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We report the discovery of a remarkable ‘‘periodicity hub’’ inside the chaotic phase of an electronic

circuit containing two diodes as a nonlinear resistance. The hub is a focal point from where an infinite

hierarchy of nested spirals emanates. By suitably tuning two reactances simultaneously, both current and

voltage may have their periodicity increased continuously without bound and without ever crossing the

surrounding chaotic phase. Familiar period-adding current and voltage cascades are shown to be just

restricted one-parameter slices of an exceptionally intricate and very regular onionlike parameter surface

centered at the focal hub which organizes all the dynamics.
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Bifurcations are familiar phenomena routinely used

nowadays as sensitive indicators of drastic changes in

dynamical behaviors in physics and related sciences [1–

5]. In fact, the past two decades witnessed extensive efforts

to describe how bifurcations between periodic and chaotic

oscillations unfold in all sorts of systems. They are ubiq-

uitous features supported by all theoretical descriptions,

based on models ranging from ‘‘simple’’ discrete-time

mappings to sophisticated continuous-time multidimen-

sional flows ruled by sets of differential equations. Bifur-

cation phenomena involving the variation of just a single

parameter, referred to as codimension-one bifurcations, are

now reasonably well understood [1–5]. In contrast, frag-

mentary information is available about much more realistic

situations requiring the simultaneous variation of at least

two independent parameters (codimension two).

The quintessential example of a codimension-two bifur-

cation and a current hot topic of research involves homo-

clinic orbits in the vicinity of a saddle focus, trajectories

biasymptotic to a nonhyperbolic stationary point [6–10]. In

this setup Shilnikov proved a celebrated theorem stating

that, at nearby parameter values, one finds trajectories

belonging to multiple horseshoes and in correspondence

with the full shift on n symbols [6–8]. While it is well

known that familiar codimension-one signatures may be

seen locally in higher codimension, no globally encom-

passing description is available about the organization over

large parameter ranges, particularly about how distinct

bifurcation scenarios interconnect and influence each

other. For flows, no codimension-two investigation of the

structuring of the abundant chaotic phases seems to have

been done. Briefly, despite much hard work, the situation is

still messy, as synthetically summarized in a survey by

Fiedler [11]: ‘‘An embracing systematic theory of homo-

clinic bifurcation in two parameters systems is not in sight.

Rather, there appears to be hundreds of different cases

which need to be analyzed separately.’’

Our aim here is to describe the striking organization

around a remarkable parameter point, an organizational

hub, discovered inside the chaotic phase of a circuit studied

by Nishio et al. [12], our Fig. 1 below, containing a linear

negative resistance and a nonlinear resistance formed by

two diodes. We selected their nice circuit because it allows

spirals to be measured experimentally. In addition, unclut-

tered by superfluous variables and parameters, their setup

produces arguably the simplest possible normal form to

experimentally observe spirals and hubs. We remark, how-

ever, that hubs and spirals are generic features because we

also observed them in other familiar systems such as

Rössler equations, in variations of Chua’s circuit, and in

some chemical and biological oscillators. As is clear from

Fig. 2, the chaotic phase of the circuit contains infinite

hierarchies of nested spirals which, altogether, compose a

remarkably structured onionlike organization. In phase

space, each individual spiral is characterized by a specific

regular oscillation of a certain period which increases

continuously beyond any bound when control parameters

are suitably tuned along the spiral, towards the common

central focus. Before commenting further on Fig. 2, we first

explain how it was obtained.

The circuit in Fig. 1 defines an autonomous flow [12]:
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FIG. 1. The symmetric electronic circuit which displays the

infinite hierarchy of nested spirals illustrated in Fig. 2. It involves

negative linear and nonlinear resistive elements.
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Here, x and y are scaled proxies of the currents i1 and i2 in

Fig. 1, z is the scaled voltage drop v across the capacitor C,

and � and � are free control parameters related with

reactive elements in the circuit: � � r
������������

C=L1

p

and � �
L1=L2. The piecewise linear resistance is
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where, following Nishio et al. [12], we fix � � 470,

although our main result, Fig. 2(a), remains essentially

unchanged in the wide interval 40 � � � 1000.

Figure 2(a) displays a phase diagram for the resistive

circuit obtained by plotting Lyapunov exponents on a

1200� 900 grid of equally spaced points. Equations (1)

were integrated with a fixed-step (h � 0:005) fourth-order

Runge-Kutta scheme. The first 35� 10
3 steps were dis-

carded, the subsequent 700� 103 steps were used to com-

pute the Lyapunov spectra. As known, negative exponents

characterize periodic solutions while positive exponents

are signatures of chaotic oscillations.

The phase diagram in Fig. 2(a) has two remarkable

features: first, it contains an infinite nesting of spirals

corresponding to periodic solutions; second, there is a

distinctive focal point where all spirals originate or termi-

nate and which organizes the dynamics in a wide portion of

the parameter space around it. The focal point was numeri-

cally estimated to be roughly at

 F � ��f; �f� � �0:4612 . . . ; 3:7191 . . .�: (3)

Individual spirals are characterized by specific families of

periodic oscillations embedded in the chaotic phase.

Spirals are formed by suitably ‘‘gluing’’ together leg to

leg the characteristic four-legged dark domains called

shrimps in Ref. [13] and which exist abundantly both in

maps and flows [14]. Spirals and the spiral nesting are truly

codimension-two phenomena: they may be only fully un-

folded by tuning at least two parameters simultaneously.

Figure 2(b) shows how the four largest spirals, labeled A,

B, C, D, coil up around F . The doubly superstable points

[15] defining shrimp heads were used to label the succes-

sive shrimps forming each spiral. Thus, circling clockwise

FIG. 2 (color online). (a) Phase diagram with an infinite hierarchy of nested spirals connected by the organizing hub at the focal

point F . The diagram displays the magnitude of the Lyapunov exponents. (b) Heads of the first few shrimps [13] Ai, Bi, Ci, Di

emerging aligned along a parabolic arc, Eq. (4). See relevant data in Table I. Lines h and g are defined by Eqs. (5) and (6).

(c) Bifurcation diagram along the parabolic arc through F and Ai, Bi, Ci, Di. (d) Projections of the orbits in spirals A, B, C, D. In

spirals A and C orbits are self-symmetric, while in B and D one finds coexistence of dual pairs in involution.
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along spiral A one meets successively the heads of shrimps

A1, A2, etc. As is clear from the figure, the heads Ai, Bi, Ci,

Di, and F lie all along a distinctive direction, a parabolic

arc, represented by a vertically slanted dashed curve in the

figure. By fitting the shrimp heads of the four spirals Ai, Bi,

Ci, Di for i � 1; 2; 3; 4 we found an approximate equation

for this arc:

 � � 124:5875�2 � 143:7802�� 43:5301: (4)

Figure 2(b) contains two distinctive directions:

 line h: � � �1:7604�� 4:531; (5)

 line g: � � 13:3912�� 2:4569: (6)

Line h, the homoclinic line, defines a unique direction in

the phase diagram where all major shrimp legs not coiling

up around F accumulate. In contrast, line g marks a

‘‘generic’’ line on the left side of the parabolic arc. For

any g line on this side of the arc one finds the simplest

possible sequence of bifurcations when moving to or from

the focal point F . Such bifurcation sequences remain

invariant along any equivalent line passing through F

and remaining on the left side of the parabolic arc.

The bifurcation diagram in Fig. 2(c) was obtained by

simultaneously tuning � and � along Eq. (4). It sheds light

about the origin of the so-called periodic-chaotic sequen-

ces, also known as ‘‘period-adding’’ sequences [16–19].

Many such sequences reflect information gained from

restricted one-parameter slices of codimension-two spiral

nestings. A nice feature of Eqs. (1) is that they are invariant

under the involution �x; y; z� � ��x;�y;�z�. This implies

that every solution has always a ‘‘symmetric dual,’’ which

may be either self-symmetric or not; i.e., under the invo-

lution, orbital points will transform either to the same or to

a distinct orbit. Both types of solutions are illustrated in

Fig. 2(d).

The evolution of the current x�t� along the four largest

spirals is shown in Fig. 3 while Table I collects location,

period, and number of peaks px, py, pz of the currents and

voltage for the first few heads Ai and Bi. Curiously, the

number of peaks changes out of phase along the spirals, but

always in a systematic way. A similar out-of-phase change

occurs for C and D but starting from �px; py; pz� � �5; 5; 5�

and �3; 3; 3�, respectively.

Figure 4 illustrates typical z � 0 basins observed for

spirals with nonself-symmetric dual attractors. As it is easy

to realize, the strong ‘‘fractalization’’ of the basin bounda-

ries poses great difficulties for predicting the behavior of a

system as one moves towards the focal point, reminiscent

of the difficulties familiar from Wada basins [20]. The

basin B4 was computed with h � 0:001, the others with

h � 0:005. The ability to resolve basin structures when

approaching F may certainly be used for benchmarking

both experiments and numerical computations. For, experi-

ments are strongly limited by noise of various kinds, while

numerical work is limited by the accuracy of both com-

puters and algorithms.
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FIG. 3. Waveforms of the current x�t� along spirals A, B, C, D when moving towards the focal point F . Return maps of the maxima

xt � xt�1 give the number of peaks. The number of peaks of x�t� increases out of phase with respect to those of y�t� and z�t�, as shown

in Table I. Signals in self-symmetric spirals have much richer waveforms.

TABLE I. The number of peaks px, py, pz of currents x�t�, y�t�
and voltage z�t� evolve distinctly but regularly along the two

types of spiral, self-symmetric or not. T is the period of the

oscillations while ��;�� locates the doubly superstable ‘‘cen-

ters’’ of the shrimps [13,15] along spirals Ai and Bi.

� � T px py pz

A1 0.528 00 2.321 00 15.965 3 3 3

A2 0.405 50 5.750 00 21.030 3 5 5

A3 0.478 60 3.272 90 28.355 5 5 5

A4 0.450 82 4.022 40 34.455 5 7 7

B1 0.495 30 2.905 20 11.040 2 2 2

B2 0.437 80 4.443 00 13.915 2 3 3

B3 0.469 98 3.485 62 17.360 3 3 3

B4 0.456 44 3.855 28 20.495 3 4 4
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Finally, we mention that it is very tempting to associate

spiral nestings with the much studied homoclinic orbits.

However, numerical work shows spirals not to exist in

some flows which are textbook examples of the

Shilnikov setup. We described the unfolding of an infinite

sequence of spirals in the vicinity of the numerically found

focal hub. We believe our investigation to be accurate

albeit not rigorous, and remark that we are not aware of

any theory to predict and locate hubs. The parameter

organization around hubs, in particular the regular spiral

nesting, sheds new light on matters which seemed already

well explored. We observed hubs and spirals in a broad

spectrum of oscillators such as the Rössler equations, in

variations of Chua’s circuit, in certain chemical and bio-

logical oscillators and, therefore, expect them to be of

importance in several fields, beyond the electronic circuit

used as an illustrative example here. A key open question

now is to investigate what sort of dynamical phenomena

lead to hubs and spirals, the eventual role of homoclinic

orbits in their genesis, and the mechanisms inducing peri-

odicity transitions along and among spirals.
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Schuster (Wiley-VCH, Weinheim, 2007).

[2] J. Argyris, G. Faust, and M. Haase, Die Erforschung des

Chaos, Zweite Auflage (Springer, Berlin, 2008), 2nd ed.

[3] M. J. Ogorzalek, Chaos and Complexity in Nonlinear

Electronic Circuits (World Scientific, Singapore, 1997).

[4] Digital Communications Using Chaos and Nonlinear

Dynamics, edited by L. E. Larson, J.-M. Liu, and L. S.

Tsimrig (Springer, New York, 2006).

[5] R. J. Field and L. Györgyi, Chaos in Chemistry and

Biochemistry (World Scientific, Singapore, 1993).

[6] For a tutorial, see C. P. Silva, IEEE Trans. Circuit Syst. 40,

675 (1993); see also J. D. Meiss, Differential Dynamical

Systems (SIAM, Philadelphia, 2007).

[7] S. Wiggins, Global Bifurcations and Chaos (Springer,

New York, 1988).

[8] Y. A. Kusnetzov, Elements of Applied Bifurcation Theory

(Springer, New York, 1998).

[9] P. Glendinning, Stability, Instability and Chaos

(Cambridge University Press, Cambridge, England,

1994); P. Glendinning and C. Sparrow, J. Stat. Phys. 35,

645 (1984).

[10] G. Nicolis, Introduction to Nonlinear Science (Cambridge

University Press, Cambridge, England, 1995); P. Gaspard,

R. Kapral, and G. Nicolis, J. Stat. Phys. 35, 697 (1984).

[11] B. Fiedler, in Dynamics of Nonlinear Waves in Dissipative

Systems: Reduction, Bifurcation and Stability, edited by

G. Dangelmayr, B. Fiedler, K. Kirchgässner, and
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FIG. 4 (color online). Severe ‘‘fractalization’’ of the basins of attraction of nonself-symmetric dual attractors in spiral B observed

when marching towards F . Black and white are basins of 	1. The other two colors are the basins of the dual pair.
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