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Periodicity of hermitian K-groups

by

A. J. BERRICK, M. KAROUBI AND P. A. ØSTVÆR�

Abstract

Bott periodicity for the unitary and symplectic groups is fundamental to topo-
logical K-theory. Analogous to unitary topological K-theory, for algebraic K-
groups with finite coefficients, similar results are consequences of the Milnor
and Bloch-Kato conjectures, affirmed by Voevodsky, Rost and others. More
generally, we prove that periodicity of the algebraic K-groups for any ring
implies periodicity for the hermitian K-groups, analogous to orthogonal and
symplectic topological K-theory.

The proofs use in an essential way higher KSC -theories, extending those
of Anderson and Green. They also provide an upper bound for the higher
hermitian K-groups in terms of higher algebraic K-groups.

We also relate periodicity to étale hermitian K-groups by proving a hermitian
version of Thomason’s étale descent theorem. The results are illustrated in
detail for local fields, rings of integers in number fields, smooth complex
algebraic varieties, rings of continuous functions on compact spaces, and
group rings.

Key Words: Bott periodicity, higher hermitian K-groups, KSC -theories, étale
cohomology.
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0. Introduction and statements of main results

By the fundamental work of Bott [11] it is known that the homotopy groups of
classical Lie groups are periodic, of period 2 or 8. For instance, the general linear
and symplectic groups satisfy the isomorphisms:

�n.GL.R//Š �nC8.GL.R//

�n.Sp.C//Š �nC8.Sp.C//

�First and second authors partially supported by the National University of Singapore R-146-000-
097-112. Third author partially supported by RCN 185335/V30.
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�n.GL.C//Š �nC2.GL.C//

These periodicity statements were interpreted by Atiyah, Hirzebruch and others in
the framework of topological K-theory of a Banach algebra A: recall that there are
isomorphisms

K top
n .A/ŠK

top
nCp.A/,

where K
top
n .A/ D �n�1.GL.A// if n > 0 and K

top
0 .A/ D K.A/ is the usual

Grothendieck group. Here p is the period which is 2 or 8 according as A is complex
or real. We refer to [37] and [50] for an overview of the subject, both algebraically
and topologically.

A few years later, after higher algebraic K-theory was introduced by Quillen,
an analogous periodicity statement was sought, of the form

Kn.A/ŠKnCp.A/,

where A is now a discrete ring. The first computations showed that a periodicity
isomorphism of this form is far from true in basic examples. However, if we
consider K-theory with finite coefficients, and n is at least a certain bound d ,
then some periodicity conjectures appeared feasible, at least for certain rings of
a geometric nature. These conjectures were formulated for different prime power
coefficient groups, and are essentially of the following type (n� d )

Kn.AIZ=m/ŠKnCp.AIZ=m/.

The relationship between the prime power m and the associated smallest period
p is given by the following convention, which we maintain throughout the paper.

Convention 0.1 For Z=m coefficients, where m D `� with ` prime, the smallest
period p is given by

p D
�

sup
�
8;`��1

�
if `D 2,

2.`� 1/`��1 otherwise.

Using techniques of algebraic geometry and a comparison theorem with étale
K-theory, numerous examples listed below showed that these conjectures hold. In
the case of a 2-power, the first three are particular cases of Theorem 2 in [52], based
on the fundamental work of Voevodsky [62]. In the case of an odd prime power, the
first four examples are consequences of the Bloch-Kato conjecture.

Before giving these examples, we define the mod 2 virtual étale cohomological
dimension vcd2.A/ of a commutative ring A as the mod 2 étale cohomological
dimension of A˝ZZŒ�4� obtained by adjoining a primitive fourth root of unity to A.
For convenience, if ` is odd, then vcd`.A/ denotes the mod ` étale cohomological
dimension cd`.A/ of A. For ` fixed, here are the examples we consider.
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1. Any field k of characteristic char.k/¤ ` for which vcd`.k/ <1. In this case,
d D vcd`.k/� 1 if vcd`.k/¤ 0 and d D 0 otherwise.

2. The ring OF Œ1=`� of `-integers in any number field F . In this case, d D
vcd`.F /� 1D 1 (cf. [43] when `D 2).

3. Any finitely generated and regular ZŒ1=`�-algebra A with finite mod ` virtual
étale cohomological dimension. In this case d D supfvcd`.k.s//�1;0g, where
k.s/ is the residue field at any point s 2 Spec.A/. The same statement holds
when replacing ZŒ1=`� by Q or by any other field k of characteristic ¤ `.
The regularity assumption on A can be dispensed with when working with
negative K-theory [4], [30], [31], [61]. As shown in [53, Theorem 4.5], this
does not change the bound d .

4. Group rings RŒG�, where G is finite and R is a ring of `-integers in a number
field, as shown in [66]. Here d D 1. For some explicit computations see [42].

5. The ring C.X/ of real or complex continuous functions on a compact space
X , as shown in [18], [46]. In this case d D 1.

In these examples, the periodicity isomorphism between the groups Kn.AIZ=m/

and KnCp.AIZ=m/ is defined by taking cup-product with a “Bott element” bK . For
p D 2��1 with � � 4, one can construct this element in the group Kp.ZIZ=2p/,
such that its image in the topological K-group1 Kp.RIZ=2p/ Š Z=2p is the class
mod2p of a generator in Kp.R/Š Z. The cup-product alluded to above is a pairing

[ WKn.AIZ=m/�Kp.ZIZ=2p/ �!KnCp.AIZ=m/.

We refer to Section 1 for precise definitions and the extension to odd prime powers.
As we can see in these examples, a key role is played by the infinite general

linear group GL.A/. However, it was already shown in the works of Bott and Borel
[10], and also in topological applications, that other infinite series associated to
classical Lie groups may be considered as well. More precisely, if we consider a ring
with involution A and a sign of symmetry "D˙1 generalizing the orthogonal ("D
1) or symplectic ("D �1) case, one defines higher hermitian K-groups, denoted in
this paper "KQn.A/, in a parallel way to algebraic K-groups Kn.A/. These groups
are associated to the infinite "-orthogonal group "O.A/. A typical example is when
A is commutative and " D �1, in which case one recovers the infinite symplectic

1We shall write Kn instead of K
top
n when dealing with the field R of real numbers or the field C

of complex numbers with their usual topology, and likewise for spectra.
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group on A. We refer to the survey paper [37] already mentioned above for precise
definitions.

The main purpose of this paper is to show that a periodicity statement in
algebraic K-theory implies a similar one in KQ-theory, when 1=2 2 A. Since KQ-
theory with coefficients Z=m, with mD 2� , is the most important and difficult case,
we state the main theorems in this context, leaving the case of odd prime power
coefficients to the end of this Introduction and to Section 5 of the main body of the
paper.

For the first step in the argument, we introduce a parameter q that is essentially
p, apart from a slight modification in the case m D 16. Specifically, we make the
following convention.

Convention 0.2

q D

8
<
:

8 if m� 8,
16 if mD 16,
m=2 otherwise.

In other words, q D p except when m D 16, in which case q D 2p. It
is meaningful to speak of periodicity maps raising dimension by q, since q is a
multiple of p.

As a convenient notation, we write KQ (resp. K) for the KQ-theory (resp. K-
theory) with coefficients in Z=m, the relationship between m and the period p being
as in Convention 0.1. One of our main theorems is the following.

Theorem 0.3 With the above definitions, assume that there exists an integer d such
that the cup-product map

[bK WKn.A/ �!KnCp.A/

with the Bott element in Kp.ZIZ=2p/ is an isomorphism whenever n � d . Then,
for n� d C q� 1, there is also an isomorphism

"KQn.A/Š "KQnCp.A/.

Surprisingly, the isomorphism between the KQ-groups is in general not given
by cup-product with a Bott element (see Remark 4.8 in Section 4). This relates to
the fact that hermitian K-theory possesses more than one Bott element, as we now
describe. Whereas in algebraic K-theory universal Bott elements are to be found in
the K-groups of the integers Z, here, because we are working with rings containing
1=2, our Bott elements are to be found in the hermitian K-groups of the ring of
2-integers Z0 D ZŒ1=2�.
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As in algebraic K-theory, using the methods of [5], in this paper we prove
the existence of a “positive Bott element” bC in 1KQp.Z0IZ=2p/ whose image
in Kp.Z0IZ=2p/ŠKp.ZIZ=2p/ is the Bott element in K-theory alluded to above.

On the other hand, one of the main differences between algebraic and hermitian
K-theory in our context is the existence of another element2 u in �1KQ�2.Z0/,
which plays an important role in the fundamental theorem in hermitian K-theory
[33]. We now define the negative Bott element b� in hermitian K-theory to be the
image of the element up=2 in the group 1KQ�p.Z0IZ=2p/.

To make the statement of Theorem 0.3 more precise, we note that the cup-
product with the positive Bott element in 1KQp.Z0IZ=2p/ determines a direct
system of abelian groups

"KQn.A/ �! "KQnCp.A/ �! "KQnC2p.A/ �! ��� .

Symmetrically, cup-product with the negative Bott element in 1KQ�p.Z0IZ=2p/

determines an inverse system of abelian groups

��� �! "KQnC2p.A/ �! "KQnCp.A/ �! "KQn.A/.

The theorem above can now be restated in a more precise form. (Recall that the
overbar denotes Z=m coefficients.)

Theorem 0.4 Let A be any ring (with 1=2 2 A), m, p and q be 2-powers as in
Conventions 0.1 and 0.2, and let d 2 Z, such that the cup-product with the Bott
element bK in Kp.ZIZ=2p/ induces an isomorphism

Kn.A/
Š�!KnCp.A/

whenever n� d . Then, for n� d , there is an exact sequence

��� ��

�! "KQnC1.A/
�C

�! lim�!"KQnC1Cps.A/

! lim �"KQnCps.A/
��

�! "KQn.A/
�C

�! lim�!"KQnCps.A/

where �C (respectively ��) is induced from the cup-product with the positive Bott
element bC (resp. the negative Bott element b�). Moreover, for n� dCq�1, there
is a short split exact sequence

0! lim �"KQnCps.A/
��

�! "KQn.A/
�C

�! lim�!"KQnCps.A/! 0:

2We recall that the negative K-groups of a regular noetherian ring (for instance Z or Z0) are trivial.



434 A. J. BERRICK, M. KAROUBI AND P. A. ØSTVÆR

It turns out that the inverse limit is not always trivial. This point is discussed in
Section 2 (where the inverse limit vanishes) and Section 4 (where it does not).

However, for rings of geometric nature and of finite mod 2 virtual étale
cohomological dimension, we conjecture that the inverse limit is trivial.

Definition 0.5 We say that a ring A is hermitian regular if lim �"KQnCps.A/ and

lim �
1

"KQnCps.A/ are trivial3.

Remark 0.6 It should be noted that subsequent to the original submission of this
paper at the beginning of February 2010, as a consequence of a more recent theorem
of Hu, Kriz and Ormsby [25] in characteristic 0, the authors and M. Schlichting
proved independently that a field of characteristic 0 that is of finite mod 2 virtual
étale cohomological definition is hermitian regular. Furthermore, Schlichting
extended this theorem for fields of characteristic p > 0 with the same cohomological
properties. This affirms Conjecture 6.6 of the present paper, which implies in turn
our Conjecture 0.14 and therefore considerably extends the number of examples
of commutative rings (and schemes) that are hermitian regular. The details of
the proofs will appear in a forthcoming joint paper of the authors and Schlichting
[7]. A particular example quoted below is given by suitable rings of integers in a
number field. In Theorem 0.10, we state the periodicity theorem in this case with
an independent proof which will be given in Section 2. A more general theorem is
as follows.

Theorem 0.7 Let A be a ring which is hermitian regular and satisfies the hypothesis
of the previous theorem for its K-groups. Then for n � d , the cup-product with the
positive Bott element induces an isomorphism

"KQn.A/
Š�! "KQnCp.A/:

More generally, in order to fully exploit the spectrum approach and to improve
the previous theorems, we may consider a pointed CW-complex X and define the
group KX .A/ as the group of homotopy classes of pointed maps from X to K.A/,
where K denotes the K-theory spectrum. If X is a pointed sphere Sn, we recover
Quillen’s K-group Kn.A/. For brevity, we shall also write KXCt .A/ instead of
KX^S t .A/, and KX�t .A/ instead of KX .S tA/, where S tA denotes the t-iterated
suspension of A (see for instance [37] for the definition of the suspension and
the basic definitions of various K-theories). We adopt the same conventions for
hermitian K-theory, and also for algebraic or hermitian K-theory with coefficients,
and finally for spectra.

3As a matter of fact, with our hypothesis about periodicity of the K-groups, we always have
lim1 D 0; since the inverse system satisfies the Mittag-Leffler condition as we shall see in Sections 3
and 4.
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The previous theorem can now be generalized as follows.

Theorem 0.8 Let A be any ring (with 1=2 2 A), m, p and q be 2-powers as in
Conventions 0.1 and 0.2, and let d 2 Z, such that the cup-product with the Bott
element bK in Kp.ZIZ=2p/ induces an isomorphism

Kn.A/
Š�!KnCp.A/

whenever n� d . Then, if X is a .d�1/-connected space, there is an exact sequence

"KQXC1.A/
�C

�! lim�!"KQXC1Cps.A/

�! lim �"KQXCps.A/
��

�! "KQX .A/
�C

�! lim�!"KQXCps.A/! ��� :

If X is .d C q� 2/-connected, there is a split short exact sequence

0! lim �"KQXCps.A/
��

�! "KQX .A/
�C

�! lim�!"KQXCps.A/! 0.

Finally, if A is hermitian regular and if X is .d�1/-connected, the cup-product with
the positive Bott element induces an isomorphism

"KQX .A/Š "KQXCp.A/.

Corollary 0.9 For any .d C q � 2/-connected space X and A as above (not
necessarily hermitian regular), there is a periodicity isomorphism

"KQX .A/Š "KQXCp.A/.

For suitable subrings AS in a number field F , the previous results may be stated
more precisely, by using the methods of [6]. The rings AS , defined in Section 2
below, generalize both the ring of S-integers (when S is finite) and the number field
F itself. (More general examples are considered in Section 6 and in [7].)

Theorem 0.10 Let F be a totally real 2-regular number field as considered in [6];
also, let m and p be 2-powers as in Convention 0.1. Then, for all integers n > 0,
the inverse limit lim �"KQnCps.AS / is trivial (i.e. AS is hermitian regular) and the
“positive” Bott map

ˇn D [bC W "KQn.AS / �! "KQnCp.AS /

is an isomorphism. More generally, if X is any connected CW-complex, the Bott
map

ˇX W "KQX .AS / �! "KQXCp.AS /

is an isomorphism.
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For completeness we mention the odd-primary analog of Theorem 0.4, which is
proved in Section 5. Its applications are related to the Bloch-Kato conjecture as we
mentioned at the beginning. We note that the hypothesis 1=2 2 A may be dropped
in this case.

Theorem 0.11 Let p and m be odd prime powers as in Convention 0.1. Let bK

be the associated Bott element in Kp.ZIZ=m/ (see Section 1 for details). Now let
A be any ring and assume that, whenever n � d , cup-product with bK induces an
isomorphism

Kn.A/ŠKnCp.A/.

Then there exists a “mixed Bott element” b in 1KQp.Z0/ such that for n � d , the
cup-product with b induces an isomorphism between the related KQ-groups

ˇn W "KQn.A/
Š�! "KQnCp.A/.

More generally, if X is a (d �1)-connected CW complex, then the cup-product map
with b induces an isomorphism

ˇX W "KQX .A/
Š�! "KQXCp.A/.

In Section 6 we note that work in progress by Schlichting [56] allows us
to extend our results from commutative rings to schemes S that are separated,
noetherian and of finite Krull dimension. More precisely, following Jardine’s
method for algebraic K-theory [29] we define an “étale” KQ-theory, denoted

by "KQ
Ket
n.S/, where the coefficient groups are prime powers. The étale KQ-

theory shares many properties with the étale K-theory introduced by Dwyer and
Friedlander [15]. For example, there exists a comparison map

� W "KQn.S/ �! "KQ
Ket
n.S/.

For odd prime powers, there is an involution on the odd torsion group "KQn.S/.

Let "KQ
Ket
n.S/C and "KQ

Ket
n.S/� denote the corresponding eigenspaces. On the other

hand, for any prime power (odd or even), the cup-product map with the Bott element
bC defined above induces a direct system of groups, whose colimit we shall denote
by "KQn.S/

�
ˇ�1

�
, in the notation of [60]. Next, we state two theorems and a

conjecture in this context.

Theorem 0.12 With the coefficient group Z=`� , where ` is an odd prime, there is
an isomorphism

"KQn.S/
�
ˇ�1

�
Š "KQ

Ket
n.S/
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for all n if cd`.S/ <1. Moreover, the comparison map � induces an isomorphism

"KQn.S/C Š "KQ
Ket
n.S/

for n� supfcd`.k.s//� 1gs2S .

Recall that S is uniformly `-bounded with bound d if for all residue fields k.s/

we have cd`.k.s// � d . In the event that S is uniformly `-bounded with bound d ,
then cd`.S/ � nC d where n denotes the Krull dimension of S ; an elegant proof
for this inequality is given in [39, Theorem 2.8].

At the prime 2 we prove the following theorem, reminiscent of the main results
in [16] and in [60].

Theorem 0.13 With the coefficient group Z=2� , there is an isomorphism

"KQn.S/Œˇ�1�Š "KQ
Ket
n.S/

for all n if vcd2.S/ <1. Moreover, the comparison map

� W "KQn.S/ �! "KQ
Ket
n.S/

is a split surjection for n� supfvcd2.k.s//� 1gs2S C q� 1.

More generally, we make the following conjecture.

Conjecture 0.14 With the coefficient group Z=2� the map � is bijective whenever
n� supfvcd2.k.s//� 1gs2S .

Using algebro-geometric methods, in Theorem 6.5 below we show how to
reduce this conjecture to the case of fields. As mentioned above, the characteristic 0

case was solved independently by the authors and M. Schlichting, while the positive
characteristic case was solved by Schlichting. A proof of this conjecture in general
will appear in a joint paper with Schlichting [7].

Let us now briefly discuss the contents of the paper.
In Section 1, for 2-power coefficients we carefully construct the Bott elements

that play an important role in this work, as referred to above.
Section 2 is somewhat independent of the other sections. In particular, we prove

a refined version of our theorems in the case A is the ring of integers in a totally
real 2-regular number field. (This version is a particular case of the considerations
in Section 6 for schemes. Assuming Conjecture 0.14, which will be proven in
[7], Theorem 2.1 may be given an independent proof in a much more general
framework.)

In Section 3, we introduce what we call “higher KSC -theories”. These
theories in some sense measure the deviation of “negative” periodicity of the KQ-
groups. On the other hand, they are built by successive extensions of the K-groups.
Therefore, they are periodic if the K-groups are periodic.
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Section 4 is devoted to the proof of our main Theorems 0.4 and 4.5 (for arbitrary
rings with 2 invertible and mod 2� coefficients). The proof is roughly divided into
two steps as follows. In the first one, we prove a cruder periodicity statement
for n � d C q � 1. In the second, we use the KQ-spectrum and an argument
about cohomology theories to prove the periodicity theorems in full generality. We
conclude this section with an upper bound of the KQ-groups in terms of the K-
groups.

In Section 5, we study the case of odd prime powers, which is paradoxically
simpler in our framework. The main observation is that the KQ-ring spectrum splits
naturally as the product of two ring spectra, the first one being the “symmetric” part
of the K-theory spectrum.

Section 6 is more geometric in nature and generalizes the previous consider-
ations (when A is commutative) to noetherian separated schemes of finite Krull
dimension. Here we rely heavily on the fundamental theorem in hermitian K-theory
proved in the scheme framework by Schlichting [56].

Finally, Sections 7 and 8 are devoted to selected applications: rings of integers
in number fields, smooth complex algebraic varieties, and rings of continuous
functions on compact spaces. Another application, to hermitian KQ-theory of
group rings, is a consequence of an appendix to this paper by C. Weibel [66].

Acknowledgments: We warmly thank the referee for very relevant comments on
a previous version of this paper. We extend our thanks to Marco Schlichting for
discussions resulting in our joint work [7].

1. Bott elements in K- and KQ-theories

Let ` be a prime number and S0=`� the mod `� Moore spectrum. In [1, §12], Adams
constructed KO�-equivalences

A`� W†pS0=`� �! S0=`� .

The dimension shift p is supf8;2��1g if `D 2 and 2.`�1/`��1 if ` is odd. As shown
by Bousfield in [12, §4], work of Mahowald and Miller implies that a spectrum E

is KO-local if and only if its mod ` homotopy groups are periodic via A` for every
prime `. We shall refer to the periodicity manifested in KO-local spectra as Bott
periodicity. Note that KO-localizations are the same as KU-localizations [12, §4].

In general there are several choices of an element A`� as above if the only
criterion is that it induces a KO-isomorphism. We are interested in particular
choices of elements pertaining to classical Bott periodicity. Let u denote a generator
of the infinite cyclic group �2.BU /. Then for r � 1 the Bott element u2r in
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�4r.BU / is independent of the choice of u. We denote by v the element of
�8r.BO/ mapping to the Bott element in �8r.BU / under the map induced by
complexification c W BO! BU .

The mod 2� Bott element in degree 8r > 0 is the generator

v D idS0=2�^v 2KO8r.S0=2� IZ=2�/D ŒS0=2� ;KO^S0=2� �8r .

The element A2� is called an Adams periodicity operator if it maps to the mod 2�

Bott element in degree p under the naturally induced KO-Hurewicz map

��.S
0=2� IZ=2�/!KO�.S

0=2� IZ=2�/

for S0=2� . When ` ¤ 2, the definition of a mod `� Bott element is the same as
above, except that KO is replaced by KU . Crabb and Knapp [14] have shown that
there exist Adams periodicity operators for all ` and � � 1.

By smashing the unit map S0! E of a ring spectrum E with S0=`� and pushing
forward the class in �p.S0=`� IZ=`�/ represented by the map A`� , one obtains a
class in the group �p.E IZ=`�/ that we call a Bott element.

Next, for m D 2p; where p D 2��1 is a 2-power � 8, we study mod m Bott
elements in more detail for K- and KQ-theory in the example of Z0. The case of an
odd prime is dealt with in Section 5.

To begin, we shall consider “Bott elements” in Kp.Z0IZ=m/ and

1KQp.Z0IZ=m/, whose images in Kp.RIZ=m/ and 1KQp.RIZ=m/, respectively,
are generators deduced from classical Bott periodicity for the real numbers (as KQ-
modules). This is well-known for the algebraic K-groups; it is included here for the
sake of completeness.

Bökstedt’s square of algebraic K-theory spectra introduced in [9]

K.Z0/# �! K.R/c
#

# #
K.F3/# �! K.C/c

#

was verified to be homotopy cartesian by Rognes-Weibel in [49], [65], as a
consequence of Voevodsky’s proof of the Milnor conjecture. Here # means 2-
adic completions and c means connective cover. Smashing with S0=2� yields a
homotopy cartesian square (an overbar indicates reduction mod m):

K.Z0/ �! K.R/c

# #
K.F3/ �! K.C/c
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Denote by K the corresponding mod m homotopy groups. By Bott periodicity and
the isomorphism Kp�1.Z0/!Kp�1.F3/, there is a split short exact sequence

0 �!Kp.Z0/ �!Kp.R/˚Kp.F3/ �!Kp.C/ �! 0.

On the other hand, Quillen’s homotopy fibration

�K.C/
‰3�1�! �K.C/ �!K.F3/ �!K.C/

‰3�1�! K.C/

yields an exact sequence

KpC1.C/
�m�!KpC1.C/ �!Kp.F3/ �!Kp.C/

�m�!Kp.C/,

and hence the isomorphisms

Kp.F3/Š mKp.C/Š Z=m.

Here nA denotes the kernel of the multiplication by n map on an abelian group A.
Hence, diagram chasing shows there are isomorphisms

Kp.Z0/ŠKp.R/ and Kp.Z0/ŠKp.F3/.

More precisely, there exists a Bott element bK in Kp.Z0/ mapping at the same time
to a generator of Kp.R/ and to a generator of Kp.F3/.

We proceed in the same manner in order to explicate Bott elements in hermitian
K-theory, having almost the exact same properties as their namesakes in algebraic
K-theory. More precisely, we shall prove the following theorem:

Theorem 1.1 Let p � 8 a 2-power and m D 2p. Then the group 1KQp.Z0IZ=m/

is isomorphic to Z=m˚Z=m˚Z=2. There is a Bott element bC in 1KQp.Z0IZ=m/

that maps at the same time to a generator of Z=m in 1KQp.F3IZ=m/Š Z=m˚Z=2

and to a generator of 1KQp.RIZ=m/, viewed as a module4 over 1KQ0.RIZ=m/.

Proof: In the following proof, we are going to use the results of [5, Theorem 6.1]
and [6, Theorems 1.2, 1.5]. In [5], it is shown that the square of hermitian K-theory
completed connective spectra

1KQ.Z0/c
# �! 1KQ.R/c

#

# #
1KQ.F3/c

# �! 1KQ.C/c
#

4The ring structure for KQ-theory with mod 2� coefficients is well-defined if � � 4.
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is homotopy cartesian (Recall that 1KQ.C/ is just KO.) Reducing mod m yields
another homotopy cartesian square:

1KQ.Z0/c �! 1KQ.R/c

# #
1KQ.F3/c �! 1KQ.C/c

This in turn gives rise to a short exact sequence

0 �! 1KQp.Z0/ �! 1KQp.R/˚ 1KQp.F3/ �! 1KQp.C/ �! 0, (1:1)

which splits since 1KQp.R/ is a direct sum of two copies of 1KQp.C/, say G ˚
G. The first copy of G, say G1, is generated by the image of 1 under the Bott
isomorphism 1KQ0.R/ Š 1KQp.R/ (see Appendix B in [6]). The splitting is
given by the isomorphism between 1KQp.C/ and the second copy of G, say G2.
Therefore, we get an isomorphism

1KQp.Z0/ŠG1˚ 1KQp.F3/:

In order to finish the proof of the theorem, we need to compute 1KQp.F3/. By
[19], there is a Bockstein exact sequence

0 �! Z=2 �! 1KQp.F3/ �! Z=m �! 0. (1:2)

In order to resolve this extension problem, consider the map

1KQ0.F3/=mD Z=m˚Z=2 �! 1KQp.F3/

given by cup-product with any element that maps to the generator of 1KQp.C/ Š
Z=m under the Brauer lift 1KQp.F3/ ! 1KQp.C/. This gives a splitting of the
exact sequence (1:2), and therefore 1KQp.F3/Š Z=m˚Z=2.

Remarks 1.2 By considering the forgetful map from the hermitian K sequence (1:1)
to its algebraic K counterpart, one sees that the Bott element of 1KQp.Z0IZ=m/

maps to the Bott element in the corresponding algebraic K-theory group under the
map induced by the forgetful functor. Moreover, all the results for F3 in the above
also hold for any finite field Ft with t elements, provided t �˙3 .mod 8/.

2. Proof of the periodicity theorem for totally real 2-regular number fields

Let A be the ring of 2-integers in a totally real 2-regular number field F with r real
embeddings. In [6], we proved that the square of hermitian K-theory 2-completed
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connective spectra
"KQ.A/c

# �!
Wr

"KQ.R/c
#

# #
"KQ.Ft /

c
# �!

Wr
"KQ.C/c

#

is homotopy cartesian (with t a carefully chosen odd prime and where # denotes
2-adic completion). Therefore, the mod 2� reduction of this square, namely

"KQ.A/c �!
Wr

"KQ.R/c

# #
"KQ.Ft /

c �!
Wr

"KQ.C/c

is also homotopy cartesian, since "KQ�1.A/ D 0 by Lemmas 3.11 and 3.12 in [6].
Using this square, we deduce an enhanced version of our periodicity theorem.

Theorem 2.1 For n � 0 and p D supf8;2��1g for � � 1, taking cup-product with
the positive Bott element in 1KQp.Z0IZ=2�/ induces an isomorphism

"KQn.AIZ=2�/Š "KQnCp.AIZ=2�/:

Proof: Cup-product with the Bott element in 1KQp.Z0IZ=2�/ induces an isomor-
phism of "KQ-groups for the rings Ft , R and C, where Ft is the finite field with
t elements. This is due to KO-localness of the corresponding hermitian K-theory
spectra, and an induction on the order of the coefficient group based on the five
lemma applied to the Bockstein exact sequence. Therefore, the result follows from
the five lemma together with the homotopy cartesian square above.

Remark 2.2 The isomorphism for n D 0 reflects the fact that 2-regularity implies
that there is no nontrivial 2-torsion in the Picard group of A.

We note that the number � was related to the choice of t � ˙3 .mod 8/ in
Theorem 1.1 (for A D Z0). However, the number t that makes the diagrams above
homotopy cartesian (for A totally real 2-regular) is different in general.

Therefore, we can improve the previous result by replacing m D 2� by M ,

which is the number m multiplied by the 2-primary factor m0 D
�

t2�1
8

�
2

of

.t2�1/=8 (compare with Lemma 2.9 in [6]). More precisely, we have the following
proposition.

Proposition 2.3 Let p D supf8;2��1g and consider the canonically induced map

1KQp.Z0IZ=2�/ �! 1KQp.AIZ=2�/.

The image of the Bott element b in 1KQp.AIZ=2�/ is the reduction mod 2� of a

class b mod M , with M Dm �
�

t2�1
8

�
2

as defined above.
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Proof: For brevity, we use the above notation, whereby m D 2� and M D mm0.
As in the case of Z0 considered in Section 1, we can write the following diagram of
exact sequences (where KQD 1KQ):

0

#
KQp.Rr IZ=m0/˚KQp.Ft IZ=m0/ !KQp.Cr IZ=m0/! 0

# #
KQp.AIZ=M/! KQp.Rr IZ=M/˚KQp.Ft IZ=M/ !KQp.Cr IZ=M/! 0

# # #
KQp.AIZ=m/! KQp.Rr IZ=m/˚KQp.Ft IZ=m/ !KQp.Cr IZ=m/! 0

# #
0 0

Chasing in this diagram shows the reduction map KQp.AIZ=M/!KQp.AIZ=m/

is surjective. Therefore, the Bott element b in KQp.AIZ=m/ is the reduction
mod m of a class b mod M which we shall call an exotic Bott element (we do
not claim, however, that b is unique).

Theorem 2.4 Let b be an exotic Bott element in the group 1KQp.AIZ=M/ defined
above. Then cup-product with b induces an isomorphism

ˇ W "KQn.AIZ=M 0/
Š�! "KQnCp.AIZ=M 0/

for every n� 0 and divisor M 0 of M .

Proof: We just copy the proof of Theorem 2.1, using the five lemma, since this
periodicity statement holds for the rings R;C and Ft (see the independent lemma
below for the field Ft ).

Lemma 2.5 Let Ft be a finite field with t elements and let p D supf8;2��1g and
mD 2� . Then the image of the Bott element by the canonical map

1KQp.Z0IZ=m/ �! 1KQp.Ft IZ=m/

is the reduction mod m of a class mod M 0 (with mjM 0) if and only if

.M 0/2 �m � ..t2� 1/=8/2,

where .i/2 is the 2-primary part of i .

Proof: We look at the following commutative diagram, with exact rows:

�! 1KQp.Ft IZ=M 0/ �! 1KQp�1.Ft /
�M 0

�! 1KQp�1.Ft /

# ˛M 0 # �M 02�� # id

�! 1KQp.Ft IZ=2�/ �! 1KQp�1.Ft /
�2�

�! 1KQp�1.Ft /
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The Bott element in the group 1KQp.Ft IZ=2�/ maps nontrivially into the group

1KQp�1.Ft / and its image is divisible by M 02�� . On the other hand, we know
by [19] that 1KQp�1.Ft / is cyclic of order M , where M is the 2-primary part of
.tp=2 � 1/, which is also the 2-primary part of .t2 � 1/ � p=4 by Lemma 2.7 in [6].
This number is also the 2-primary part of 2� �.t2�1/=8. Therefore, a simple diagram
chase shows that ˛M 0 is surjective if and only if M 0 jM .

Now let us consider a nonzero prime ideal p in A, and the quotient field A=p.
There is a commutative diagram

Z0 �! A=p

# #
A �! A=p

where the right vertical arrow is the identity map. Since the Bott element in the
KQ-group 1KQp.A=pIZ=2

�

/ is the reduction mod2� of a class mod M , where M

is a power of 2, we have an isomorphism

1KQp.A=pIZ=M/Š Z=M ˚Z=2

according to the computations of the KQ-theory of finite fields in [19] and Section
1. It follows that there is a periodicity isomorphism

"KQn.A=pIZ=M 0/Š "KQnCp.A=pIZ=M 0/

for n� 0 and any M 0 jM , given by the cup-product with an exotic Bott element. For
the next two results, we recall from [6, Proposition 2.1] that F contains a unique
dyadic prime (that is, prime ideal lying over the rational prime .2/). For any set S

of valuations in F including the dyadic valuation and the infinite ones, we define
AS to consist of the elements in F whose valuations not in S are non-negative.
Thus, when S is finite, AS is just the ring of S-integers. When S comprises only
the dyadic valuation and the infinite ones, AS D A; while, when S comprises all
valuations, AS D F .

Theorem 2.6 Let p D supf8;2��1g for � � 1. Then, for n > 0, cup-product with an
exotic Bott element in 1KQp.AIZ=M/ induces an isomorphism

ˇ W "KQn.AS IZ=M 0/
Š�! "KQnCp.AS IZ=M 0/

for any M 0 such that 2jM 0 jM .
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Proof: We use the homotopy fibration
_

"U.A=p/ �! "KQ.A/ �! "KQ.AS /

noted in [24], where p runs through all nonzero prime ideals in S . For the
corresponding mod M 0 reductions (indicated as usual by an overbar) where M 0 jM ,
there is a homotopy fibration

_
"U.A=p/ �! "KQ.A/ �! "KQ.AS /:

The maps in this fibration are compatible with cup-products with elements of
KQ�.A/. The U -theory spectra of finite fields are KO-local as we showed more
precisely above (this is a consequence of the same property for the K and KQ-
theories). From these facts, the five lemma implies the Bott periodicity isomorphism

"KQn.AS IZ=M 0/Š "KQnCp.AS IZ=M 0/

for n > 0, given by the cup-product with an exotic Bott element.

Theorem 2.7 Let AS be as before, and let b be an exotic Bott element in the group

1KQp.AIZ=M/. Then, for any connected CW-complex X , cup-product with b

induces an isomorphism

ˇ W "KQX .AS IZ=M 0/Š "KQXCp.AS IZ=M 0/

for any M 0 such that 2jM 0 jM . Moreover, when AS D A, the previous isomorphism
holds for any CW-complex, not necessarily connected.

Proof: By Theorem 2.6, the Bott map ˇ is an isomorphism when X is a sphere Sn

for n � 1. According to general facts about representable cohomology theories [8],
it follows that ˇ is also an isomorphism if X is a connected CW-complex, (finite or
infinite, thanks to Milnor’s lim1 exact sequence). If AS D A, then the Bott map ˇ

is also an isomorphism when X D S0. Therefore, the previous isomorphism holds
also for not necessarily connected CW-complexes.

3. Higher KSC-theories

The useful concept of topological K-theory based upon self conjugate vector
bundles KSC was introduced by Anderson [2] and Green [20]. In [33, p. 281],
for a ring A with involution, the spectrum KSC.A/ was defined as the homotopy
fiber of 1� � , where � is the duality functor in algebraic K-theory

� WK.A/ �!K.A/.
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The importance of KSC -theory becomes evident from the homotopy fibration [33,
p. 282]

KSC.A/ �!�"KQ.A/
�.2/

�!��1
�"KQ.A/,

which implies a long exact sequence (for legibility we omit the ring A in the
notation)

��� ! "KQnC2
s.2/

! �"KQn!KSCn! "KQnC1
s.2/

! �"KQn�1! ��� :

The morphism s.2/ between the KQ-groups is the periodicity map made explicit
in [33]. It is defined by taking cup-product with a generator of the free part of the
group

�1KQ�2.Z0/Š 1W0.Z0/Š Z˚Z=2.

(Recall our assumption that 1=2 2 A.) We should note that this cup-product induces
a morphism between cohomology theories, and thence the associated KQ-spectra
and KQ-spectra, according to Brown’s representability theorem.

It turns out that the KSC -groups measure the failure of negative Bott periodicity
for the KQ-groups. To keep track of the degree shift we let KSC .2/ (resp. KSC.2/)
denote the KSC -groups (resp. KSC -spectrum).

There exist higher analogs of this spectrum corresponding to degree shifts by 4,
8 and higher 2-powers.

The next version, denoted5 by "KSC.4/.A/, is the homotopy fiber of the
composite map

� .4/ W�"KQ.A/
�.2/

�!��1
�"KQ.A/

�.�2/�.2/

�! ��3
"KQ.A/.

Proposition 3.1 There exists a homotopy fibration of spectra

"KSC.2/.A/ �! "KSC.4/.A/ �!��2."KSC.2/.A//

and a long exact sequence (we again omit the ring A for convenience)

��� ! "KQnC2
s.4/

! "KQn�2! "KSC .4/
n ! "KQnC1

s.4/

! "KQn�3! ���.

5A priori, this theory depends on ". A proof of this statement may be found in Lemma 3.3 below.
For KSC -theory with coefficients, we can also argue by contradiction as in Lemma 3.13.
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Proof: This is just the observation that for two composable maps u and v, there
is a homotopy fibration F.u/ �! F.v ı u/ �! F.v/, where F.f / denotes the
homotopy fiber of some map f .

Iterating, for r > 4 a 2-power, we proceed similarly and define "KSC.r/.A/ as
the homotopy fiber of the map

� .r/ W�"KQ.A/ �!��rC1
"KQ.A/

where � .r/ D ��r=2� .r=2/ ı � .r=2/. In the other direction, if we allow the
convention "KSC.1/.A/D�K.A/, then from the original definition of KSC above
the following also holds for r D 2.

Proposition 3.2 For a 2-power r � 2, there is a homotopy fibration of spectra

"KSC.r=2/.A/ �! "KSC.r/.A/ �!��r=2
"KSC.r=2/.A/

and an associated long exact sequence

��� ! "KQnC2
s.r/

! "0KQnC2�r ! "KSC .r/
n ! "KQnC1

s.r/

! "0KQnC1�r ! ���

where "0 D�" if r D 2 and "0 D " if r > 2. ✷

Finally, we show that the higher KSC -theories depends on the sign of symmetry
".

Lemma 3.3 Let F be a finite field of characteristic ¤ 2. Then the group

1KSC
.4/
1 .F / is isomorphic to Z=2, while �1KSC

.4/
1 .F /D 0.

Proof: Let us drop the field F for notational convenience. Then the group

�1KSC
.4/
1 fits into the exact sequence

�1KQ3 �! �1KQ�1 �! �1KSC
.4/
1 �! �1KQ2 �! �1KQ�2.

We have �1KQ�1 D 0 by the same argument used in the proof of Lemma 3.11 in
[6], where we should replace RF by F . We also have �1KQ2 D 0 by a result of
Friedlander [19]. Therefore, �1KSC

.4/
1 .F /D 0.

On the other hand, the group 1KSC
.4/
1 fits into the exact sequence

1KQ3 �! 1KQ�1 �! 1KSC
.4/
1 �! 1KQ2

˛�! 1KQ�2.

For the same reason as above, we have 1KQ�1 D 0. We also have 1KQ2 D Z=2

by an analogous result of Friedlander [19]. The periodicity map ˛ can be factored
though the group �1KQ0 which is isomorphic to Z. Therefore, Ker(˛/D Z=2 and
the group 1KSC .4/ is isomorphic to Z=2.
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We can mimic the previous definitions by taking spectra or groups mod m,
where m is related to p according to our convention 0.1. In that case, we shall
write KQ instead of KQ, KSC instead of KSC , etc.

Proposition 3.4 Let d be the number defined in the Introduction (i.e. the starting
point of periodicity for the K-groups). Then for any 2-power r � 2, the positive
Bott map

� W "KSC
.r/

n .A/! "KSC
.r/

nCp.A/

is an isomorphism if n� d C r � 2.

Proof: We argue by iteration on the 2-power r , using the following diagram of
exact sequences from (3.2):

KSC
.r=2/

nC1�r=2! KSC
.r=2/

n ! KSC
.r/

n ! KSC
.r=2/

n�r=2! KSC
.r=2/

n�1

# # # # #
KSC

.r=2/

nCCpC1�r=2! KSC
.r=2/

nCp! KSC
.r/

nCp! KSC
.r=2/

nCp�r=2! KSC
.r=2/

nCp�1

(3:3)
Commutativity of this diagram follows from the fact that the vertical maps are
induced by cup-product with the positive Bott element in KQ-theory as constructed
in Section 1, and that all maps are KQ-module maps. By induction, we know that
the vertical maps, with the possible exception of the middle one, are isomorphisms
if n � r=2 � d C r=2 � 2, that is n � d C r � 2. We conclude thanks to the five
lemma.

Remark 3.5 A variant of this proposition is to consider a parameter space X instead
of a sphere Sn. More precisely, by the method of proof of Theorem 2.7, the Bott
map

� W "KSC
.r/

X .A/! "KSC
.r/

XCp.A/

is an isomorphism if the space X is .d C r � 3/-connected.

Next we consider the failure of positive p-periodicity in hermitian K-theory.
This is encoded in the homotopy fiber of the periodicity map given by the cup-
product with the positive Bott element

"KQ.A/ �!�p
"KQ.A/,

which we shall denote by P"KQ.A/. In the same way, we denote by PK.A/ the
homotopy fiber of the periodicity map in K-theory

K.A/ �!�pK.A/.

According to our general assumptions, the homotopy groups P Kn.A/ of PK.A/

vanish if n � d . On the other hand, we can introduce, cf. [33], the homotopy fibers
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P"U.A/ and P�"V.A/ of the hyperbolic and forgetful maps PK.A/! P"KQ.A/

and P�"KQ.A/! PK.A/, respectively.

Proposition 3.6 There is a homotopy equivalence

P�"V.A/'�.P"U.A//.

Moreover, the composition

�2.P"KQ.A// �!�.P"U.A//' P�"V.A/ �! P�"KQ.A/

is induced by cup-product with the negative Bott element in the group �1KQ�2.Z0/.

Proof: The fundamental theorem of hermitian K-theory [33] exhibits an explicit
homotopy equivalence (given both ways) between the spectra �"V.A/ and �"U.A/.

Moreover, with the notation KQ.Z0/ D 1KQ.Z0/_ �1KQ.Z0/, these maps are
KQ.Z0/-module maps. Therefore, the reduction mod m of these spectra is also a
homotopy equivalence. Since the composition

�2.P"KQ.A// �!�.P"U.A//' P�"V.A/ �! P�"KQ.A/

is a KQ.Z0/-module map, it is defined by the cup-product with the negative Bott
element, as proved in [33].

Lemma 3.7 If P Kn.A/D 0 for n� d , then the negative Bott map

P "KQnC2.A/! P�"KQn.A/

is an isomorphism for n� d and is a monomorphism for nD d � 1.

Proof: This follows from the diagram (A omitted) with exact rows

P KnC2 �! P "KQnC2 �! P "
NUnC1 �! P KnC1

#Š
P KnC1 �! P�"

NVn �! P�"KQn �! P Kn

the vertical isomorphism being a consequence of the fundamental theorem in
hermitian K-theory.

Iteration of this Bott map induces a further isomorphism

P "KQnC4.A/
Š�! P "KQn.A/.

The classical induction method [5, (3.5)], adapted to this case, enables us to prove
the following theorem. We recall that the overbar over the KQ indicates reduction
modm, where m was defined in the Introduction. Strictly speaking, one has to
take m � 16, in the theorem, so that KQ�.Z

0/ is an associative ring — see
Footnote 4. However, if m < 16, we can consider all these groups as modules
over KQ�.Z

0IZ=16/ and the Bott map still makes sense.
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Theorem 3.8 Assume that P Kn.A/ D 0 for n � d . Assume moreover that
P "KQn.A/ D 0 for " D ˙1 and for n D d and d C 1. Then the cup-product
with the Bott element in 1KQp.Z0/ induces a morphism

ˇn W "KQn.A/
Š�! "KQnCp.A/

which is an isomorphism for n� d C 1 and a monomorphism for nD d .

Proof: The 2-periodicity of the P KQ-groups shown above (with a change of
symmetry) implies that P "KQn.A/ D 0 for n � d and " D ˙1. From the exact
sequence

P "KQn.A/ �! "KQn.A/
ˇn�! "KQnCp.A/ �! P "KQn�1.A/;

we deduce the required isomorphism (starting from n D d C 1) and a monomor-
phism for nD d .

Unfortunately, this strategy is not efficient to establish Bott periodicity because
the starting point of the induction is not always valid (see the end of Section 4
for counterexamples and Section 2 for examples). Therefore, we are going to
take another approach towards Bott periodicity. From now on, we often assume
implicitly that the K-groups are periodic starting in degree d . More precisely, the
Bott map

Kn.A/ �!KnCp.A/

is an isomorphism for n � d , which implies that P Kn.A/ D 0 in the same range.
Our aim is to prove a similar periodicity assertion for KQ-theory, as we announced
in the Introduction.

Let us investigate in detail the composition of the two “opposite” periodicity
maps

"KQ.A/
u�!�q

"KQ.A/
v�! "KQ.A/.

Proposition 3.9 Let m and q be 2-powers as in Convention 0.2. Then the cup-
product between the images of the negative and positive Bott elements in

1KQ˙q.Z0IZ=m/

is reduced to 0. Therefore, the compositions v ıu and u ı v are nullhomotopic.

Proof: Since, by e.g. [5, pp. 797, 799], 1KQ0.Z0IZ=m/ embeds in

1KQ0.RIZ=m/˚ 1KQ0.F3IZ=m/, we consider separately the projections of the
composites to each summand. In each case, the key point is that the negative Bott
element is a power of an element in degree �2.
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Projection to 1KQ0.RIZ=m/. We compute the cup-product of the two Bott
elements, using the first step in [36, Lemma 1.1]6, that is, the twelve-term exact
sequences of [33] for both Z0 and the topological ring R. As in [36, Lemma 1.1],
they show that the map

Z˚Z=2Š 1W�4.Z0/ �! 1W�4.R/Š Z

is given by .w;˛/ 7! 2z where z generates 1W�4.R/. We now use some standard
facts:

(i) there is a multiplicative isomorphism between Kn.R/ and 1Wn.R/ for all
n 2 Z [32, Théorème 2.3], and when n is a multiple of 8, each group is
Z, generator yn say;

(ii) the cup-square z2 of the generator z of K�4.R/ Š 1W�4.R/ is 4 times a
generator y�8 of K�8.R/Š Z;

(iii) the cup-square of any generator of the free part of 1W�4.Z0/ projects to a
generator of the free part of 1W�8.Z0/Š Z˚Z=2.

Let us write q D 2iC3 where i � 0. From these facts, under the map

Z˚Z=2Š 1W�q.Z0/ �! 1W�q.R/Š Z,

.w;˛/2iC1

is sent to .2z/2iC1 D 22iC1 � .4/2i

y�q D 2q=2y�q . Now consider the
commuting diagram

1W�q.Z0/Š Z˚Z=2
Š � 1KQ�q.Z0/Š Z˚Z=2 �! K�q.Z0/D 0

# # #
1W�q.R/Š Z  � 1KQ�q.R/Š Z˚Z �! K�q.R/Š Z

Since the two lower horizontal maps correspond to the cokernel of the hyperbolic
map (on the left) and to the signature map (on the right), they send a pair .u;v/ 2
Z˚Z to .u�v/y�q 2 1W�q.R/ and .uCv/y�q 2K�q.R/ respectively. Now, by (iii)
above, the element 1 2 Z� 1KQ�q.Z0/ may be taken as (up to sign) the projection
of .w;˛/2iC1

, and therefore maps both on the left to ˙2q=2y�q 2 1W�q.R/ and on
the right to 0 2 K�q.R/. Hence, the image .u;v/ 2 1KQ�q.R/ of 1 must have the
form ˙.2q=2�1;�2q=2�1/.

6Erratum: in the statement of Lemma 1.1 of [36], one should replace 8y by 16y because in the
proof the inclusion �1W

top
�6 ,!1W

0top
�8 is strict.
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Therefore, since always m � 2q=2�1 (the reason for the change from p to q), if
we now take KQ-theory with coefficients in Z=m, then the cup-product of the two
Bott elements may be written

� D .0;0;�/ 2 1KQ0.Z0IZ=m/Š Z=m˚Z=m˚Z=2,

as calculated from the Bockstein exact sequence

1KQ0.Z0/ �! 1KQ0.Z0/ �! 1KQ0.Z0IZ=m/ �! 1KQ�1.Z0/D 0

and Lemma 3.11 of [6]. Its image in 1KQ0.RIZ=m/ Š Z=m ˚ Z=m is thus
˙.2q=2�1;�2q=2�1/D .0;0/.

Projection to 1KQ0.F3IZ=m/. To compute the cup-product 
 of the images of the
two Bott elements in 1KQ˙q.F3IZ=m/, we exploit the definition of the negative
Bott element as the iterated power of an element in �1KQ�2.Z0/. Therefore, 


is the image of the positive Bott element in 1KQq.F3IZ=m/ under the following
composition:

1KQq.F3IZ=m/! �1KQq�2.F3IZ=m/! ��� ! 1KQ4.F3IZ=m/!
!�1KQ2.F3IZ=m/! 1KQ0.F3IZ=m/

According to Friedlander [19], we have �1KQ2.F3/D �1KQ1.F3/D 0. Therefore,
from another Bockstein exact sequence, �1KQ2.F3IZ=m/D 0, and hence 
 D 0.

Finally, for the last part of the proposition, we use well-known facts in
cohomology theories mod 2k [3, I. p. 75] to prove that the composite maps vıu and
uıv are nullhomotopic. More specifically, the multiplication by 2s on cohomology
theories mod2k is null-homotopic if s � k and s � 2.

For the next step, we need the following well-known Lemma (cf. [3, I. p. 75]
again) which is a consequence of the splitting of the multiplication by m0 on the
spectrum S0=m, where m and m0 are 2-powers defined below.

Lemma 3.10 Let h� be a cohomology theory represented by a spectrum S and m

be a 2-power. Let h�.�I Z=m/ be the associated cohomology theory represented by
the spectrum S=mD S ^S0=m. Finally, let Tm0 be the homotopy fiber of the map

S=m �! S=m

defined by the multiplication by a 2-power m0, where m0 � supf4;mg. Then we have
a canonical splitting

Tm0 � S=m��.S=m/.



Periodicity of hermitian K-groups 453

Let us denote by F the generic homotopy fiber of the maps described before the
lemma. There is a homotopy fibration

F.u/ �! F.v ıu/ �! F.v/.

According to the above considerations, F.u/ is the spectrum P"KQ.A/, while
F.v/ is the spectrum �q�1

"KSC.q/.A/. On the other hand, as a consequence
of Proposition 3.9 and the previous lemma applied to the spectrum of hermitian
K-theory, F.v ı u/ may be canonically identified with the product of spectra

"KQ.A/ � �"KQ.A/. Therefore, by taking homotopy groups of the previous
fibration, we get the exact sequence

KSC
.q/

nCq! P KQn!KQn˚KQnC1!KSC
.q/

nCq�1! P KQn�1 .

As a piece of convenient notation, set

KQn;nC1 DKQn˚KQnC1 .

More generally, we shall also use the notation KQX;XC1 for the direct sum
KQX ˚KQXC1.

Proposition 3.11 We have the following two diagrams of exact sequences where
the vertical maps are induced respectively by the cup-product with the negative or
positive Bott element:

P KQn ! KQn;nC1 ! KSC
.q/

nCq�1

" Pˇ0n " " � 0n

P KQnCq ! KQnCq;nCqC1 ! KSC
.q/

nC2q�1

and
P KQn ! KQn;nC1 ! KSC

.q/

nCq�1

# Pˇn # # �n

P KQnCq ! KQnCq;nCqC1 ! KSC
.q/

nC2q�1

In these diagrams, Pˇ0n is an isomorphism if n � d and a monomorphism if n D
d � 1. We also have Pˇn D 0 if n� d � 1. Finally, �n (resp. � 0n) is an isomorphism
(resp. the zero map) if n� d � 1.

Proof: The second diagram is included in a bigger one with horizontal exact
sequences of KQ.Z0/-modules, where we recall that KQ.Z0/ D 1KQ.Z0/ ˚
�1KQ.Z0/:

KSC
.q/

nCq !P KQn !KQn;nC1 !KSC
.q/

nCq�1 !P KQn�1

# # P ˇn # # #
KSC

.q/

nC2q !P KQnCq !KQnCq;nCqC1 !KSC
.q/

nC2q�1 !P KQnCq�1
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We claim that the second vertical map Pˇn is reduced to 0 if n � d � 1. In order to
see this, we consider the reverse map

Pˇ0n W P KQnCq �! P KQn

given by the cup-product with the negative Bott element. This is a monomorphism
for n � d � 1 according to Lemma 3.7. Since the cup-product between the positive
and the negative Bott elements is equal to 0 according to Proposition 3.9, we have
necessarily Pˇ0n D 0. On the other hand, as we have seen in Proposition 3.4, the
positive Bott map �n is an isomorphism

KSC
.q/

nCq�1 ŠKSC
.q/

nC2q�1

for nC q� 1� d C q� 2, i.e. for n� d � 1.
The reverse map � 0n is reduced to 0 since its composite with �n is trivial (note

that all maps in these diagrams are KQ.Z0/-module maps)..

Proposition 3.12 If n� d C q� 1, we have a split short exact sequence

0! P "KQn.A/! "KQn;nC1.A/! "KSC
.q/

nCq�1.A/! 0.

Proof: Let us consider a bigger diagram, where we now choose n� d C q� 1:

KSC
.q/

n ! P KQn�q ! KQn�q;n�qC1 ! KSC
.q/

n�1

�n�qC1 #Š # 0 # ˛n�q . 
 �n�q #Š
KSC

.q/

nCq ! P KQn ! KQn;nC1 ! KSC
.q/

nCq�1

�nC1 #Š # 0 # ˛n �n #Š
KSC

.q/

nC2q ! P KQnCq ! KQnCq;nCqC1 ! KSC
.q/

nC2q�1

We would like to insert a map 
 WKSC
.q/

n�1 �! KQn;nC1 that renders this diagram
commutative. For this, we consider the other composition

�q
"KQ.A/

v�! "KQ.A/
u�!�q

"KQ.A/.

We get a map from ��q.F.v// to ��q.F.u ı v// that induces the required map

 since u ı v is nullhomotopic. The commutativity of the above diagram with 


inserted is a consequence of the homotopy commutative square

�q
"KQ.A/

v�! "KQ.A/

#�q.u/ # u

�2q
"KQ.A/

�q.v/
�! �q

"KQ.A/
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where the vertical (resp. horizontal) maps are defined by the cup-product with
the positive (resp. negative) Bott element. Therefore, we get the short split exact
sequence

0 �! P KQn �!KQn;nC1 �!KSC
.q/

nCq�1 �! 0,

which is an abbreviated formulation of our Proposition.

Remark 3.13 The group "KQn;nC1 therefore decomposes in two distinct ways as
the direct sum of two groups, that is

"KQn;nC1 D "KQn˚ "KQnC1

and

"KQn;nC1 Š P "KQn˚ "KSC
.q/

nCq�1.

In the appendix to [6] and also in the theory of stabilized Witt groups [38], we
give many examples of rings A such that Kn.A/ D 0 for all n 2 Z and therefore

"KSC
.q/

nCq�1.A/ D 0. This implies that our two direct sum decompositions are not
the same in general, since we may choose A such that the two groups "KQn.A/ and

"KQnC1.A/ are not 0. Moreover, this remark may be used to show that the higher

"KSC -theory depends a priori on the sign of symmetry ". An example of this fact
is AD Z0, where we know that P "KQn.Z0/D 0. On the other hand, from the table
of the KQ-groups of Z0 [5], it is easy to see that 1KQn;nC1.Z0/¤ �1KQn;nC1.Z0/

in general.

For a better understanding of the periodicity statements we shall prove in full
generality in Section 4, let us consider the case where the 2-primary abelian groups

"KQn.A/ are finite. The category of finite 2-primary abelian groups is of course
well understood: its Grothendieck group (with respect to direct sums) is freely
generated by the groups Z=2k . On the other hand, it follows from Proposition 3.12
that the groups "KQn;nC1.A/ D "KQn.A/˚ "KQnC1.A/ are periodic of period q

with respect to n for n � d C q � 1. More precisely, P "KQn is periodic for n � d

according to Lemma 3.7 and "KSC
.q/

nCq�1 is periodic for nCq�1� d Cq�2, i.e.
for n� d � 1, according to Proposition 3.4.

Let us write ˛r for the class of the group "KQrCdCq�1 in the Grothendieck
group and put � D ˛q � ˛0. We have the identities ˛q D ˛0 C � , ˛qC1 D ˛1 � � ,
˛qC2 D ˛2C � , etc. In general, we may prove by induction on s the formula

˛rCqs D ˛r C .�1/rs�

when r � 0.
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Proposition 3.14 Let us assume that the cup-product with the Bott element induces
an isomorphism

Kn.AIZ=m/!KnCp.AIZ=m/

for n � d , and that the hermitian K-groups "KQn.AIZ=m/ are finite for n �
d C q� 1. Then these groups are periodic with respect to n when n� d C q� 1, of
period q. In particular, we have � D 0 in the formulas above.

Proof: In the previous computation, let us write

� D
kP

iD1

ui �
k0P

jD1

vj

where ui and vi are classes of nonzero irreducible modules and where k and k0 are
chosen minimal. We have the two identities, valid for all s � 0 :

˛qs D ˛0C s�

˛qsC1 D ˛1� s�

From the former, for all such s, the module s
k0P

jD1

vj is always a summand of

"KQdCq�1.AIZ=m/. Thus, k0 D 0. Likewise, from the latter identity, k D 0.
Hence, � D 0.

Another example of a periodicity statement in hermitian K-theory is to consider
the case where A is the ring with involution B � Bop. Here Bop is the opposite
algebra of B , the involution on A being defined by .b;b0/ 7! .b0;b/. It is easy to
see that "KQn.A/ Š Kn.B/ and that the negative periodicity map "KQn.A/ !
�"KQn�2.A/ is reduced to 0. Therefore, we have the isomorphisms

"KSCn.A/D "KSC .2/
n .A/ŠKnC1.B/˚Kn.B/,

and, more generally

"KSC .p/
n .A/ŠKnC1.B/˚Kn�pC2.B/

for p a 2-power. If we now reduce these theories mod m and assume the positive
p-periodicity of the associated K-groups (for n� d ), then the last identity can also
be written as

"KSC
.p/

nCp�1.A/ŠKnCp.B/˚KnC1.B/

ŠKn.B/˚KnC1.B/Š "KQn.A/˚ "KQnC1.A/,
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which is a particular case of (3.12), since P"KQn.A/ D 0. Note that the positive
Bott map

"KQn.A/! "KQnCp.A/

is here an isomorphism for n� d .
In the spirit of Thomason, one may consider the periodized KQ-theory, which

we shall denote by "KQn.A/
�
ˇ�1

�
D lim�!"KQnCps.A/. We have the following

theorem, quite similar to Connes’ exact sequence relating cyclic and Hochschild
homologies [13].

Proposition 3.15 Let us take n � d C r � 2. Then (with the ring A omitted from
notation) we have the exact sequence

��� ! "KQnC2

�
ˇ�1

�
! "0KQnC2�r

�
ˇ�1

�
! "KSC

.r/

n ! "KQnC1

�
ˇ�1

�

! "0KQnC1�r

�
ˇ�1

�
! ��� ! "KQd�1Cr

�
ˇ�1

�
! "0KQd�1

�
ˇ�1

�
;

where "0 D �" if r D 2 and "0 D " if r > 2. Moreover, if also r � q, we have a
splitting

"KSC
.r/

n .A/Š "KQnC1.A/
�
ˇ�1

�
˚ "KQnC2.A/

�
ˇ�1

�
.

Note that for r D q, this splitting is also proved in the beginning of the proof of
Theorem 4.2.

Proof: The first part of the proposition is a direct consequence of Proposition 3.4

showing that the KSC
.r/

-groups are periodic for n� d C r � 2.
For the second part, we notice that the map between the KQ-groups is 0, since

the cup-product between the positive and negative Bott elements is 0, according to
Proposition 3.9. Thus, the sequence decomposes into short exact sequences

0! "0KQnC2�r.A/
�
ˇ�1

�
�! "KSC

.r/

n .A/ �! "KQnC1.A/
�
ˇ�1

�
! 0.

Now, the inversion of ˇ yields an isomorphism

"0KQnC2�r.A/
�
ˇ�1

�
Š "KQnC2.A/

�
ˇ�1

�

since q jr . Finally, the splitting of these sequences is as before a consequence of
a general statement on cohomology theories. One has to replace n by a parameter
space X , as we shall also do in the next section.

Remarks 3.16 The most interesting cases of this proposition are when one has r D 2

or r D q. The proposition also shows that the groups "KSC
.r/

n .A/ are isomorphic
for r � q.
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4. Proof of the periodicity theorems

Our aim in this Section is essentially to prove Theorems 0.4 and 0.7. We begin with
a lemma showing that it suffices to consider only the parameter q of Convention 0.2,
rather than the desired period p of Convention 0.1 when dealing with direct or
inverse limits.

Lemma 4.1 Let m be a 2-power and p;q be as in Conventions 0.1 and 0.2; that is,

m p q

� 8 8 8

16 8 16

� 32 m=2 m=2

Then
lim�!"KQnCps.AIZ=m/D lim�!"KQnCqs.AIZ=m/

and
lim �"KQnCps.AIZ=m/D lim �"KQnCqs.AIZ=m/.

Proof: We may focus on the exceptional case where mD q D 16 and p D 8. Here,
by Theorem 1.1 there is a positive Bott element bC 2 1KQ8.Z0/, multiplication by
which gives rise to the direct system of abelian groups

"KQn.A/ �! "KQnC8.A/ �! "KQnC16.A/ �! "KQnC24.A/ �! ��� .

The direct limit of its subsystem

"KQn.A/ �! "KQnC16.A/ �! "KQnC32.A/ �! ���

appears in the exact sequence of Theorem 4.2 below. However, since this subsystem
is cofinal, its direct limit is precisely that of the original system. In other words, we
may replace the term lim�!"KQnC16s.A/ by lim�!"KQnC8s.A/.

Since the negative Bott element originates in �1KQ�2.Z0/, a similar argument
shows that the term lim �"KQnC16s.A/ may be replaced by lim �"KQnC8s.A/.

We now start the proof of the periodicity theorems which will be a consequence
of our considerations in Section 3.

Theorem 4.2 Let A be a ring with involution such that 1=2 2 A and let m and p

be 2-powers according to Convention 0.1. We assume the existence of an integer
d , such that the cup-product with the Bott element in Kp.ZIZ=m/ induces an
isomorphism

Kn.AIZ=m/
Š�!KnCp.AIZ=m/.
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for n� d . For such n, there is an exact sequence

��� �
C
n�! lim�!"KQnC1Cps.AIZ=m/! lim �"KQnCps.AIZ=m/

��
n�! "KQn.AIZ=m/

�
C
n�! lim�!"KQnCps.AIZ=m/,

which for n� d C q� 1 gives a split short exact sequence

0! lim �"KQnCps.AIZ=m/
��

n�! "KQn.AIZ=m/
�

C
n�! lim�!"KQnCps.AIZ=m/! 0.

Proof: For n� d , we consider the diagram of exact sequences of Propositions 3.11
and 3.12 (for convenience, we again drop the ring A and the sign of symmetry " in
the notation):

KSC
.q/

nCq ! P KQn !KQn;nC1 !KSC
.q/

nCq�1 ! P KQn�1

Pˇn# 0 # ˛n �n#Š
0 ! P KQnCq !KQnCq;nCqC1 !KSC

.q/

nC2q�1 ! 0

Since the direct limit of the P KQnCqs is equal to 0, we see that

lim�!KQnCqs;nC1Cqs ŠKSC
.q/

nCq�1 Š Im.˛nCq/

which has already been proven in Proposition 3.15.

We also have a reverse diagram of exact sequences

P KQn ! KQn;nC1 ! KSC
.q/

nCq�1!
Pˇ0n "Š " ˛0nCq � 0n " 0

0! P KQnCq ! KQnCq;nCqC1 ! KSC
.q/

nC2q�1! 0

(4:4)

where the vertical maps are now induced by the cup-product with the negative Bott
element. The first vertical map is an isomorphism, while the last one is reduced to
0, by Proposition 3.11.

From the splitting of exact sequences afforded by Proposition 3.12, we have

lim �KQnCqs;nC1Cqs Š lim �P KQnCqs Š Im.˛0nCq/Š P KQn

by Lemma 3.7.
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The first exact sequence in the first diagram above implies the exactness of the
middle row of the diagram

lim �KQnC1Cqs ! KQnC1

�
C

nC1! lim�!KQnC1Cqs

# # #

lim �KQnCqs;nC1Cqs

��

! KQn;nC1

�C

! lim�!KQnCqs;nC1Cqs

# # #

lim �KQnCqs

��
n! KQn

�
C
n! lim�!KQnCqs

(4:5)

Since the middle row is the direct sum of first and third rows, the exactness of the
middle row implies the exactness of the third row. We apply the same argument for
the left part of the required exact sequence.

Now suppose that n � d C q � 1. Then Proposition 3.12 implies that in the
diagram above �C is a split epimorphism. The result follows.

Recall from Definition 0.5 in the Introduction that a ring A is hermitian regular
if the inverse limits

lim
 �

KQnCps.A/ and lim
 �

1KQnCps.A/

are reduced to 0 for all n.

Examples 4.3 We remark that the second condition (with lim1) is always fulfilled if
A has a periodic K-group after a certain range, since in Section 3 we have shown
that the inverse system

˚
KQnCps.A/

	
satisfies the Mittag-Leffler property. We

have also seen in Section 2 that suitable rings of integers in a number field are
hermitian regular. On the other hand, according to Hu, Kriz and Ormsby [25] (resp.
Schlichting), if k is a field of finite mod 2 virtual étale cohomological dimension
and of characteristic 0 (resp. p), we have a homotopy equivalence

1KQ.k/'K.k/hZ=2.

Since Kn.k/ŠKnCp.k/ for n large enough by [52] and [62], the positive Bott map

1KQn.k/ �! 1KQnCp.k/

is also an isomorphism for n large enough. The same statement is true for the groups

�1KQn, as we see by relating the groups 1KQ;�1KQ and KSC (see Section 3).
As a conclusion, the negative Bott map

"KQnCp.k/ �! "KQn.k/
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is trivial for n large enough, which implies that k is hermitian regular by Theorem
4.2. More generally, as a special case of the results in Section 6 and a planned joint
paper with Schlichting [7], any commutative algebra A whose residual fields are all
of finite mod 2 virtual étale cohomological dimension is hermitian regular. In [7],
these results will be generalized in the scheme framework.

Remark 4.4 It is easy to see that the inverse systems of hermitian K-groups˚
"KQnCps.A/

	
and Witt groups

˚
"W nCps.A/

	
are equivalent since we have the

following factorization of the negative Bott map:

"KQnC8.A/! "W nC4.A/! "KQn.A/! "W n�4.A/.

Therefore, the lim and lim1 groups may as well be computed with higher Witt
groups.

Theorem 4.5 With the same hypotheses as in the previous theorem, let us assume
moreover that the ring A is hermitian regular. Then, for n � d , the positive Bott
map

"KQn.A/ �! "KQnCp.A/

is an isomorphism.

Proof: According to Theorem 4.2, it is enough to show that �C
d

is surjective. From
the long exact sequence of Proposition 3.2, we obtain the map of exact sequences

KQdCq

sdCq! KQd ! KSC
.q/

dCq�2 ! KQdCq�1

# # �C
d

#Š # 


lim�!KQdCqs

u! lim�!KQdCqs ! KSC
.q/

dC2q�2 ! lim�!KQd�1Cqs

(4:6)
Observe from Theorem 4.2 that 
 is injective because the inverse limits are reduced
to 0. Since u is defined by the cup-product with the negative Bott element, it is
reduced to 0. An elementary diagram chase now shows that �C

d
is surjective.

Although for simplicity we have presented the arguments only in the case where
X is a sphere, we observe that the groups obtained in the exact sequences of the
previous theorems can be considered as cohomology theories with respect to pointed
spaces X , if we replace the various spectra involved by their sufficiently connected
associated spectra (so that the low-dimensional cohomology groups are trivial).

In order to pass from exactness of the sequence to split exactness as we did at
the end of Section 3, we may appeal to a general fact about cohomology theories,
that any surjective morphism like

"�
C
X W "KQX .A/ �! lim�!"KQXCqs.A/
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always admits a section.
The following theorems are the analogs of the previous ones with a parameter

space X:

Theorem 4.6 Let A be a ring with involution such that 1=2 2 A, m, p and q be 2-
powers according to Convention 0.1 and 0.2. We assume the existence of an integer
d such that for n� d the cup-product with the Bott element in Kp.ZIZ=m/ induces
an isomorphism

Kn.AIZ=m/
Š�!KnCp.AIZ=m/.

(a) If X is .d C q� 2/-connected, we have a split short exact sequence

0! lim �"KQXCps.AIZ=m/
��

n�! "KQX .AIZ=m/
�

C
n�! lim�!"KQXCps.AIZ=m/! 0.

As a consequence, the groups "KQX .AIZ=m/ are “periodic” with respect to X of
period p, more precisely

"KQX .AIZ=m/Š "KQXCp.AIZ=m/.

In particular, if n� d C q� 1, there is an isomorphism

"KQn.AIZ=m/Š "KQnCp.AIZ=m/.

(b) Moreover, if A is hermitian regular, the previous statements are still true if we
replace the number q by 1.

Corollary 4.7 For A;X as in Theorem 4.6(a), and n � d C q � 1, the positive Bott
map

ˇn W "KQn.AIZ=m/ �! "KQnCp.AIZ=m/

has

(i) its image naturally isomorphic to the periodized KQ-theory, that is

Im.ˇn/Š lim�!"KQnCps.AIZ=m/,

and

(ii) its kernel and cokernel naturally isomorphic to lim �"KQnCps.AIZ=m/. Con-

sequently, if ˇn is either injective or surjective then it is an isomorphism.

Moreover, if A is hermitian regular, the same statements remain true on
replacing q by 1.
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Proof: Here, we chase the following commutative diagram, where the vertical
maps are given by the cup-product with the positive Bott element:

0! lim �"KQnCps.A/
��

�! "KQn.A/
�C

�! lim�!"KQnCps.A/ ! 0

# 0 # ˇn #Š

0! lim �"KQnCpCps.A/
��

�! "KQnCp.A/
�C

�! lim�!"KQnCpCps.A/ ! 0

Remark 4.8 One may ask if the map �Cn in Theorem 4.2 is an isomorphism in
general for n sufficiently large. This is not the case however, as is shown in the
Appendix C to [6] and in [38], where we give many examples of rings with trivial
K-theory and nontrivial KQ-theory. It follows from the 12-term exact sequence
of [33, p. 278], that for such rings ��n is an isomorphism. From the short exact
sequence of Theorem 4.2, �Cn must therefore vanish, although the KQ-theory is
nontrivial. Thus, �Cn fails to be an isomorphism. Other examples may be found in
the paper of Hu, Kriz and Ormsby [25] for commutative rings and schemes.

However, one may hope it is so for the examples of commutative rings A

considered in the Introduction, which are of “geometric nature”. See also Section 6
for an analogous conjecture in the category of schemes.

We finish this section with an application to the computation of the KQ-groups
in terms of the K-groups when these groups are finite. (This result formally dates
from the December 2010 resubmission of the paper.) For reading convenience, we
again suppress the index " 2 f˙1g.
Theorem 4.9 Let us assume the hypotheses of Theorem 4.6 and that for n � d the
Kn-groups are finite, of order kn . Then for n � d the KQn-groups are finite, of
order kqn subject to the inequality

kqnC kqnC1 � kd C kdC1C ���C kdCq�1

and equality kqn D kqnCq .

Proof: According to (3:3), there is an exact sequence

��� �!KSC
.r=2/

n �!KSC
.r/

n �!KSC
.r=2/

n�r=2 �! ��� .

In the case r D 2, the outer two groups are respectively KnC1 and Kn, and so
assumed finite when n � d . In general, if we denote by sr

n the order of the group

KSC
.r/

n when it is finite, we therefore have the inequality

sr
n � s

r=2

n�r=2
C sr=2

n .
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For instance, with n� d ,

s2
nC1 � knC1C knC2

s4
nC3 � s2

nC1C s2
nC3 � knC1C knC2C knC3C knC4

:::

s
q
nCq�1 � knC1C knC2C ���C knCq D kd C ���C kdCq�1 ,

where the equality follows from the assumption of K-periodicity. On the other
hand, since the ring A is hermitian regular, according to Theorem 4.2 and its proof
we have

s
q
nCq�1 D kqnC kqnC1

for n � d . This gives the required inequality. Finally, the equality comes from
Theorem 4.5.

Example 4.10 If m D 8, we have q D 8. Therefore, for n � d , we have the
inequality

kqnC kqnC1 � kd C kdC1C ���C kdC7.

In particular, if we assume that the groups "KQn.A/ and"KQnC1.A/ are finitely
generated, and that for some r and " the Witt group "Wr.A/ has an infinite free
summand, then by periodicity of Witt groups after tensoring with Q, one of the four
groups "KQn; "KQnC1 (" 2 f˙1g) must be nonzero. It now follows that at least
one of the groups Kd .A/;:::;KdC7.A/ must also be nonzero.

5. The case of odd prime power coefficients

For the sake of completeness, we should also study KQ-theory with odd prime
power coefficients, which is much easier to handle, starting from known results in
K-theory. As is well known, if ` is an odd prime, there is a remarkable Bott element
bK in the group K2.`�1/`��1.ZIZ=`�/ (see Section 1 of this paper). In particular, its
image in the topological K-group

K2.`�1/`��1.RIZ=`�/ŠK2.`�1/`��1.CIZ=`�/Š Z=`�

is the image of an integral Bott generator in K2.`�1/`��1.C/ Š Z. According to
Convention 0.1, we shall write p D 2.`� 1/`��1 (for the period) and m D `� (for
the order of the coefficient group).

Let us assume now that A is one of the examples of algebras described in the
Introduction. For odd primes, we use the Bloch-Kato conjecture, which is now
a theorem proven by Rost and Voevodsky, cf. [54], [55], [63], [21], [58], [59],
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and [64]. This implies that the cup-product with the Bott element b induces an
isomorphism

Kn.AIZ=m/
Š�!KnCp.AIZ=m/

whenever n� d for the type of rings A considered in the Introduction.
In order to extend our previous results to hermitian K-theory with odd prime

power coefficients, it is convenient to describe more geometrically elements of the
K-groups and KQ-groups. This description in terms of “virtual” flat bundles is
given in detail in Appendix 1 of [35]. For instance, an element of "KQn.A/ can be
described as a flat A-bundle E over an homology sphere of dimension n, provided
with a nondegenerate quadratic form q. With this language, we can easily define an
involution on the KQ-groups: it is induced by the correspondence

.E;q/ 7! .E;�q/:

Let us now consider the groups "KQn.A/0 D "KQn.A/˝Z Z0. The tensor product
of virtual A-bundles (when A is commutative) induces a ring structure on the direct
sum of all these groups (with " D ˙1). On the other hand, the previous involution
enables us to split each group "KQn.A/0 as a direct sum "KQn.A/0C˚ "KQn.A/0�.

Lemma 5.1 The sum decomposition of the "KQn.A/0 described above is a ring
product decomposition. In other words, the cup-product map between elements of
KQ0C and KQ0� is reduced to 0.

Proof: Since we make 2 invertible in the KQ0-groups involved, one may think of
an element z of KQ0C as a sum .E;q/C .E;�q/ and an element z0 of KQ0� as a
difference .E 0;q0/ � .E 0;�q0/, where q and q0 are "- and "0-quadratic forms. The
product z � z0 is therefore (with q˝ q0 an ""0-quadratic form)

.E˝E 0;q˝ q0/C .E˝E 0;�q˝ q0/� .E˝E 0;q˝�q0/� .E˝E 0;�q˝�q0/;

which is of course zero.

Corollary 5.2 The ring product decomposition of the direct sum of the groups

"KQn.A/0 induces a ring product decomposition of the direct sum of the groups
KQn.AIZ=m/ when m is an odd prime power > 3.

Proof: The corollary follows from general arguments about cohomology theories
modm [3].

Remark 5.3 One also has an involution on the K-groups induced by the duality
functor, as was noticed already in Section 3. If we perform the tensor product by
ZŒ1=2� or we take coefficients in the group Z=m with m odd, the symmetric part
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is in bijective correspondence with the symmetric part of the corresponding KQ-
group. This correspondence is induced by the forgetful functor or the hyperbolic
functor [33].

Remark 5.4 Before introducing the Bott elements in this situation, it is worth
mentioning that the fundamental theorem in hermitian K-theory holds for arbitrary
rings (we no longer assume that 1=2 2 A) when we localize away from 2. The details
may be found in [36, Lemma 1.1]. More precisely, in this case the symmetric part
KQ.A/0C of the spectrum of KQ.A/0 is the symmetric part of the spectrum K.A/0,
whereas the antisymmetric part KQ.A/0� has periodic homotopy groups of period
4, which are the higher Witt groups. This remark also applies when we take mod m

coefficients with m odd.

Let bC denote the Bott element in 1KQp.ZIZ=m/C D 1KQp.Z/C correspond-
ing to the usual Bott element bK in

Kp.ZIZ=m/DKp.ZIZ=m/C DKp.Z/C.

The following Theorem is now obvious, since KC ŠKQC.

Theorem 5.5 Let A be any ring such that the cup-product map with the K-theory
Bott element bK induces an isomorphism

Kn.A/ŠKnCp.A/

for n� d . Then, taking cup-product with bC also induces an isomorphism

"KQn.A/C Š "KQnCp.A/C

for the same values of n. ✷

On the other hand, there is another “Bott element” b0 that lies in 1KQp.Z/� D
1Wp.ZIZ=m/, which is the higher Witt group mod m. It is the image mod m of a
suitable power of u 2 �1W2.Z/ constructed in [33] and [36, Theorem 1.4].

Theorem 5.6 For an odd prime `, let p D 2.`�1/`��1 and mD `� as in (0.1). Let
A be any ring such that its K-theory mod m is periodic for n � d , the periodicity
being given by the cup-product with the Bott element bK . As usual, denote by KQ

the KQ-groups mod m. Then, for n� d , there is an isomorphism

"KQn.A/
�C��! lim�!"KQnCps.A/

where �C� is induced by the cup-product with the sum bCCb0 of the two previously
defined Bott elements in the group

1KQp.Z/D 1KQp.Z/C˚ 1KQp.Z/�.
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Proof: If we consider the direct sum

"KQn.A/D "KQn.A/C˚ "KQn.A/�,

then the cup-product with this element b0 is trivial on the summand "KQn.A/C,
and induces an isomorphism from "KQn.A/� to "KQnCp.A/� after [32, Théorème
3.9]. In a parallel way, the cup-product with bC is trivial on the term "KQn.A/� and
induces an isomorphism from "KQn.A/C to "KQnCp.A/C, as shown in Corollary
5.2. The theorem follows.

Remark 5.7 By choosing a “negative Bott element” in 1KQ�p.Z/�, we obtain an
equivalent version of the previous theorem, in analogy with Theorem 0.4, as the
following short split exact sequence:

0! lim �"KQnCps.A/
��

�! "KQn.A/
�C

�! lim�!"KQnCps.A/! 0.

In this exact sequence the inverse system (resp. direct system) is given by taking
cup-product with the negative (resp. positive) Bott element in 1KQ�p.Z/� (resp.

1KQp.Z/C).

Remark 5.8 For simplicity, we have assumed the ring A commutative in order to
define internal cup-products. However, a closer look at the arguments shows that
we have in fact used “external” cup-products of the type

KQ.A/�KQ.Z/ �!KQ.A/

Therefore, the previous theorem extends easily to noncommutative rings, such as
group rings.

6. Generalization to schemes and étale theories

The proof and the statement of Theorem 0.4 apply verbatim to schemes for which
2 is invertible. This follows since the fundamental theorem in hermitian K-theory
has been generalized by Schlichting – see his work in progress on exact categories
with weak equivalences and duality [56]. (Of course, in the context of CW-spectra,
weak equivalences are in fact homotopy equivalences.) In this section we view this
generalization in the context of the étale descent problem for hermitian K-theory.

Let S be a regular and separated noetherian scheme of finite Krull dimension
(in the interest of generalizing these assumptions the inclined reader may compare
with [53] and [56]). Throughout, for a fixed prime `, we assume that OS is a sheaf
of ZŒ1=`�-modules. In particular, for the important case `D 2, 2 is invertible in S .
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For the definition of the hermitian K-theory spectrum "KQ.S/, and the forgetful
and hyperbolic maps between the algebraic and hermitian K-theory of S , we refer
to Schlichting’s work [56]. In particular, as for rings, we may form the fibers "V.S/

and "U.S/ of the forgetful and hyperbolic maps, respectively. The generalization
of the fundamental theorem to schemes in [56] shows that there is a homotopy
equivalence

�"V.S/'�"U.S/ (6:7)

such that the composite map

�2
"KQ.S/!�"U.S/! �"V.S/! �"KQ.S/

is given by the cup-product with the negative Bott element in �1KQ�2.Z0/.
With these results in hand, the proof of Theorem 0.4 carries over to the setting

of schemes. That is, if cup-product with the Bott element in Kp.ZIZ=m/, m and p

being 2-powers linked by our Convention 0.1, induces an isomorphism

Kn.S IZ=m/
Š�!KnCp.S IZ=m/

for n� d , then, for n� d C q� 1 there is a split short exact sequence

0! lim �"KQnCps.S/
��

�! "KQn.S/
�C

�! lim�!"KQnCps.S/! 0:

We expect that the map �C is an isomorphism in many cases of geometric interest.
(For n � d , and not just � d C q � 1: compare with Theorem 4.5.) This question
is closely related to the so-called étale descent problem for hermitian K-theory and
explicit computations, which are our main concerns in this section.

Jardine introduced in [28] the Bott periodic étale hermitian K-theory spectra of
S with mod `�-coefficients

"KQét=`�.S/.

More precisely, "KQét=`�.S/ is the KO- or equivalently KU-localization of
Jardine’s étale hermitian K-theory. By construction of the Bott periodic étale theory,
there exists an induced mod `� comparison map

�S W "KQ=`�.S/ �! "KQét=`�.S/

obtained by taking global sections of a globally fibrant model for the presheaf

"KQ=`�./ on some sufficiently large étale site of S .
Similarly, the mod `� étale self-conjugate K-theory KSCét=`�.S/ of S is

defined by taking a globally fibrant model of the presheaf KSC=`�./. Later in this
section we shall make use of specific fibrant models.
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Recall that the notation vcd` stands for the mod ` virtual cohomological
dimension. When ` is odd, then vcd` coincides with the usual mod ` cohomological
dimension cd`. Although cd2 is infinite in the examples of ZŒ1=2� and R, the number
vcd2 is finite in both cases. For a proof of the next result we refer to [40, Proposition
6.1].

Lemma 6.1 If vcd`.S/ <1 then the étale hypercohomology presheaf

H�
Ket.�; "KQ=`�.//

is a globally fibrant model for "KQ=`�.�/. The same fibrancy result holds for the
presheaf KSC=`�.�/. ✷

The étale descent problem for self-conjugate K-theory can be solved easily
using the solution for algebraic K-theory [52]. For a point s 2 S , let k.s/ denote the
corresponding residue field.

Theorem 6.2 The comparison map

KSC=`�.S/ �!KSC Ket=`�.S/

is a weak equivalence on supfvcd`.k.s//� 2gs2S -connected covers.
Hence, if vcd`.S/ <1 then there is a weak equivalence

LKUKSC=`�.S/ �!KSCét=`�.S/'H�ét.S;LKUKSC=`�.//.

Proof: There exists a naturally induced commutative diagram of fiber sequences
of presheaves of spectra

KSC=`�.�/ �! K=`�.�/ �! K=`�.�/

# # #
KSCét=`�.�/ �! Két=`�.�/ �! Két=`�.�/

Similarly to Theorem 6.2, we do not expect that the comparison map �S is
a weak equivalence in general, but in many cases of interest it should be a weak
equivalence on some connected cover.

Let ` be an odd prime, and let the subscript C as in KC denote the symmetric
part of K-theory. Then the forgetful and hyperbolic functors induce isomorphisms
between the symmetric parts of the algebraic and hermitian K-groups of S at `.
This allows us to infer the following result by referring to [52] and to Corollary 6.8
for the symmetry of étale hermitian K-theory at odd primes.
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Theorem 6.3 Let `¤ 2. The comparison map

"KQ=`�.S/C �! "KQét=`�.S/C ' "KQét=`�.S/

is a weak equivalence on supfvcd`.k.s//� 2gs2S -connected covers.
Hence, if vcd`.S/ <1 then there is a weak equivalence

LKU "KQ=`�.S/C �! "KQét=`�.S/'H�ét.S;LKU "KQ=`�.//.
✷

At ` D 2, we prove Theorem 0.13 stated in the Introduction. In the following,
let n � supfvcd2.k.s//� 1gs2S C q � 1. Inverting the positive Bott element in the
direct sum decomposition

"KQn;nC1.S/Š P "KQn.S/˚ "KSC
.p/

nCp�1.S/

yields

"KQn;nC1.S/Œˇ�1�Š "KSC
.p/

nCp�1.S/Œˇ�1�:

In order to simplify the right hand side of this isomorphism, we first use the fact that
if vcd2.S/ <1 then there is a weak equivalence

KSC
.r/

.S/Œˇ�1� �!KSC
.r/ét

.S/.

Then, by étale descent for self-conjugate K-theory shown in Theorem 6.2, the
induced comparison map

KSC
.r/

.S/ �!KSC
.r/ét

.S/

is a weak equivalence on supfvcd2.k.s//Cr�4gs2S -connected covers. Hence, there
is an isomorphism

"KSC
.p/

nCp�1.S/Œˇ�1�Š "KSC
.p/

nCp�1.S/.

As a result,

"KQn;nC1.S/D "KQn.S/˚ "KQnC1.S/

maps by a split surjection onto its Bott localization

"KQn;nC1.S/Œˇ�1�Š "KQ
ét
n.S/˚ "KQ

ét
nC1.S/.

By looking at one component at a time, we deduce that there is a split surjection

"KQn.S/ �! "KQn.S/Œˇ�1�
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and an isomorphism

"KQn.S/Œˇ�1�Š "KQ
ét
n.S/

for all n. ✷

Our next result is a local-global comparison theorem. It will be a consequence
of the homotopical setup due to Jardine, see e.g. [29], and the rigidity theorem
for hermitian K-theory of henselian pairs proven by the second author in [34,
Theorem 4], cf. the unpublished work [27] for an approach using homotopy theory
of simplicial presheaves. The specific result we use is as follows.

Theorem 6.4 ([34]) Let .A;I / be a henselian pair with q 2 A� \Z such that I is
invariant by the involution on A, and �C � D 1 for some � 2 A if q is even. Then
the map of rings with involutions A! A=I induces an isomorphism

"KQn.AIZ=q/
Š�! "KQn.A=I IZ=q/

for all " and n� 0.

We note that the sharper bound for the connected covers in the theorem below
(relative to that in Theorem 0.13) equals the one shown for algebraic K-theory in
[52].

Theorem 6.5 Suppose that �k.s/ is a weak equivalence on .vcd2.k.s// � 2/-
connected covers for every residue field k.s/ of S . Then the comparison map

�S W "KQ=2�.S/ �! "KQ Ket=2�.S/

is a weak equivalence on supfvcd2.k.s//� 2gs2S -connected covers. ✷

Proof: There is a functorially induced commutative diagram with the mod 2

comparison map displayed on top:

"KQ=2.S/ �! H�
Ket.S;LKU "KQ=2.//

# #
H�Nis.S; "KQ=2.// �! H�Nis.S;H�

Ket.S;LKU "KQ=2.///

We claim that the vertical maps are weak equivalences. By the Nisnevich descent
theorem in [56], this holds for the left hand side. For the right hand side, the
étale topology is finer than the Nisnevich one; so, the direct image functor maps
H�ét.S;LKU "KQ=2.// to a globally fibrant object on the Nisnevich site of S . We
claim that the mod 2 comparison map is a stalkwise weak equivalence on the given
connected cover for the Nisnevich topology. In fact, let A be a Hensel local ring
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with residue field k and consider the functorially induced commutative diagram

"KQ=2.A/ �! "KQ=2.k//

# #
H�ét.A;LKU "KQ=2.// �! H�ét.k;LKU "KQ=2.//

Combining the previous theorem concerning rigidity for hermitian K-theory and
the equivalence between the étale sites of A and k, this reduces the stalkwise weak
equivalence to the assumed case of fields. It follows that the lower horizontal
map in Diagram (6) is a stalkwise weak equivalence on the same connected covers
between globally fibrant objects, and hence it is a pointwise weak equivalence on
supfvcd.k.s/� 2gs2S -connected covers.

Motivated by the local hypotheses of Theorem 6.5, we make the following
forecast of the outcome of the étale descent problem for hermitian K-theory.

Conjecture 6.6 Suppose that k is a field of characteristic¤ 2. Then the comparison
map

�k W "KQ=2�.k/ �! "KQ Ket=2�.k/

is a weak equivalence on (vcd2.k/� 2)-connected covers.

Conjecture 6.6, in conjunction with Theorem 6.5, predicts that, in many cases of
interest, hermitian K-theory is Bott periodic on some connected cover. Our earlier
results on Bott periodicity can be taken as oblique evidence for this conjecture.
For n � vcd2.k/C q � 1, recall the exact sequence of KQ-groups with 2-power
coefficients:

0! lim �"KQnCps.k/
��

�! "KQn.k/
�C

�! lim�!"KQnCps.k/! 0:

By Bott periodicity, Conjecture 6.6 implies that the inverse limit is trivial, i.e.

lim �"KQnCps.k/D 0.

In other words, the field k should be hermitian regular (Definition 0.5). Conversely,
if the inverse limit is trivial, then there is an isomorphism

�C W "KQn.k/
Š�! lim�!"KQnCps.k/

for n � vcd2.k/� 1, according to our Theorem 4.5. As noted in the Introduction, a
proof of the above conjecture is to appear in a joint paper with Schlichting [7].

Lemma 6.1 can be motivated by the conditionally convergent right half-plane
cohomological descent spectral sequence established by Thomason [60]:

"E
p;q
2 DH

p

Ket
.S;e�qLKU "KQ=`�.//H) �q�pH�

Ket .S;LKU "KQ=`�.//: (6:8)
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Here the coefficient sheaf indicated by e�� is the étale sheafification of the
presheaf of stable homotopy groups ��LKU "KQ=`�./. The concept of “conditional
convergence” for spectral sequences was introduced by Boardman in [8]. A useful
consequence is that the descent spectral sequence (6:8) converges strongly provided
that there exists only a finite number of nontrivial differentials. Thus, the spectral
sequence (6:8) is strongly convergent if S has finite mod ` étale cohomological
dimension. (This will be the case in all the examples we consider.) The dr -
differential in (6:8) has bidegree .r;1� r/.

In order to identify the étale stalks of "KQ=`�./, and consequently the E2-page
of (6:8), cf. [28], [57, Theorem 2.6], we invoke the Rigidity Theorem 6.4 together
with the homotopy equivalences

"KQ=`�.A/' "KQ=`�.C/'
�

K=`�.R/ "D 1

�4K=`�.R/ "D�1
(6:9)

for a strict Hensel local ring A. The above is very similar to the case of algebraic
K-theory, where the étale sheaf associated to the presheaf

U 7! �nK=`�.U /

is the Tate twisted sheaf of roots of unity �˝k
`� when nD 2k is even, and trivial when

n is odd. For KSC and "KQ at ` we have:

Corollary 6.7 ([57]) The étale sheaf associated to the presheaf

U 7! �n.KSC=`�.U //

is given by:

n mod 4 `D 2 `¤ 2

4k �˝2k
2� �˝2k

`�

4kC 1 �˝2kC1
2 0

4kC 2 �˝2kC1
2 0

4kC 3 �˝2kC2
2� �˝2kC2

`�

Corollary 6.8 ([28], [57]) The étale sheaf associated to the presheaf

U 7! �n."KQ=`�.U //

is given as follows.

1. For `D 2 by:
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n mod 8 "D 1, � D 1 "D�1, � D 1 "D 1, � > 1 "D�1, � > 1

8k �˝4k
2 �˝4k

2 �˝4k
2� �˝4k

2�

8kC 1 �˝4kC1
2 0 �˝4kC1

2 0

8kC 2 �˝4kC1
4 0 .�˝4kC1

2 /˚2 0

8kC 3 �˝4kC1
2 0 �˝4kC1

2 0

8kC 4 �˝4kC2
2 �˝4kC2

2 �˝4kC2
2� �˝4kC2

2�

8kC 5 0 �˝4kC3
2 0 �˝4kC3

2

8kC 6 0 �˝4kC3
4 0 .�˝4kC3

2 /˚2

8kC 7 0 �˝4kC3
2 0 �˝4kC3

2

2. For `¤ 2 and "D˙1 by �˝2k
`� if nD 4k, and trivial otherwise.

Remark 6.9 In Corollary 6.8, the .4;2/-periodicity in the change of symmetry
between the " D 1 and " D �1 cases in the table for ` D 2 is given by cup-product
with a generator of �1KQ4.CIZ=2�/. The case `¤ 2 is similar. In degrees 8kC 2,
recall that RP 2 is a mod 2 Moore space and eKO.RP 2/ Š Z=4 generated by the
tangent bundle, while the universal coefficient sequence splits for � > 1.

As a consequence of Lemma 6.1 and Corollary 6.8, we conclude that if
vcd2.S/ < 1 then there exist conditionally convergent cohomological spectral
sequences

1E
p;q
2 D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

H
p

Ket .S;�˝4k
2 / q D 8k

H
p

Ket .S;�˝4kC1
2 / q D 8kC 1

H
p

Ket .S;�˝4kC1
4 / q D 8kC 2

H
p

Ket .S;�˝4kC1
2 / q D 8kC 3

H
p

Ket .S;�˝4kC2
2 / q D 8kC 4

0 q � 5;6;7 .mod 8/

9
>>>>>>>=
>>>>>>>;

H) 1KQKet
q�p=2.S/;

and

�1E
p;q
2 D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

H
p

Ket .S;�˝4k
2 / q D 8k

H
p

Ket .S;�˝4kC2
2 / q D 8kC 4

H
p

Ket .S;�˝4kC3
2 / q D 8kC 5

H
p

Ket .S;�˝4kC3
4 / q D 8kC 6

H
p

Ket .S;�˝4kC3
2 / q D 8kC 7

0 q � 1;2;3 .mod 8/

9
>>>>>>>=
>>>>>>>;

H) �1KQKet
q�p=2.S/:
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And for � � 2, the descent spectral sequences take the forms

1E
p;q
2 D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

H
p

Ket .S;�˝4k
2� / q D 8k

H
p

Ket .S;�˝4kC1
2 / q D 8kC 1

H
p

Ket .S;�˝4kC1
2 /˚2 q D 8kC 2

H
p

Ket .S;�˝4kC1
2 / q D 8kC 3

H
p

Ket .S;�˝4kC2
2� / q D 8kC 4

0 q � 5;6;7 .mod 8/

9
>>>>>>>=
>>>>>>>;

H) 1KQKet
q�p=2�.S/;

and

�1E
p;q
2 D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

H
p

Ket .S;�˝4k
2� / q D 8k

H
p

Ket .S;�˝4kC2
2� / q D 8kC 4

H
p

Ket .S;�˝4kC3
2 / q D 8kC 5

H
p

Ket .S;�˝4kC3
2 /˚2 q D 8kC 6

H
p

Ket .S;�˝4kC3
2 / q D 8kC 7

0 q � 1;2;3 .mod 8/

9
>>>>>>>=
>>>>>>>;

H) �1KQKet
q�p=2�.S/:

For `¤ 2 and cd`.S/ <1, the descent spectral sequence takes the form

"E
p;q
2 D

(
H

p

Ket .S;�
˝

q
2

`� / q � 0 .mod 4/

0 q 6� 0 .mod 4/

)
H) "KQKet

q�p=`�.S/:

Note that the E2-pages are independent of the symmetry ". This is not surprising
since on symmetric parts K-theory mod `� maps by a weak equivalence to hermitian
K-theory mod `� .

The following results are concerned with Bousfield `-adic completions (denoted
by #) of the self-conjugate and hermitian K-theory spectra. Bousfield introduced
this notion in [12]. First we shall tabulate the corresponding étale sheaves. Let Z˝k

`

denote the k th Tate twist of the `-adic integers.

In the example of self-conjugate K-theory the étale sheaves are periodic in the
following sense.

Corollary 6.10 The étale sheaf associated to the presheaf

U 7! �n.KSC.U /#/

of `-adically completed self-conjugate K-theory is given by:

For hermitian K-theory the étale sheaves are periodic in the following sense.
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n mod 4 `D 2 `¤ 2

4k Z˝2k
2 Z˝2k

`

4kC 1 �˝2kC1
2 0

4kC 2 0 0

4kC 3 Z˝2kC2
2 Z˝2kC2

`

Corollary 6.11 The étale sheaf associated to the presheaf

U 7! �n."KQ.U /#/

of `-adically completed hermitian K-theory is given as follows.

1. For `D 2 by:

n mod 8 "D 1 "D�1

8k Z˝4k
2 Z˝4k

2

8kC 1 �˝4kC1
2 0

8kC 2 �˝4kC1
2 0

8kC 3 0 0

8kC 4 Z˝4kC2
2 Z˝4kC2

2

8kC 5 0 �˝4kC3
2

8kC 6 0 �˝4kC3
2

8kC 7 0 0

2. For `¤ 2 and "D˙1 by Z˝2k
`

if nD 4k, and trivial otherwise.

In the following, étale cohomology is continuous étale cohomology [15], [26].

As a result of the previous corollaries, the descent spectral sequences for the
2-completed étale self-conjugate étale K-theory and hermitian K-theory of S take
the forms

1E
p;q
2 D

8
ˆ̂̂
<
ˆ̂̂
:

H
p

Ket .S;Z˝2k
2 / q D 4k

H
p

Ket .S;�˝2kC1
2 / q D 4kC 1

H
p

Ket .S;Z˝2kC2
2 / q D 4kC 3

0 q D 4kC 2

9
>>>=
>>>;
H)KSC Ket

q�p.S/#;
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1E
p;q
2 D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

H
p

Ket .S;Z˝4k
2 / q D 8k

H
p

Ket .S;�˝4kC1
2 / q D 8kC 1

H
p

Ket .S;�˝4kC1
2 / q D 8kC 2

H
p

Ket .S;Z˝4kC2
2 / q D 8kC 4

0 q � 3;5;6;7 .mod 8/

9
>>>>>=
>>>>>;

H) 1KQKet
q�p.S/#;

and

�1E
p;q
2 D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

H
p

Ket .S;Z˝4k
2 / q D 8k

H
p

Ket .S;Z˝4kC2
2 / q D 8kC 4

H
p

Ket .S;�˝4kC3
2 / q D 8kC 5

H
p

Ket .S;�˝4kC3
2 / q D 8kC 6

0 q � 1;2;3;7 .mod 8/

9
>>>>>=
>>>>>;

H) �1KQKet
q�p.S/#:

For `¤ 2 the descent spectral sequences take the forms

1E
p;q
2 D

8
<
:

H
p

Ket .S;Z˝2k
`

/ q D 4k

H
p

Ket .S;Z˝2kC2
`

/ q D 4kC 3

0 q � 1;2 .mod 4/

9
=
;H)KSC Ket

q�p.S/#;

and

"E
p;q
2 D

(
H

p

Ket .S;Z
˝

q
2

`
/ q � 0 .mod 4/

0 q 6� 0 .mod 4/

)
H) "KQKet

q�p.S/#:

Our next objective is to compute `-adically completed étale self-conjugate and
hermitian K-groups in terms of étale cohomology groups. To this end we need some
more notation.

Let A �B denote an abelian group extension of B by A, so that there exists a
short exact sequence

0! A! A �B! B! 0:

Lemma 6.12 If cd2.S/ D 2 and H 0
ét.S;Z˝i

2 / D 0 for i > 0 then the 2-completed
étale hermitian K-groups of S are computed up to extensions in the following table.

Remark 6.13 The assumption on the vanishing of H 0
ét.S;Z˝i

2 / for i > 0 in Lemma
6.12 is a commonplace and holds for the examples considered in Section 7. We
note, however, that the assumptions in Lemma 6.12 are not satisfied for the field of
real numbers, and for number fields with at least one real embedding.
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n mod 8 1KQKet
n.S/# �1KQKet

n .S/#

8k > 0 H 2
Ket.S;�˝4kC1

2 / �H 1
Ket.S;�˝4kC1

2 / 0

8kC 1 H 1
Ket.S;�˝4kC1

2 / �H 0
Ket.S;�˝4kC1

2 / 0

8kC 2 H 2
Ket.S;Z˝4kC2

2 / �H 0
Ket.S;�˝4kC1

2 / H 2
Ket.S;Z˝4kC2

2 /

8kC 3 H 1
Ket.S;Z˝4kC2

2 / H 2
Ket.S;�˝4kC3

2 / �H 1
Ket.S;Z˝4kC2

2 /

8kC 4 0 H 2
Ket.S;�˝4kC3

2 / �H 1
Ket.S;�˝4kC3

2 /

8kC 5 0 H 1
Ket.S;�˝4kC3

2 / �H 0
Ket.S;�˝4kC3

2 /

8kC 6 H 2
Ket.S;Z˝4kC4

2 / H 2
Ket.S;Z˝4kC4

2 / �H 0
Ket.S;�˝4kC3

2 /

8kC 7 H 2
Ket.S;�˝4kC5

2 / �H 1
Ket.S;Z˝4kC4

2 / H 1
Ket.S;Z˝4kC4

2 /

n mod 4 "KQKet
n.S/#

4k > 0 H 4
Ket.S;Z˝2kC2

`
/ �H 0

Ket.S;Z˝2k
`

/

4kC 1 H 7
Ket.S;Z˝2kC4

`
/ �H 3

Ket.S;Z˝2kC2
`

/

4kC 2 H 6
Ket.S;Z˝2kC4

`
/ �H 2

Ket.S;Z˝2kC2
`

/

4kC 3 H 5
Ket.S;Z˝2kC4

`
/ �H 1

Ket.S;Z˝2kC2
`

/

Lemma 6.14 If ` is an odd prime and cd`.S/ � 7 the `-completed étale hermitian
K-groups of S are computed up to extensions in the following table.

Corollary 6.11 and the corresponding result for algebraic K-theory imply the
next result by inspection.

Corollary 6.15 The étale sheaf associated to the presheaf

U 7! �n."V.U /#/

of `-adically completed hermitian V -theory is given as follows.

1. For `D 2 by:

2. For `¤ 2 by Z˝2kC1
`

if nD 4kC 1, and trivial otherwise.

The previous corollary allows us to immediately identify the E2-page of the
descent spectral sequence for `-adically completed étale hermitian V -groups in
terms of étale cohomology. As a consequence, imposing a commonplace restriction
on the étale cohomological dimension yields the following computation.

Lemma 6.16 If cd2.S/ D 2 and H 0
ét.S;Z˝i

2 / D 0 for i > 0, then the 2-completed
étale V -groups of S are computed up to extensions in the following table.

The previous computations are supplemented by more specialized examples in
the next section. For the earliest étale K-theory computations we refer the reader
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n mod 8 "D 1 "D�1

8k 0 0

8kC 1 Z˝4kC1
2 Z˝4kC1

2

8kC 2 �˝4kC1
2 0

8kC 3 �˝4kC2
2 0

8kC 4 0 0

8kC 5 Z˝4kC3
2 Z˝4kC3

2

8kC 6 0 �˝4kC3
2

8kC 7 0 �˝4kC4
2

n mod 8 1V Ket
n .S/# �1V Ket

n .S/#

8k � 0 H 2
Ket.S;�˝4kC1

2 / �H 1
Ket.S;Z˝4kC1

2 / H 1
Ket.S;Z˝4kC1

2 /

8kC 1 H 2
Ket.S;�˝4kC2

2 / �H 1
Ket.S;�˝4kC1

2 / 0

8kC 2 H 1
Ket.S;�˝4kC2

2 / �H 0
Ket.S;�˝4kC1

2 / 0

8kC 3 H 2
Ket.S;Z˝4kC3

2 / �H 0
Ket.S;�˝4kC2

2 / H 2
Ket.S;Z˝4kC3

2 /

8kC 4 H 1
Ket.S;Z˝4kC3

2 / H 2
Ket.S;�˝4kC3

2 / �H 1
Ket.S;Z˝4kC3

2 /

8kC 5 0 H 2
Ket.S;�˝4kC4

2 / �H 1
Ket.S;�˝4kC3

2 /

8kC 6 0 H 1
Ket.S;�˝4kC4

2 / �H 0
Ket.S;�˝4kC3

2 /

8kC 7 H 2
Ket.S;Z˝4kC5

2 / H 2
Ket.S;Z˝4kC5

2 / �H 0
Ket.S;�˝4kC4

2 /

to [15] and [60]. It is worthwhile to point out that the difference between the étale
K-theory, in loc. cit., and the étale hermitian K-theory computations in this paper is
reminiscent of the situation for the classical Atiyah-Hirzebruch spectral sequences
based on complex and real topological K-theory. This analogy is evident on the
level of étale stalks by comparison with the complex and real K-theories of a point.

7. Applications to finite fields, local and global fields

In this section we point out some computational consequences of the above results.
The examples are geometric in nature and relate to finite fields, and to local
and global number fields. Our main interest and focus are on the 2-primary
computations.

Example 7.1 In what follows, we apply Lemma 6.14 to some classes of examples.
Throughout, ` is an odd prime number.

1. If S is a d -dimensional smooth complex variety then cd`.S/ � 2d . Lemma
6.14 computes the group "KQét

n .S/# up to extensions if S is of dimension
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at most 3. For curves and surfaces there are no undetermined extensions.
Detailed computations of the algebraic K-theory of S were worked out in
[44] and [45].

2. If S is a smooth curve over a number field then cd`.S/ D 4. In this case, for
n > 0, there are no undetermined extensions in the computation of "KQét

n .S/#

given in Lemma 6.14. For detailed computations of the algebraic K-theory
of S we refer to [51].

3. The ring OF Œ1=`� of `-integers in any number field F has cohomological
dimension cd`.OF Œ1=`�/ D cd`.F / D 2. In particular, "KQét

n .OF Œ1=`�/# is
trivial when 0 < n � 0;1 .mod 4/ and finite when n � 2 .mod 4/. The
same cohomological dimension bound holds for local number fields and their
valuation rings, e.g. the field of `-adic numbers.

Let F be a field of characteristic ¤ 2 and �r be a primitive r th root of unity.
For i 2 Z, let wi .F / be the maximal 2-power 2n such that the exponent of the
Galois group of F.�2n/=F divides i . If F contains �4 and i D 2�k with k odd,
then wi .F /D 2rC� where r is maximal such that F contains a primitive 2r -root of
unity. If i is odd, wi .Q.

p
�1// D 4, while if

p
�1 62 F then wi .F / D 2. In all our

examples the number wi .F / is finite.

Using Lemma 6.12 and the étale cohomology groups of finite fields, we tabulate
the 2-completed étale hermitian K-groups of Ft for t odd. Our findings are in
agreement with Friedlander’s computation of the hermitian K-groups of Ft in [19].

Example 7.2 Let Ft be a finite field with an odd number of elements t . The 2-
completed étale hermitian K-groups of Ft are computed in the following table.

n mod 8 1KQKet
n.Ft /# �1KQKet

n.Ft /#

8k > 0 Z=2 0

8kC 1 .Z=2/2 0

8kC 2 Z=2 0

8kC 3 Z=w4kC2.Ft / Z=w4kC2.Ft /

8kC 4 0 Z=2

8kC 5 0 .Z=2/2

8kC 6 0 Z=2

8kC 7 Z=w4kC4.Ft / Z=w4kC4.Ft /

The extension problem for 1KQét
8kC1

.Ft /# can be resolved using the homotopy
fibration [33]

KSC.Ft / �!�"KQ.Ft /
�.2/

�!��1
�"KQ.Ft /:
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The group KSC8k.Ft /# has order 2, cf. Example 7.12, and is a direct summand
of 1KQ8kC1.Ft /#. This also resolves the extension problem in degree 8k C 5 for
"D�1.

Example 7.3 Lemma 6.12 applies to every dyadic local field F , i.e. every finite
extension of the 2-adic numbers Q2. If the field extension degree ŒF W Q2� D d ,
then H 0

ét.F;Z˝i
2 /D ıi0Z2, H 1

ét.F;Z˝1
2 /D ZdC1

2 ˚Z=2, H 2
ét.F;Z˝1

2 /D Z2,

H 1
ét.F;Z˝i

2 /D
�

Zd
2 ˚Z=2 i > 1 odd,

Zd
2 ˚Z=wi .F / i even,

and

H 2
ét.F;Z˝i

2 /D
�

Z=wi�1.F / i > 1 odd,
Z=2 i even.

The 2-completed étale hermitian K-groups of F are computed up to extensions
in the following table.

n mod 8 1KQKet
n.F /# �1KQKet

n.F /#

8k > 0 Z=2 � .Z=2/dC2 0

8kC 1 .Z=2/dC2 �Z=2 0

8kC 2 Z=2 �Z=2 Z=2

8kC 3 Zd
2 ˚Z=w4kC2.F / Z=2 � .Zd

2 ˚Z=w4kC2.F //

8kC 4 0 Z=2 � .Z=2/dC2

8kC 5 0 .Z=2/dC2 �Z=2

8kC 6 Z=2 Z=2 �Z=2

8kC 7 Z=2 � .Zd
2 ˚Z=w4kC4.F // Zd

2 ˚Z=w4kC4.F /

For a non-dyadic local field, i.e. a finite extension of the p-adic numbers Qp

for some odd prime p, the 2-completed étale hermitian K-groups are comprised of
finite groups in positive degrees. The étale cohomology computation leading to this
conclusion is given in [41, Proposition 7.3.10].

Example 7.4 The 2-completed étale hermitian K-groups of a finite extension F of
Qp for p odd are computed up to extensions in the following table.

A totally imaginary number field F is called 2-regular if the 2-Sylow subgroup
of K2.OF / is trivial. The Gaussian numbers Q.

p
�1/ is an example of such a

number field. For the étale cohomology of OF Œ1=2� the 2-regular assumption
implies that H 2

ét.OF Œ1=2�;Z˝i
2 / is trivial for i ¤ 0;1 [48, Proposition 2.2].

Moreover, H 1
ét.OF Œ1=2�;Z˝i

2 / identifies with Zc
2 ˚ Z=wi .F / for i ¤ 0, and

H 1
ét.OF Œ1=2�;�˝i

2 / Š .Z=2/cC1 where c denotes the number of pairs of complex
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n mod 8 1KQKet
n.F /# �1KQKet

n.F /#

8k > 0 Z=2 � .Z=2/2 0

8kC 1 .Z=2/2 �Z=2 0

8kC 2 Z=2 �Z=2 Z=2

8kC 3 Z=w4kC2.F / Z=2 �Z=w4kC2.F /

8kC 4 0 Z=2 � .Z=2/2

8kC 5 0 .Z=2/2 �Z=2

8kC 6 Z=2 Z=2 �Z=2

8kC 7 Z=2 �Z=w4kC4.F / Z=w4kC4.F /

embeddings of the number field F . By way of example, the number wi .Q.
p
�1//D

22C.i/2 for all i , where .i/2 is the 2-adic valuation of i .

With these preliminaries in hand, we are ready to state the following computa-
tion.

Example 7.5 Let F be a totally imaginary 2-regular number field with c pairs of
complex embeddings. The 2-completed étale hermitian K-groups of its ring of 2-
integers OF Œ1=2� are computed up to extensions in the following table.

n mod 8 1KQKet
n.OF Œ1=2�/# �1KQKet

n.OF Œ1=2�/#

8k > 0 .Z=2/cC1 0

8kC 1 .Z=2/cC1 �Z=2 0

8kC 2 Z=2 0

8kC 3 Zc
2˚Z=w4kC2.F / Zc

2˚Z=w4kC2.F /

8kC 4 0 .Z=2/cC1

8kC 5 0 .Z=2/cC1 �Z=2

8kC 6 0 Z=2

8kC 7 Zc
2˚Z=w4kC4.F / Zc

2˚Z=w4kC4.F /

Remark 7.6 We expect that 1KQét
8kC1

.OF Œ1=2�/# and �1KQét
8kC5

.OF Œ1=2�/# are
elementary abelian 2-groups of rank equal to cC 2.

In the following discussion of étale V -theory we shall specialize Lemma 6.16
to the previous examples of finite fields, local fields and totally imaginary 2-regular
number fields. As for hermitian étale K-theory, it turns out that the étale V -groups
of dyadic and non-dyadic local number fields are completely different; although in
some degrees we are only able to compute these groups up to extensions, we can
conclude that the former allow free summands in some degrees while the latter are
always finite abelian groups.
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Our computation of the 2-completed étale V -groups of finite fields is in
agreement with Hiller’s results for V -groups in [22].

Example 7.7 Let Ft be a finite field with an odd number of elements t . The 2-
completed étale V -groups of Ft are computed in the following table.

n mod 8 1V Ket
n .Ft /# �1V Ket

n .Ft /#

8k � 0 Z=w4kC1.Ft / Z=w4kC1.Ft /

8kC 1 Z=2 0

8kC 2 .Z=2/2 0

8kC 3 Z=2 0

8kC 4 Z=w4kC3.Ft / Z=w4kC3.Ft /

8kC 5 0 Z=2

8kC 6 0 .Z=2/2

8kC 7 0 Z=2

The extension problem in degree 8k C 2 can be resolved using that

1KQ8kC2.Ft /# has order 2 and is a direct summand of 1V8kC2.Ft /#. Likewise,
this also resolves the extension problem in degree 8kC 6 for "D�1.

Next we turn to local number fields. We find it convenient to distinguish
between dyadic and non-dyadic local fields.

Example 7.8 The 2-completed étale V -groups of a dyadic local number field F of
degree d are computed up to extensions in the following table.

n mod 8 1V Ket
n .F /# �1V Ket

n .F /#

8k � 0 Z=2 � .Zd
2 ˚Z=2/ Zd

2 ˚Z=2

8kC 1 Z=2 � .Z=2/dC2 0

8kC 2 .Z=2/dC2 �Z=2 0

8kC 3 Z=w4kC2.F / �Z=2 Z=w4kC2.F /

8kC 4 Zd
2 ˚Z=2 Z=2 � .Zd

2 ˚Z=2/

8kC 5 0 Z=2 � .Z=2/dC2

8kC 6 0 .Z=2/dC2 �Z=2

8kC 7 Z=w4kC4.F / Z=w4kC4.F / �Z=2

If i is even, the number wi .Q2/D 22C.i/2 .

For non-dyadic local number fields the étale V -groups turn out to be torsion
abelian groups.

Example 7.9 The 2-completed étale V -groups of a non-dyadic local number field
F are computed up to extensions in the following table.
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n mod 8 1V Ket
n .F /# �1V Ket

n .F /#

8k � 0 Z=2 �Z=2 Z=2

8kC 1 Z=2 � .Z=2/2 0

8kC 2 .Z=2/2 �Z=2 0

8kC 3 Z=w4kC2.F / �Z=2 Z=w4kC2.F /

8kC 4 Z=2 Z=2 �Z=2

8kC 5 0 Z=2 � .Z=2/2

8kC 6 0 .Z=2/2 �Z=2

8kC 7 Z=w4kC4.F / Z=w4kC4.F / �Z=2

Our last example concerning étale V -theory deals with totally imaginary 2-
regular number fields. We refer to the discussion prior to Example 7.5 for some
of the salient features of these number fields.

Example 7.10 Let F be a totally imaginary 2-regular number field with c pairs
of complex embeddings. The 2-completed étale V -groups of its ring of 2-integers
OF Œ1=2� are computed up to extensions in the following table.

n mod 8 1V Ket
n .OF Œ1=2�/# �1V Ket

n .OF Œ1=2�/#

8k � 0 Zc
2˚Z=w4kC1.F / Zc

2˚Z=w4kC1.F /

8kC 1 .Z=2/cC1 0

8kC 2 .Z=2/cC1 �Z=2 0

8kC 3 Z=2 0

8kC 4 Zc
2˚Z=w4kC3.F / Zc

2˚Z=w4kC3.F /

8kC 5 0 .Z=2/cC1

8kC 6 0 .Z=2/cC1 �Z=2

8kC 7 0 Z=2

Remark 7.11 We expect that 1V ét
8kC2

.OF Œ1=2�/# and �1V ét
8kC6

.OF Œ1=2�/# are
elementary abelian 2-groups of rank equal to cC 2.

The next examples concern self-conjugate algebraic K-theory.

Example 7.12 The 2-completed KSC -groups of a finite field Ft of odd character-
istic are given in the following table.

Recall that � denotes the duality functor in algebraic K-theory. The map

�n.1� �/ WKn.Ft /# �!Kn.Ft /#

is multiplication by 2 if n� 1 .mod 4/ and trivial otherwise.
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n mod 4 KSC n.Ft /#

4k > 0 Z=2

4kC 1 Z=2

4kC 2 Z=w2kC2.Ft /

4kC 3 Z=w2kC2.Ft /

Example 7.13 Let F be a totally imaginary 2-regular number field with c pairs
of complex embeddings. The 2-completed KSC -groups of its ring of 2-integers
OF Œ1=2� are given in the following table.

n mod 4 KSC n.OF Œ1=2�/#

4k > 0 .Z=2/cC1

4kC 1 Z=2

4kC 2 Zc
2˚Z=w2kC2.F /

4kC 3 Zc
2˚Z=w2kC2.F /

The map

�n.1� �/ WKn.OF Œ1=2�/# �!Kn.OF Œ1=2�/#

is multiplication by 2 if n � 1 .mod 4/ and trivial otherwise. There is an exact
sequence (with ADOF Œ1=2�)

0!KSC2nC1.A/#!K2nC1.A/#!K2nC1.A/#!KSC2n.A/#! 0:

In the examples above, the assertions concerning �n.1��/ follow by inspection,
using the computations of Kn.Ft /# [47] and Kn.OF Œ1=2�/# [48, Theorem 3.1].

A systematic approach to the KSC -computations is to first compute the descent
spectral sequence for étale KSC -theory obtained from Corollary 6.10, and then
invoke Theorem 6.2. In general, if cd2.S/ <1, this approach gives “in sufficiently
high degrees” a strongly convergent cohomological spectral sequence

1E
p;q
2 D

8
ˆ̂̂
<
ˆ̂̂
:

H
p

Ket .S;Z˝2k
2 / q D 4k

H
p

Ket .S;�˝2kC1
2 / q D 4kC 1

H
p

Ket .S;Z˝2kC2
2 / q D 4kC 3

0 q D 4kC 2

9
>>>=
>>>;

“H) ” KSC q�p.S/#:
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8. Applications to group rings, complex varieties and commutative Banach

algebras

Let G be a finite group and R be the ring of S-integers in a number field. Let
m be a prime power which is prime to the order of G. In [66], Weibel proves a
periodicity theorem for the higher algebraic K-theory of the group ring AD RŒG�,
with coefficients in Z=m. More precisely, the cup-product with the Bott element in
K-theory induces an isomorphism

Ki .AIZ=m/ŠKiCp.AIZ=m/

for i > 0. Here, the integers m and p are linked according to our Convention 0.1. We
can apply our periodicity theorems of Section 4 in order to show that, for 1=2 2 A

and any involution on A, for instance the one induced by g 7! g�1, we have a split
short exact sequence for m a power of 2 and i > q� 1:

0 �! lim �"KQiCps.AIZ=m/
��

n�! "KQi .AIZ=m/
�

C
n�! lim�!"KQiCps.AIZ=m/ �!0.

Here the number q is given by our convention 0.2. We note that Weibel’s theorem
is also true for i � 0 if we replace the number ring R by a local field.

In particular, the KQ-groups are also periodic, i.e.

"KQi .AIZ=m/Š "KQiCp.AIZ=m/

at least for i > q � 1: In fact, a more careful analysis forces us to distinguish two
cases according to the parity of m.

If m is even, the condition that the order to G is prime to m implies that G

is of odd order. According to the famous theorem of Feit and Thompson [17],
this implies that G is solvable. Therefore, for 2-primary coefficients, we have a
periodicity statement only for a special class of solvable groups.

If m is odd, we already know, without the hypothesis 1=2 2 A, that the group

"KQi .AIZ=m/ splits into the direct sum

"KQi .AIZ=m/Š "KQi .AIZ=m/C˚ "KQi .AIZ=m/�:

In this direct sum decomposition, the group "KQi .AIZ=m/� is the higher Witt
group with Z=m coefficients and we have the periodicity isomorphism

"KQi .AIZ=m/� Š �eKQiC2.AIZ=m/�

for all values i 2 Z. On the other hand, the group "KQi .AIZ=m/C may be
identified with Ki .AIZ=m/C, the symmetric part of Ki .AIZ=m/ with respect to
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the involution given by the duality. Since this involution is compatible with the Bott
map, Weibel’s theorem [66] implies another periodicity isomorphism

"KQi .AIZ=m/C Š "KQiCp.AIZ=m/C

but only if i > 0. Summarizing, we have proved the following theorem.

Theorem 8.1 Let G be a finite group and let R be the ring of S-integers in a
number field. If m is a 2-power and if G is of odd order, then we have a periodicity
isomorphism

"KQi .RŒG�IZ=m/Š "KQiCp.RŒG�IZ=m/

if 1=2 2R and if i > q� 1. On the other hand, if m is an odd prime power and if G

is an arbitrary finite group whose order is prime to m, we have the same periodicity
isomorphism, with only the restriction that i > 0.

Remark 8.2 As in Section 6, we may conjecture that, in the case where m is a
2-power, the inverse limit

lim �"KQiCps.AIZ=m/

is reduced to 0. In other words, we conjecture that the ring A is hermitian regular
according to Definition 0.5. This will imply that the positive Bott map

"KQi .RŒG�IZ=m/ �! "KQiCp.RŒG�IZ=m/

is an isomorphism for i > 0 according to Theorem 4.5.

Let us now turn our attention to a smooth complex variety S of dimension n. As
we briefly mentioned in Section 6, the étale dimension of S is 2n. As a consequence
of Artin-Grothendieck theory, it is well-known that the Betti cohomology of S with
coefficients Z=m is isomorphic to the mod m étale cohomology. The same result is
valid for any cohomology theory by the method initiated by Dwyer and Friedlander
[15]. For instance, the mod m étale K-theory of S coincides with the mod m

complex topological K-theory of Atiyah and Hirzebruch. By the same argument,
the mod m étale 1KQ-theory coincides with the mod m K-theory of complex vector
bundles provided with a nondegenerate symmetric bilinear form. This theory is well
understood and is detailed for instance in Appendix B to [6]: it is the usual mod m

topological real K-theory. In the same way, the mod m étale �1KQ-theory coincides
with the mod m K-theory of complex vector bundles provided with a nondegenerate
antisymmetric bilinear form: This theory is also well understood: it is the usual mod
m topological symplectic K-theory. In both cases, we shall write "KQ

top
n .S/, with

"D 1;�1 if we consider symmetric or antisymmetric bilinear forms respectively.
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Theorem 8.3 Let S be a smooth complex variety of dimension n. Then the mod
m étale "KQ-theory of S coincides with the mod m topological K-theory of its
complex points, real or symplectic according to ". Moreover, the canonical map

"KQi .S/ �! "KQ
Ket
i .S/Š "KQ

top
i .S.C//

is split surjective7 when i � 2nCq�1. Moreover, for odd prime power coefficients,
it is an isomorphism for i � 2n � 1, with an identification of "KQ

top
i .S/ with

K
top
i .S/C, the symmetric part of K

top
i .S/ with respect to the involution induced by

the duality functor.

Proof: This theorem is mostly a consequence of the general results in Section
6. What remains to be shown is that "KQi .S/� is zero for odd prime power
coefficients: this is a consequence of the fact that �1 has a square root in C.
Therefore, the classical Witt group and also the higher Witt groups have only 2-
torsion.

Let us now consider a real or complex commutative Banach algebra A. It is a
theorem of Fisher [18] and Prasolov [46] that the natural map

K
alg
i .AIZ=m/ �!K

top
i .AIZ=m/

is an isomorphism for i � 1. In particular, the groups K
alg
i .AIZ=m/ are periodic of

period 2 if A is complex and of period 8 if A is real. In this context, it is natural to
state the following conjecture.

Conjecture 8.4 Let A be a real or complex commutative Banach algebra with
involution. Then the natural map

"KQ
alg
i .AIZ=m/ �! "KQ

top
i .AIZ=m/

is an isomorphism for i � 1.

Applying the general arguments in this paper, we can prove a theorem that
would also be a consequence of this conjecture, namely the periodicity of the
groups "KQ

alg
i .AIZ=m/, which we simply write "KQi .AIZ=m/. More precisely,

the theorem of Fisher and Prasolov implies that the Bott map Ki .AIZ=m/ !
KiCp.AIZ=m/ is an isomorphism for i � 1, with m and p being related by our
Convention 0.1. From Theorem 0.13, we therefore deduce the following periodicity
pattern for the groups "KQi .AIZ=m/.

7In [7], we show that in fact this canonical map is an isomorphism when i � 2n� 1.
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Theorem 8.5 Let A be a real or complex commutative Banach algebra with
involution. Then we have an isomorphism

"KQi .AIZ=m/Š "KQiCp.AIZ=m/

for i � q, where m, p and q are 2-powers related by our Conventions 0.1 and 0.2.✷

As a matter of fact, if m is an odd prime power, we can prove a much better re-
sult. For, we know already by our general theory that the subgroup "KQi .AIZ=m/�
is periodic of period 4 for all values of i . Moreover, "KQi .AIZ=m/C is isomorphic
to Ki .AIZ=m/C, the symmetric part of K-theory which (as a direct consequence
of the theorem of Fisher and Prasolov) is periodic of period 4 if A is complex or
real. Summarizing, we get the following more precise theorem for m an odd prime
power.

Theorem 8.6 Let A be a real or complex commutative Banach algebra with
involution and let m be an odd prime power. Then, for i � 1, we have an
isomorphism given by the cup-product with a Bott element

"KQi .AIZ=m/
Š�! "KQiC4.AIZ=m/.
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