the notion of the segment and symbol periodicity types.
Sections 4 and 5 describe the two proposed algorithms for
periodicity detection in time series databases. Moreover,
Section 4 describes the proposed algorithm for mining
obscure periodic patterns. In Section 6, the performance of
the proposed algorithms is studied, extensively validating
the algorithms’ accuracy, examining their resilience to noise,
and justifying their practicality. Finally, we summarize our
findings in Section 7.

2 BACKGROUND

Discovering the periodicity rate of time series data has
drawn the attention of the data mining research community
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very recently. Indyk et al. [15] have addressed this problem
under the name periodic trends and have developed an
Oðn log2 nÞ time algorithm, where n is the length of the time
series. Their notion of a periodic trend is the relaxed period
of the entire time series, which is similar to our notion of
segment periodicity (Section 3.3). However, our proposed
algorithm for segment periodicity detection (Section 5)
performs in Oðn lognÞ time. We conduct a thorough
performance study to compare our proposed segment
periodicity detection algorithm to the periodic trends
algorithm of [15]. In addition to the saving in time
performance, our proposed segment periodicity detection
algorithm is more resilient to noise and produces more
accurate periods. The proposed segment periodicity detec-
tion algorithm favors the shorter periods rather than the
longer ones that are favored by the periodic trends
algorithm of [15]. The shorter periods are more accurate
than the longer ones since they are more informative. For
example, if the daily power consumption of a specific
customer has a weekly pattern, it is more informative to
report a period, say, of length 7, than to report the periods
14, 21, or other multiples of 7.

Specific to partial periodic patterns, Ma and Hellerstein
[19] have developed a linear distance-based algorithm for
discovering the potential periods regarding the symbols of
the time series. In [24], a similar algorithm has been
proposed with some pruning techniques. However, both
algorithms miss some valid periods since they only consider
the adjacent interarrivals. For example, consider a symbol
that occurs in a time series in positions 0, 4, 5, 7, and 10.
Since that symbol occurs in positions 0, 5, and 10, one of the
underlying periods for that symbol should be 5. However, a
distance-based algorithm only considers the adjacent inter-
arrival times 4, 1, 2, and 3 as candidate periods, which
clearly do not include the value 5. Should it be extended to
include all possible interarrivals, the complexity of a
distance-based algorithm [24], [19] would increase to
Oðn2Þ. Although Berberidis et al. [7] have proposed an
algorithm that considers all possible potential periods, their
algorithm is inefficient as it considers one symbol at a time.
Moreover, the algorithms of [24], [19], [7] require additional
phase over the time series in order to output the periodic
patterns. Not only does our proposed symbol periodicity
detection algorithm (Section 4) perform in Oðn lognÞ, it also
discovers all possible potential periods as well as their
corresponding periodic patterns simultaneously.

Hence, we distinguish this paper by the following
contributions:

1. We introduce a new notion of time series periodicity
in terms of the symbols of the time series, which is
termed symbol periodicity.

2. We propose a convolution-based algorithm for
symbol periodicity detection. Convolution allows
the algorithm to consider all symbols and periods at
the same time and to discover the potential periods
and the obscure periodic patterns simultaneously.

3. We propose a new algorithm for segment periodicity
detection that outperforms the periodic trends
algorithm of [15] with respect to time performance,
resilience to noise, and accuracy of output periods.

3 PERIODICITY DETECTION PROBLEM

3.1 Notation

Assume that a sequence of n time-stamped feature values is
collected in a time series. For a given feature e, let ei be the
value of the feature at time-stamp i. The time series of
feature e is represented as T ¼ e0; e1; . . . ; en�1. For example,
the feature in a time series for power consumption might be
the hourly power consumption rate of a certain customer,
while the feature in a time series for stock prices might be
the final daily stock price of a specific company. If we
discretize1 the time series feature values into nominal
discrete levels2 and denote each level (e.g., high, medium,
low, etc.) by a symbol (e.g., a, b, c, etc.), then the set of
collected feature values can be denoted as � ¼ fa; b; c; � � �g.
Hence, we can view T as a sequence of n symbols drawn
from a finite alphabet �.

A time series may also be a sequence of n time-stamped
events drawn from a finite set of nominal event types. An
example is the event log in a computer network that
monitors the various events that occur. Each event type can
be denoted by a symbol (e.g., a, b, c, etc.) and, hence, we can
use the same notation above.

3.2 Symbol Periodicity

In a time series T , a symbol s is said to be periodic with a
period p if s exists “almost” every p time-stamps. For
example, in the time series T ¼ abcabbabcb, the symbol b is
periodic with period 4 since b exists every four time-stamps
(in positions 1, 5, and 9). Moreover, the symbol a is periodic
with period 3 since a exists almost every three time-stamps
(in positions 0, 3, and 6 but not 9). We define symbol
periodicity as follows.

Let �p;lðT Þ denote the projection of a time series T
according to a period p starting from position l; that is,

�p;lðT Þ ¼ el; elþp; elþ2p; . . . ; elþðm�1Þp;

where 0 � l < p, m ¼ dðn� lÞ=pe, and n is the length of T .
For example, if T ¼ abcabbabcb, then �4;1ðT Þ ¼ bbb and
�3;0ðT Þ ¼ aaab. Intuitively, the ratio of the number of
occurrences of a symbol s in a certain projection �p;lðT Þ to
the length of this projection indicates how often this symbol
occurs every p time-stamps. However, this ratio is not quite
accurate since it captures all the occurrences, even the
outliers. In the example above, the symbol b will be
considered periodic with period 3 with a frequency of
1=4, which is not quite true. As another example, if, for a
certain T , �p;lðT Þ ¼ abcbac, this means that the symbol
changes every p time-stamp and so no symbol should be
periodic with a period p. We remedy this problem by
considering only the consecutive occurrences. A consecu-
tive occurrence of a symbol s in a certain projection �p;lðT Þ
indicates that the symbol s reappeared in T after p time-
stamps from the previous appearance, which means that p
is a potential period for s. Let F 2ðs; T Þ denote the number of
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times the symbol s occurs in two consecutive positions in
the time series T . For example, if T ¼ abbaaabaa, then
F 2ða; T Þ ¼ 3 and F 2ðb; T Þ ¼ 1.

Definition 1. If a time series T of length n contains a symbol s

such that 9l; p, where 0 � l < p, and
F 2ðs;�p;lðT ÞÞ
dðn�lÞ=pe�1

� � , where

0 � � � 1; then, s is said to be periodic in T with period p at

position l with respect to periodicity threshold � .

For example, in the time series T ¼ abcabbabcb,
F 2ða;�3;0ðT ÞÞ
d10=3e�1

¼ 2=3, thus, the symbol a is periodic with

period 3 at position 0 with respect to a periodicity threshold

� � 2=3. Similarly, the symbol b is periodic with period 3 at

position 1 with respect to a periodicity threshold � � 1.

3.2.1 Obscure Periodic Patterns

The main advantage of Definition 1 is that, not only does it
determine the candidate periodic symbols, but it also
determines their corresponding periods and locates their
corresponding positions. Thus, there are no presumptions
of the period value and, so, obscure periodic patterns can be
defined as follows:

Definition 2. If a time series T of length n contains a symbol s
that is periodic with period p at position l with respect to an
arbitrary periodicity threshold, then a periodic single-symbol
pattern of length p is formed by inserting the symbol s in
position l and inserting the “don’t care” symbol � in all other
positions.

The support of a periodic single-symbol pattern, formed
according to Definition 2, is estimated by

F 2ðs;�p;lðT ÞÞ
dðn�lÞ=pe�1

. For
example, in the time series T ¼ abcabbabcb, the pattern a �
� is a periodic single-symbol pattern of length 3 with a
support value of 2=3, and so is the single-symbol pattern
�b � with a support value of 1. However, we cannot deduce
that the pattern ab � is also periodic since we cannot
estimate its support.3 The only thing we know for sure is
that its support value will not exceed 2=3.

Definition 3. In a time series T of length n, let Sp;l be the set of
all the symbols that are periodic with period p at position l with
respect to an arbitrary periodicity threshold. Let Sp be the
Cartesian product of all Sp;l in an ascending order of l; that is,

Sp ¼ ðSp;0 [ f�gÞ � ðSp;1 [ f�gÞ � . . .� ðSp;p�1 [ f�gÞ:

Every ordered p-tuple ðs0; s1; . . . ; sp�1Þ that belongs to Sp

corresponds to a candidate periodic pattern of the form
s0s1 . . . sp�1, where si 2 Sp;i [ f�g.

For example, in the time series T ¼ abcabbabcb, we have
S3;0 ¼ fag, S3;1 ¼ fbg, and S3;2 ¼ fg. Then, the candidate
periodic patterns are a � �, �b � , and ab � , ignoring the
“don’t care” pattern � � �.

3.3 Segment Periodicity

Unlike symbol periodicity that focuses on the symbols
(where different symbols may have different periods),
segment periodicity focuses on the entire time series. A
time series T is said to be periodic with a period p if it can

be divided into equal-length segments, each of length p, that

are “almost” similar. For example, the time series T ¼

abcabcabc is clearly periodic with a period 3. Likewise, the

time series T ¼ abcabdabc is periodic with a period 3

despite the fact that its second segment is not identical to

the other segments. Since the symbols are considered

nominal, i.e., no inherent order is assumed, we can simply

use Hamming distance to measure the similarity between

two segments:

Hðu; vÞ ¼
X

m�1

j¼0

1 uj 6¼ vj
0 uj ¼ vj;

�

Sðu; vÞ ¼ 1�Hðu; vÞ=m;

where u and v are two segments of equal lengthm; uj and vj
are the symbols at position j of the two segments u and v,

respectively; H is the Hamming distance; and S is the

similarity measure. The similarity function is defined in

such a way that the higher its value, the more similar the

two segments are, and u ¼ v , Sðu; vÞ ¼ 1. Segment peri-

odicity is therefore defined as follows.

Definition 4. If a time series T of length n can be sliced

into equal-length segments T0; T1; . . . ; Ti; . . . ; TN , each of

length p, where Ti ¼ eip; . . . ; eipþp�1, N ¼ bn=pc � 1,

SðTi; TjÞ � � 8i; j ¼ 0; 1; . . . ; N , and 0 � � � 1, then T

is said to be periodic with a period p with respect to

periodicity threshold � .

Definition 5. A period p is said to be perfect if SðTi; TjÞ ¼ 1

8i; j ¼ 0; 1; . . . ; N .

For example, the time series T ¼ abcabcabc has a perfect

period 3 and the time series T ¼ abcabdabc is periodic with

a period 3 with respect to any periodicity threshold � � 2=3.

4 SYMBOL PERIODICITY DETECTION

Assume first that the period p is known for some symbols of a

specific time series T . Then, the problem is reduced to detect

those symbols that are periodic with period p. Away to solve

this simpler problem is to shift the time series p positions,

denoted as T ðpÞ, and compare this shifted version T ðpÞ to the

original version T . For example, if T ¼ abcabbabcb, then

shifting T three positions results in T ð3Þ ¼ � � �abcabba.

Comparing T to T ð3Þ results in four symbol matches. If the

symbols are mapped in a particular way, we can deduce that

those four matches are actually two for the symbol a both at

position 0 and two for the symbol b both at position 1.
Therefore, our proposed algorithm for symbol periodi-

city detection relies on two main ideas. The first is to obtain

a mapping scheme for the symbols, which reveals, upon

comparison, the symbols that match and their correspond-

ing positions. Going back to the original problem where the

period is unknown, the second idea is to use the concept of

convolution in order to shift and compare the time series for

all possible values of the period at the same time. The

remaining part of this section describes those ideas in detail

starting by defining the concept of convolution (Section 4.1)

as it derives our mapping scheme (Section 4.2).
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4.1 Convolution

A convolution [9] is defined as follows: Let X ¼

½x0; x1; . . . ; xn�1� and Y ¼ ½y0; y1; . . . ; yn�1� be two finite

length sequences of numbers,4 each of length n. The

convolution of X and Y is defined as another finite length

sequence X � Y of length n such that

ðX � Y Þi ¼
X

i

j¼0

xjyi�j

for i ¼ 0; 1; . . . ; n� 1. Let X0 ¼ ½x0
0; x

0
1; . . . ; x

0
n�1� denote the

reverse of the vector X, i.e., x0
i ¼ xn�1�i. Taking the

convolution of X0 and Y and obtaining its reverse leads to

the following:

ðX0 � Y Þ0i ¼ ðX0 � Y Þn�1�i ¼
X

n�1�i

j¼0

x0
jyn�1�i�j

¼
X

n�1�i

j¼0

xn�1�jyn�1�i�j;

i.e.,

ðX0 � Y Þ00 ¼ x0y0 þ x1y1 þ � � � þ xn�1yn�1;

ðX0 � Y Þ01 ¼ x1y0 þ x2y1 þ � � � þ xn�1yn�2;

..

.

ðX0 � Y Þ0n�1 ¼ xn�1y0:

In other words, the component of the resulting sequence at

position i corresponds to shifting one of the input sequences

i positions and comparing it to the other input sequence.
Therefore, the symbol periodicity detection algorithm

performs the following steps:

1. Converts the time series T into two finite sequences
of numbers �ðT Þ and �ðT Þ0, where �ðT Þ0 is the
reverse of �ðT Þ (based on the mapping scheme �

described in Section 4.2);
2. Performs the convolution between the two se-

quences �ðT Þ0 � �ðT Þ;
3. Reverses the output

�

�ðT Þ0 � �ðT Þ
�0

;
4. Analyzes the component values of the resulting

sequence to get the periodic symbols and their
corresponding periods and positions (Section 4.2).

It is well-known that convolution can be computed by

the fast Fourier transform (FFT) [18] as follows:

X � Y ¼ FFT�1
�

FFTðXÞ � FFTðY Þ
�

:

This computation reduces the time complexity of the

convolution to Oðn lognÞ. The brute force approach of

shifting and comparing the time series for all possible

values of the period has the time complexity Oðn2Þ.

Moreover, an external FFT algorithm [22] can be used for

large sizes of databases mined while on disk.

4.2 Mapping Scheme

Let T ¼ e0; e1; . . . ; en�1 be a time series of length n,
where eis are symbols from a finite alphabet � of size �.
Let � be a mapping for the symbols of T such that
�ðT Þ ¼ �ðe0Þ;�ðe1Þ; . . . ;�ðen�1Þ. L e t CðT Þ ¼ ð�ðT Þ0 �

�ðT ÞÞ0 and ciðT Þ be the ith component of CðT Þ. The
challenge to our algorithm is to obtain a mapping � of
the symbols, which satisfies two conditions: 1) When the
symbols match, this should contribute a nonzero value
in the product �ðejÞ � �ðei�jÞ; otherwise, it should
contribute 0 and 2) the value of each component of
CðT Þ and ciðT Þ ¼

Pi
j¼0 �ðejÞ � �ðei�jÞ should identify the

symbols that cause the occurrence of this value and their
corresponding positions.

We map the symbols to the binary representation of
increasing powers of two [1]. For example, if the time series
contains only the three symbols a, b, and c, then a possible
mapping could be a : 001, b : 010, and c : 100, correspond-
ing to power values of 0, 1, and 2, respectively. Hence, a time
series of length n is converted to a binary vector of length �n.
For example, let T ¼ acccabb; then, T is converted to the
binary vector �TT ¼ 001100100100001010010. Adopting regu-
lar convolution, defined previously, results in a sequence
Cð �TT Þ of length �n. Considering only the n positions
0; �; 2�; . . . ; ðn� 1Þ�, which are the exact start positions of
the symbols, gives back the sequence CðT Þ. The latter
derivation ofCðT Þ can bewritten asCðT Þ ¼ ��;0ðCð �TT ÞÞ using
the projection notation defined in Section 3.2.

The first condition is satisfied since the only way to obtain
a value of 1 contributing to a component ofCðT Þ is that this 1
comes from the same symbol. For example, for T ¼ acccabb,
although c1ð �TT Þ ¼ 1, this is not considered one of CðT Þ’s
components. However, c3ð �TT Þ ¼ 3 and so c1ðT Þ ¼ 3, which
corresponds to three matches when T is compared to T ð1Þ.
Those matches are seen from the manual inspection of T to
be two cs and one b. Nevertheless, it is not possible to
determine those symbols only by examining the value of
c1ðT Þ, i.e., the second condition is not yet satisfied. Therefore,
we modify the convolution definition to be

ðX � Y Þi ¼
X

i

j¼0

2jxjyi�j:

The reason for adding the coefficient 2j is to get a
different contribution for each match, rather than an
unvarying contribution of 1. For example, when the new
definition of convolution is used for the previous
example, c1ðT Þ ¼ 21 þ 211 þ 214 ¼ 18; 434. Fig. 1 illustrates
this calculation. The powers of 2 for this value are 1, 11,
and 14. Examining those powers modulo 3, which is the
size of the alphabet in this particular example, results in
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1, 2, and 2, respectively, which correspond to the symbols
b, c, and c, respectively.

Fig. 1 gives another example for c4ðT Þ containing only
one power of 2, which is 6, that corresponds to the symbol a
since 6 mod 3 ¼ 0 and a was originally mapped to the
binary representation of 20. This means that comparing T to
T ð4Þ results in only one match of the symbol a. Moreover,
the power value of 6 reveals that the symbol a is at position 0
in T ð4Þ. Note that in the binary vector, the most significant
bit is the leftmost one, whereas the most significant position
of the time series T is the rightmost one. Therefore, not only
can the power values reveal the number of matches of each
symbol at each period, they also reveal their corresponding
starting positions. This latter observation complies with the
definition of symbol periodicity.

Formally, let s0; s1; . . . ; s��1 be the symbols of the alphabet

of a time series T of length n. Assume that each symbol sk is

mapped to the�-bit binary representation of 2k to form �TT . The

sequence Cð �TT Þ is computed such that cið �TT Þ ¼
Pi

j¼0 2
j�eej � �eei�j

for i ¼ 0; 1; . . . ; �n� 1. Thus, CðT Þ ¼ ��;0ðCð �TT ÞÞ. Assume

that cpðT Þ is a nonzero component of CðT Þ. Let Wp denote

the set of powers of 2 contained in cpðT Þ, i.e.,

Wp ¼ fwp;1; wp;2; . . .g;

where cpðT Þ ¼
P

h 2
wp;h , and let

Wp;k ¼ fwp;h : wp;h 2 Wp ^ wp;h mod � ¼ kg:

As shown in the previous example, the cardinality of each
Wp;k represents the number of matches of the symbol sk
when T is compared to T ðpÞ. Moreover, let

Wp;k;l ¼

fwp;h : wp;h 2 Wp;k ^ ðn� p� 1� bwp;h=�cÞmod p ¼ lg:

Revisiting the definition of symbol periodicity, we
observe that the cardinality of each Wp;k;l is equal to
the desired value of F 2ðsk; �p;lðT ÞÞ. Working out the
example of Section 4 where T ¼ abcabbabcb, n ¼ 10, and
� ¼ 3, let s0; s1; s2 ¼ a; b; c, respectively. Then, for p ¼ 3,
W3 ¼ f18; 16; 9; 7g, W3;0 ¼ f18; 9g, and

W3;0;0 ¼ f18; 9g ) F 2ða; �3;0ðT ÞÞ ¼ 2;

which conforms to the results obtained previously. As
another example, if T ¼ cabccbacd, where n ¼ 9, � ¼ 4,
and s0; s1; s2; s3 ¼ a; b; c; d, respectively, then, for p ¼ 4,
W4 ¼ f18; 6g, W4;2 ¼ f18; 6g,

W4;2;0 ¼ f18g ) F 2ðc; �4;0ðT ÞÞ ¼ 1;

and W4;2;3 ¼ f6g ) F 2ðc; �4;3ðT ÞÞ ¼ 1, which are correct
since �4;0ðT Þ ¼ ccd and �4;3ðT Þ ¼ cc.

One final detail about our algorithm is the use of the
values wp;h to estimate the support of the candidate periodic
patterns formed according to Definition 3. Let sj0sj1 . . . sjp�1

be a candidate periodic pattern that is neither a single-
symbol pattern nor the “don’t care” pattern, i.e., at least
two sjis are not �. The set Wp;ji;i contains the values
responsible for the symbol sji 6¼ �. Let W p be a subset of the
Cartesian product of the sets Wp;ji;i for all i where sji 6¼ �
such that all the values in an ordered pair should have the

same value of b
n�p�1�bwp;h=�c

p c. The support estimate of that
candidate periodic pattern is jW pj

bn=pc . For example, if
T ¼ abcabbabcb, W3;0;0 ¼ f18; 9g corresponds to the symbol
a, and W3;1;1 ¼ f16; 7g corresponds to the symbol b, then for
the candidate periodic pattern ab�, W p ¼ fð18; 16Þ; ð9; 7Þg,
and the support of this pattern is 2=3.

Therefore, our algorithm scans the time series once to
convert it into a binary vector according to the proposed
mapping, performs the modified convolution on the binary
vector, and analyzes the resulting values to determine the
symbol periodicities and, consequently, the periodic single-
symbol patterns. Then, the set of candidate periodic
patterns is formed and the support of each pattern is
estimated.

The complexity of our algorithm is the complexity of
the convolution step that is performed over a binary
vector of length �n. Hence, the complexity is Oð�n log�nÞ
when FFT is used to compute the convolution. Given
that, in practice, � << n, the complexity of the symbol
periodicity detection algorithm is, in fact, Oðn lognÞ. Note
that adding the coefficient 2j to the convolution definition
still preserves that

X � Y ¼ FFT�1
�

FFTðXÞ � FFTðY Þ
�

:

The complete algorithm is sketched in Fig. 2.

5 SEGMENT PERIODICITY DETECTION

The idea behind our new algorithm for segment
periodicity detection follows the same idea of shifting
and comparing the time series for all possible values.
However, the interest is turned to the total number of
matches rather than the specific symbols that match. For
example, if T ¼ abcabdabc, then shifting T three positions
results in T ð3Þ ¼ � � �abcabd. Comparing T to T ð3Þ results
in four matches out of six possible matches. We argue
that such an occurrence of a large number of matches
corresponds to a candidate period for the time series in
hand. To ascertain this argument, assume that comparing
T with T ðpÞ results in n� p matches for a certain index p
and a time series T of length n. Then, ep ¼ e0; epþ1 ¼
e1; . . . ; en�1 ¼ en�1�p and, also, e2p ¼ ep; e2pþ1 ¼ epþ1; . . . ,
etc., which means that the segment of length p is periodic
and p is a perfect period for T . If, for another index q,
comparing T with T ðqÞ results in a number of matches
slightly less than n� q due to a few mismatches, then q
can be considered a candidate period for T .

Similar to the proposed algorithm for symbol periodicity
detection, our proposed algorithm for segment periodicity
detection uses the concept of convolution in order to shift
and compare the time series for all possible values of the
period. However, segment periodicity detection needs a
mapping scheme simpler than that of symbol periodicity
detection since what matters is the total number of matches
rather than the symbols that match. In other words, the
mapping scheme � for segment periodicity detection
should only satisfy the following condition: When the
symbols match, this should contribute a nonzero value in
the product �ðejÞ � �ðei�jÞ; otherwise, it should contribute 0.
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We map the symbols to the �th roots of unity5 [5], where

� is the size of the symbols alphabet. For example, if the

time series contains only three symbols, then they are

mapped to !0, !1, !2. Moreover, we modify the regular

convolution definition to be

ðX � Y Þi ¼
X

i

j¼0

xjy
�1
i�j:

Without loss of generality, assume that a symbol sk is

mapped to !k. Adopting the modified convolution, a symbol

match (say sk) contributes 1 to the product !k!�k. A

mismatch, i.e., sk 6¼ sl, contributes a perturbative term

!k�l 6¼ 1. Since the sum of the �th roots of unity is equal to

zero, i.e.,
P��1

i¼0 !i ¼ 0, thenEð!ZÞ ¼ 0when Z is a uniformly

distributed random variable over f0; 1; . . . ; �� 1g. In other

words, if the convolution computation is repeated for all

possible mappings over f!0; !1; . . . ; !��1g, then the mean

value at a mismatch position will be equal to 0 and the mean

value at a match position will be equal to 1, which satisfies

the aforementioned condition. Therefore, we can obtain the

convolution of the time series CðT Þ as the mean of the inner

product
Pi

j¼0 �ðejÞ�
�1ðei�jÞ over all the possible mappings.

Experiments show that accurate estimates can be achieved

with few iterations rather than iterating over all possible

mappings.

Similar to the symbol periodicity detection algorithm, the

complexity of the segment periodicity detection algorithm

is the complexity of the convolution step that is performed

over a vector of length n, yet is repeated number of times ‘.

Hence, the complexity is Oð‘n lognÞ when FFT is used to

compute the convolution. The maximum value for ‘ is �!,

which is the number of all possible mappings of the

symbols. Clearly, this value is too large and, hence, is not

negligible. However, in practice, few iterations are enough

to get accurate estimates, i.e., ‘ << �!. Therefore, the

practical complexity of the segment periodicity detection

algorithm is Oðn lognÞ. Note that the modified convolution

definition used here still preserves that

X � Y ¼ FFT�1
�

FFTðXÞ � FFTðY Þ
�

:

The complete algorithm is sketched in Fig. 3.

6 EXPERIMENTAL STUDY

This section contains the results of an extensive experi-
mental study that examines various aspects of the proposed
algorithms.6 The most important aspect is the accuracy with
respect to the discovered periods, which is the subject of
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5. The nth roots of unity are the n solutions to the equation xn ¼ 1. The
kth root has the form !k ¼ e2�ik=n.

6. The source code of the proposed algorithms is available at http://
www.cs.purdue.edu/~mgelfeky/Source.

Fig. 2. The symbol periodicity detection algorithm.



Section 6.1. As noisy data is inevitable, Section 6.2
scrutinizes the resilience of the proposed algorithms to
various types of noise that can occur in time series data. The
estimation accuracy of the segment periodicity detection
algorithm is studied in Section 6.3. Then, the time
performance of the proposed algorithms is studied in
Section 6.4. The practicality and usefulness of the results
are explored using real data experiments shown in
Section 6.5. The periodic trends algorithm of [15] is
compared with our proposed algorithms throughout the
experiments. As discussed earlier in Section 2, the periodic
trends algorithm of [15] is the fastest in the literature for
detecting all valid candidate periods.

In our experiments, we exploit synthetic data as well as
real data. We generate controlled synthetic time series data
by tuning some parameters, namely, data distribution,
period, alphabet size, type, and amount of noise. Both
uniform and normal data distributions are considered.
Some types of noise include replacement, insertion, dele-
tion, or any mixture of them. Inerrant data is generated by
repeating a pattern, of length equal to the period, that is
randomly generated from the specified data distribution.
The pattern is repeated until it spans the specified time
series length. Noise is introduced randomly and uniformly
over the whole time series. Replacement noise is introduced
by altering the symbol at a randomly selected position in
the time series by another. Insertion or deletion noise is
introduced by inserting a new symbol or deleting the
current symbol at a randomly selected position in the time
series.

Two databases serve the purpose of real data experi-
ments. The first one is a relatively small database that
contains the daily power consumption rates of some
customers over a period of one year. It is made available
through the CIMEG7 project. The database size is approxi-
mately 5 Megabytes. The second database is a Wal-Mart
database of 70 Gigabytes, which resides on an NCR

Teradata Server running the NCR Teradata Database
System. It contains sanitized data of timed sales transac-
tions for some Wal-Mart stores over a period of 15 months.
The timed sales transactions data has a size of 130 Mega-
bytes. In both databases, the numeric data values are
discretized into five levels, i.e., the alphabet size equals to 5.
The levels are very low, low, medium, high, and very high. For
the power consumption data, discretizing is based on
discussions with domain experts (very low corresponds to
less than 6000 Watts/Day, and each level has a 2000 Watts
range). For the timed sales transactions data, discretizing is
based on manual inspection of the values (very low
corresponds to zero transactions per hour, low corresponds
to less than 200 transactions per hour, and each level has a
200 transactions range).

6.1 Accuracy

Synthetic data, both inerrant and noisy, are used in this
experiment in order to inspect the accuracy of the proposed
algorithms. The accuracy measure that we use is the ability
of the algorithms to detect the periodicities that are
artificially embedded into the synthetic data. To accurately
discover a period, it is not enough to discover it at any
periodicity threshold value. In other words, the periods
discovered with a high periodicity threshold value are
better candidates than those discovered with a lower
periodicity threshold value. Therefore, we define the
confidence of a discovered period to be the minimum
periodicity threshold value required to detect this period.
The accuracy is measured by the average confidence of all
the periods that were artificially embedded into the
synthetic data.

Figs. 4 and 5 give the results of this experiment. We use
the symbols “U” and “N” to denote the uniform and the
normal distributions, respectively, and the symbol “P” to
denote the period. Recall that inerrant synthetic data is
generated in such a way that it is perfectly periodic, i.e., the
periodicities embedded are: P; 2P; . . . . If the data is
perfectly periodic, the confidence of all the periodicities
should be 1. Time series lengths of 1M symbols are used
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7. CIMEG: Consortium for the Intelligent Management of the Electric
Power Grid, http://helios.ecn.purdue.edu/~cimeg.

Fig. 3. The segment periodicity detection algorithm.



with alphabet size of 10. The values collected are averaged
over 100 runs. Fig. 4a shows that the symbol periodicity
detection algorithm is able to detect all the embedded
periodicities in the inerrant time series data with the highest
possible confidence. Fig. 5a shows a similar behavior only
when the period divides the time series length. In general,
Fig. 5 illustrates that the behavior of the segment periodicity
detection algorithm depends on the period. When the
period divides the time series length, the algorithm detects
all the periods at the highest confidence. When the period
does not divide the time series length, the algorithm favors
the lower values. This behavior is due to the misalignment
of the last portion of the time series that does not form a
complete periodic segment. Fig. 4 shows an unbiased
behavior of the symbol periodicity detection algorithm
with respect to the period since what matters are the
symbols rather than the whole segment. Both figures show
an expected decrease in the confidence values due to the
presence of noise.

Fig. 6 gives the results of the same experiment for the
periodic trends algorithm of [15]. However, in order to
inspect the accuracy of that algorithm, we will briefly
discuss its output. The algorithm computes an absolute
value for each possible period and then it outputs the
periods that correspond to the minimum absolute values as

the best candidate periods. In other words, if the absolute

values are sorted in ascending order, the corresponding

periods will be ordered from the best to the worst

candidate. Therefore, it is the rank of the period in this

candidacy order that favors a period over another rather

than its corresponding absolute value. Normalizing the

ranks to be real-valued ranging from 0 to 1 is trivial. The

normalized rank can be considered as the confidence value

of each period (the best candidate period that has rank 1

will have normalized rank value of 1, and worse candidate

periods that have lower ranks will have lower normalized

rank values). This means that, if the data is perfectly

periodic, the embedded periodicities should have the

highest ranks and, so, confidence values close to 1. Fig. 6b

shows a biased behavior of the periodic trends algorithm

with respect to the period, as it favors the longer periods.

However, we believe that the shorter periods are more

accurate than the longer ones since they are more

informative. For example, if the power consumption of a

specific customer has a weekly pattern, it is more

informative to report the period of 7 days than to report

the periods of 14, 21, or other multiples of 7.
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Fig. 4. Accuracy of the symbol periodicity detection algorithm. (a) Inerrant data. (b) Noisy data.

Fig. 5. Accuracy of the segment periodicity detection algorithm. (a) Inerrant data. (b) Noisy data.



6.2 Resilience to Noise

As mentioned before, there are three types of noise:

replacement, insertion, and deletion noise. This set of

experiments studies the behavior of the periodicity detec-

tion algorithms toward these types of noise as well as

different mixtures of them. Results are given in Figs. 7 and 8

in which we use the symbols “R,” “I,” and “D” to denote

the three types of noise, respectively. Two or more types of

noise can be mixed, e.g., “R I D” means that the noise ratio

is distributed equally among replacement, insertion, and

deletion, while “I D” means that the noise ratio is

distributed equally among insertion and deletion only.

Time series lengths of 1M symbols are used with an

alphabet size of 10. The values collected are averaged over

100 runs. Since the behaviors were similar regardless of the

period or the data distribution, an arbitrary combination of

ELFEKY ET AL.: PERIODICITY DETECTION IN TIME SERIES DATABASES 9
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Fig. 7. Resilience to noise of the symbol periodicity detection algorithm. (a) Uniform, Period = 25. (b) Normal, Period = 32.

Fig. 8. Resilience to noise of the segment periodicity detection algorithm. (a) Uniform, Period = 32. (b) Normal, Period = 25.



a period and a data distribution is selected for each figure.

The figures show an expected decrease in the confidence

with the increase in noise. Both algorithms are well resilient

to replacement noise. At 40 percent periodicity thresholds,

both algorithms can tolerate 50 percent replacement noise in

the data. When the other types of noise get involved

separately or mixed with replacement noise, the algorithms

perform poorly. However, segment periodicity detection

can be considered roughly resilient to those other types

since periodicity thresholds in the range 10 percent to

20 percent are not uncommon.

6.3 Estimation Accuracy of Segment Periodicity

The next experiment studies the estimation accuracy of the

proposed segment periodicity detection algorithm. We

examine the accuracy by measuring the closeness of the

convolution values estimated by the algorithm to the exact

values. Fig. 9 gives the results for both real data (Wal-Mart

timed sales transactions) and synthetic data (uniform and

normal data). Fig. 9 shows that the estimation accuracy

increases when more iterations are carried out. This is

expected as the mean values converge to the exact values

over all iterations. More importantly, Fig. 9 shows that an

estimation accuracy of 90 percent is achieved after only two

to four iterations, which supports our claim that few
iterations are enough to obtain accurate estimates.

6.4 Time Performance

To evaluate the time performance of the proposed
periodicity detection algorithms, Fig. 10a exhibits the time
behavior of both algorithms with respect to the time series
length. Wal-Mart timed sales transactions data is used in
different portion lengths of powers of 2 up to 128 Mega-
bytes. As it has been shown in the previous experiment
(Fig. 9), only three iterations of the segment periodicity
detection algorithm are carried out in this experiment.
Fig. 10a shows that the execution time is linearly propor-
tional to the time series length. More importantly, the figure
shows that segment periodicity detection takes less execu-
tion time than symbol periodicity detection. Fig. 10b
supports this latest observation using synthetic data
(1M symbols with alphabet size of 10) and increasing the
number of iterations for the segment periodicity detection.
Note that there are no iterations in the symbol periodicity
detection algorithm. The straight line in the figure repre-
sents a fixed value for the execution time of the symbol
periodicity detection algorithm. Fig. 10b shows that, up to
18 iterations, segment periodicity detection still takes less
execution time than symbol periodicity detection.
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Fig. 9. Estimation accuracy of the segment periodicity detection algorithm. (a) Wal-Mart data. (b) Synthetic data.

Fig. 10. Time behavior of the periodicity detection algorithms. (a) Wal-Mart data. (b) Synthetic data.



Furthermore, Fig. 10a shows that the proposed segment
periodicity detection algorithm outperforms the periodic
trends algorithm of [15] with respect to the execution time.
This experimental result agrees with the theoretical results
as the periodic trends algorithm [15] performs in Oðn log2 nÞ
time whereas our proposed segment periodicity detection
algorithm performs in Oðn lognÞ time.

6.5 Real Data Experiments

Tables 1 and 2 display the output of both algorithms for the
Wal-Mart and CIMEG data for different values of the
periodicity thresholds. Clearly, the algorithms output fewer
periods for higher periodicity threshold values and the
periods detected with respect to a certain value of the

periodicity threshold are enclosed within those detected

with respect to a lower value. To verify their accuracy, the

algorithms should at least output the periods that are

expected in the time series. From Fig. 11, Wal-Mart data has

an expected period of 24 that corresponds to the daily

pattern of number of transactions per hour. CIMEG data

has an expected period of 7 that corresponds to the weekly

pattern of power consumption rates per day.
For the segment periodicity detection algorithm, Table 1

shows that, for Wal-Mart data, a period of 24 hours is

detected when the periodicity threshold is 70 percent or

less. In addition, the algorithm detects many more periods,

some of which are quite interesting. A period of 168 hours
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TABLE 1
Segment Periodicity Detection Output

TABLE 2
Symbol Periodicity Detection Output

Fig. 11. Plot of Wal-Mart time series. (a) Zoomed out. (b) Zoomed in.



(24� 7) can be explained as the weekly pattern of the

number of transactions per hour. This period value is not

easily seen in Fig. 11, yet it is there (every seven cycles). A

period of 3,961 hours shows a periodicity of exactly

5.5 months plus one hour, which can be explained as the

daylight savings hour. One may argue against the clarity of

this explanation, yet this proves that there may be obscure

periods, unknown a priori, that the algorithm can detect.

Similarly, for CIMEG data, the period of 7 days is detected

when the periodicity threshold is 60 percent or less. Other

clear periods are those that are multiples of 7. However, a

period of 123 days is difficult to explain. A similar behavior

is shown in Table 2 for the symbol periodicity detection

algorithm with a higher number of output periods than that

of segment periodicity detection. This is expected since

symbol periodicity detects periods for individual symbols

rather than for the entire time series. Further analysis of the

output of the symbol periodicity detection algorithm is

shown in Table 3.
Exploring the period of 24 hours for Wal-Mart and that

of 7 days for CIMEG data produces the results given in

Table 3. Note that periodic single-symbol pattern is

reported as a pair, consisting of a symbol and a starting

position for a certain period. For example, (b,7) for Wal-

Mart data with respect to a periodicity threshold of

80 percent or less represents the periodic single-symbol

pattern � � � � � � �b � � � � � � � � � � � � � � � �. Knowing

that the symbol b represents the low level for Wal-Mart

data (less than 200 transactions per hour), this periodic

pattern can be interpreted as follows:
In 80 percent of the days, less than 200 transactions per

hour occur in the seventh hour of the day (between 7:00 a.m.

and 8:00 a.m.).
As another example, ða; 3Þ for CIMEG data with respect

to a periodicity threshold of 50 percent or less represents the

periodic single-symbol pattern � � �a � ��. Knowing that the

symbol a represents the very low level for CIMEG data (less

than 6,000 Watts/Day), this periodic pattern can be

interpreted as follows:
In 50 percent of the weeks, less than 6,000 Watts/Day are

consumed in the fourth day of the week.

Finally, Table 4 gives the final output of periodic patterns
of Wal-Mart data for the period of 24 hours for periodicity
threshold of 35 percent. Each pattern can be interpreted in a
similar way to the above.

Experimenting the periodic trends algorithm of [15] with
the real data gives a worse behavior than that of the
proposed segment periodicity detection. The known a priori
periods (24 for Wal-Mart data and 7 for CIMEG data) are
discovered only after very low periodicity threshold values
(< 30 percent) are considered. The reason is that the
periodic trends algorithm favors the longer periods and,
so, the shorter periods appear late in the candidate order.
For example, for Wal-Mart data, the periodic trends
algorithm detects that a period of 2,808 hours (a multiple
of 24) is the best candidate period; and, for CIMEG data, it
detects that a period of 3,708 days (not a multiple of 7) is the
best candidate period.

7 CONCLUSIONS

In this paper, we have defined two types of periodicities for
time series databases. Whereas symbol periodicity ad-
dresses the periodicity of the symbols in the time series,
segment periodicity addresses the periodicity of the entire
time series regarding its segments. We have proposed a
scalable, computationally efficient algorithm for detecting
each type of periodicity in Oðn lognÞ time, for a time series
of length n. An empirical study of the algorithms using real-
world and synthetic data sets proves the practicality of the
problem, validates the accuracy of the algorithms, and
validates the usefulness of their outputs. Moreover,
segment periodicity detection takes less execution time
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TABLE 3
Symbol Periodicity Detection Output (Cont’d)

TABLE 4
Obscure Periodic Patterns for Wal-Mart Data



whereas symbol periodicity detects more periods. We can
conclude that in practice, segment periodicity detection

could be applied first and, if the results are not sufficient, or
not appealing, symbol periodicity detection can be applied
afterwards. Finally, we have extended the proposed symbol

periodicity detection algorithm to discover the obscure
periodic patterns.
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