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0. Introduction. The purpose of this paper is to give an overview of 
the general subject of period matrices or, what amounts to essentially 
the same thing, variation of Hodge structures. Our main emphasis is 
on the precise formulation and discussion of what I feel are the central 
problems and conjectures in the subject. 

This paper is divided into three parts, and a short introduction to 
each will now be given. 

(i) Part I is devoted to giving the basic framework and main results 
which have appeared thus far in the subject. No complete proofs are 
given, and only a few are even sketched. One problem in writing this 
part was to find formulations of the results in terminology which 
would be understandable to both complex analysts and algebraic 
geometers, and which would at the same time combine the classical, 
geometric flavour of the subject while taking advantage of the gen-
erality and precision offered by the current homological formulations. 
I have chosen a compromise course, one which seemed best to me, and 
I have also parenthetically inserted alternate terminology and formu-
lations when it seemed appropriate. 

The Table of Contents for Part I is fairly self-explanatory, and I 
should only like to add a parenthetical remark about two main areas 
in algebraic geometry and function theory which are playing a central 
role in the study of period matrices. The first of these is Hironaka's 
resolution of singularities (cf. the end of §1), which in practice permits 
us to have a suitable localization around singular points of algebraic 
varieties. The second of these is hyperbolic complex analysis (cf. §6) 
which, to paraphrase Chern, is the general philosophy that suitable 
curvature conditions on complex manifolds impose very strong re-
strictions on the holomorphic mappings between such manifolds. 

A third area which should play an increasingly important role in 
variation of Hodge structures is group theory. Both the theory of 
algebraic groups and their arithmetic subgroups [ l0] , and the theory 
of representations of real, semisimple Lie groups [24] have a close 
relation to many of the problems given in Part II . 
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About 1/3 of the results listed below have been announced in print, 
another 1/3 exist in preprint form, and the remaining 1/3 have yet 
to even reach that point. Except for the foundational results in §2, 
essentially none have been published with proofs. Given this, I have 
still included references as much as was possible. 

(ii) In Part II I have given a fairly complete discussion of those 
central problems and conjectures about period matrices of which 
I am aware. Several of these are conjectures of others (such as 
Andreotti-Weil's conjecture about K — 3 surfaces—§7, Brieskorn's 
problem about the Picard-Lefschetz transformation around isolated 
singular points of hypersurfaces—§8, or Deligne's conjecture about 
the Hodge structure of a degenerating algebraic variety—§9). Some 
of the problems (such as the K — S conjecture) are long-standing, and 
I have simply written these down together with whatever recent 
information was available. Other questions are of recent origin, and 
I have tried to give a precise and thorough explanation of these. 

I have also used a system of putting asterisks "*" alongside the 
problem or conjecture. A single asterisk means that the problem 
should be accessible to present techniques, and occasionally I have 
even given an outline of how the problem might be approached (e.g., 
(8.4) and (11.2)). Two asterisks means that the problem is one which 
is perhaps accessible by current methods, and which, at any event, 
seems to me as though it could be profitably worked on. Three 
asterisks means that the problem will most likely require completely 
new insight. Of course these "ratings" are my own opinions and 
nothing more. 

(iii) In Part III I have given some examples pertaining to the 
problems and conjectures in Part II . The first of these (§13) is essen-
tially an old unpublished result of Mayer and Mumford which says 
basically that all of our general problems and conjectures are satis-
factory for curves or abelian varieties. 

In §14 there is given an example, due jointly to Clemens and my-
self, of the periods of an algebraic surface which is degenerating in an 
interesting manner. (Contrary to the case of curves, the "general 
singularity" which a surface acquires is, from the point of view of 
Hodge structures, not particularly interesting.) This example gives 
nontrivial substantiation to some of the conjectures in §9. 

In §15 I have discussed the monodromy theorem (§3) while also 
giving some illustrations of the local invariant cycle problem (§8). 

The appendix, which was added to the galley proofs, discusses some 
recent progress on the problems and conjectures given in Part I I . 

In closing I should like to express my appreciation to the many 
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colleagues with whom I have had helpful discussions and many of 
whose suggestions have been incorporated into this paper. In par-
ticular, Professor Grothendieck read over two preliminary versions 
of the manuscript and pointed out several statements which needed 
clarification. 

PART I. SUMMARY OF MAIN RESULTS 

1. The geometric situation giving rise to variation of Hodge struc-
ture. All algebraic varieties will be defined over C and will be reduced. 
The ad'ective smooth for an algebraic variety will mean nonsingular; 
thus a smooth algebraic variety X may be considered as a complex 
manifold, and we will denote by Ox (or simply 0 if no confusion is 
possible) the sheaf of germs of holomorphic functions on X. A mor-
phism f :X—> Y between algebraic varieties will be a rational, holo-
morphic mapping. If X and F a r e smooth, then a morphism/:X—>F 
will be smooth if the mapping between tangent bundles/* : T(X)—>T( Y) 
induced by the differential of ƒ has everywhere maximal rank. 

The situation we will study is that of an algebraic family of alge-
braic varieties. To be precise, such a situation is given by a proper 
morphism f:X—>S between algebraic varieties where we make the 
following assumptions: 

(a) X} S, and ƒ are smooth; 
(b) X, 5, and the fibres F a =/ - 1 (5) ( s £ S ) of ƒ are connected; and 
(c) we are given a distinguished class of projective embeddings 

XCPN (i.e., a polarization of X). 
We may intuitively think of this situation as a nice family { V8}8es 
of smooth, complete (i.e., compact), and projective algebraic varieties 
with an algebraic parameter space S. In general 5 will not be com-
plete, and we should have the picture that the Vs are acquiring singu-
larities as 5 tends to infinity in 5. 

We shall also consider smooth compactifications of our situation 
f:X-+S. By this we shall mean a diagram 

xcx 
fl I? 
ses 

where X, S are smooth and complete and where X —X and S — S are 
divisors with normal crossings. Thus, for example, S — S will be given 
locally by 

(LD Z\ • • • Zk = 0 
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where zi, • • • , zn is a local holomorphic coordinate system on 5. The 
nonsingular divisors £i = 0, • • • , zk = 0 will be referred to as the 
irreducible branches of S at infinity. Another example is when dimcS 
= 1, so that S — S is given by 5 = 0 for a local holomorphic coordinate 
5 on S. Thenf:X—>S will be given locally by 

( l . 2) %i • • • xr = s 

where •vij , OCf IS a local holomorphic coordinate system on X, 
Such smooth compactifications exist by the fundamental work of 

Hironaka. In fact, I should like to insert here the personal observa-
tion that Hironaka's work has found many important applications 
in the area of periods of integrals and Hodge structures. Among these 
applications are: 

(i) Grothendieck's algebraic deRham theorem [5]; 
(ii) the local monodromy theorem stated in (3.1) below (cf. also 

§15 for the sketch of a proof) ; 
(iii) the complete reducibility of global monodromy (3.3); 
(iv) the regularity of the Picard-Fuchs equations (Theorem 4.1); 
(v) the geometric analogue of Tate 's conjecture (Theorem 5.1); 

and 
(vi) the theorems applying hyperbolic complex analysis to the 

study of the behavior of period matrices a t infinity (Theorems 6.3, 
6.5, and 6.6). 

2. Data given by variation of Hodge structure. Given the situation 
f:X—*S of §1, we may pass to the cohomology along the fibres and 
thereby effect a linearization of the geometric picture. Upon so doing 
the following data is obtained: 

(a) A holomorphic vector bundle TlE—^S with a canonical flat 
connexion D. Fixing a base point s 0 E S , we may define E as being the 
holomorphic bundle, with constant transition functions, which is 
associated to the usual representation of the fundamental group 
7Ti(S, So) on the cohomology Hq(V,01 C). The connexion D is the usual 
flat connexion which one has on any bundle associated to a represen-
tation of the fundamental group. 

The sheaf 0(E) of holomorphic sections of E contains the subsheaf 
<S(E) = {<l>E:O(E):D(j) = 0} of locally constant sections of E. In fact, 
<5(E) is just the usual Leray sheaf RQ

U (C), the latter, by definition, 
being the sheaf associated to the presheaf U—^Hq(J~l(U)y C) where 
U runs through the family of open subsets of S. Following [S], D is 
termed the Gauss-Manin connexion. 

(b) A holomorphically varying filtration F°C • • • C.Fq = E (Hodge 
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filtration) where the fibre FJ of the holomorphic subbundle F r of E is 
just Hq'°(V,)+ • • • +Hq-r*r(V9) viewed as a subspace of H«(V9, C) 
= E, [2], [3]. 

(Grothendieck remarks that the above filtration of E can be 
defined in a purely algebraic manner as follows: Let Ùx/s 
==©?=oim v' &X/S be the algebraic coherent sheaf, in the Zariski 
topology, of relative differentials on X which are simultaneously 
holomorphic and rational. The exterior differentiation on Ùx induces 
d : Q?x/s—*&x/s which is O^-linear. Thus Ùx/s is a graded, differential 
sheaf and so the Leray hypercohomology sheaves [5] R/*(Ùx/s) are 
defined and are coherent algebraic sheaves on S. By the main theorem 
in [5] we see that the analytic coherent sheaf associated to R/*(Ùx/s) 
is just Rf* (C)®©^. On the other hand there is the usual spectral 
sequence *{EP/} with Ep/= Rf[(Q)X/s and with 0 p + r = 9 £5 f being the 
graded sheaf associated to a filtration of {R/*(Ùx/s)}q by coherent 
algebraic subsheaves. This is the algebraic definition of the filtration 
F ° C • • * CF« = F, since because of the degeneracy of the above 
spectral sequence the Fr are just the holomorphic vector bundles 
associated to coherent algebraic subsheaves of {i?/* (Ùx/s)} q>) 

As conditions on the data (a) and (b) we have 
(c) the Gauss-Manin connexion satisfies 

(2.1) Z ) : o s ( F ^ ) - * n s ( ^ + 1 ) . 

This is the infinitesimal period relation or transver sality condition [2], 
Passing to the associated graded situation in (2.1), we see that D 
induces an 0^-linear mapping 

(2~l) D r e ^ / j O - fiV+1/F"). 

If we now denote by ür
X/s the sheaf on X of relative, holomorphic 

r-forms, then O^FVF*- 1 ) is just the Leray sheaf 2^(Ö$/5). Thus, in 
( £ l ) we see that D is given by a global section D of 

From [2] it follows that this D is just the cup product with the 
Kodaira-Spencer infinitesimal deformation class 

0 G l£(Hom(Qi/a, 6X)) ® o l 

(d) On each fibre F ? C F ] C • • - C F f - ' C F , of the situation (b), there 
is defined the Hodge bilinear form Q, which is a bilinear form, flat with 
respect to D, and with the properties given in Hodge [6] or Weil [9]. 
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We now want to formulate the data and conditions (a)-(d) just 
given in an equivalent, but perhaps more geometric, manner. The 
idea is to use a classifying space f or Hodge filiations. More specifi-
cally, we reconsider E as now being the bundle formed from the primi-
tive cohomology Hq(V8Q, C)0 [2], [9]. Recall that the rational primi-
tive cohomology Hq(VSo) Q)0 is, by definition, the kernel of 

where LÇzH2(V8Q} Q) is the cohomology class of ahyperplane section 
of Vs0 relative to the given embedding XC.PN- I t is clearly the case 
that L operates on the Leray sheaves R/9(Q), so that 7Ti(5, SO) leaves 
Hq(V8o, 0)o invariant as a subspace of Hq(V8o, Q). Because of the 
Lefschetz decomposition 

H<(VH, Q) = £ L'H<-»(y.„ Q)o, 
r 

any information about Hq(V8o, Q) is a direct sum of information about 
the primitive cohomology groups. The reason for passing to the prim-
itive cohomology is that the Hodge bilinear form Q now has the nice 
positive-definite sign properties given in [ö] and recalled in (9.8), 
(9.9) below. 

Then we construct, as in [2], [3], the period matrix space D of all 
possible inequivalent Hodge structures on a given vector space E 
( = Hq(VH, C)o) having fixed Z lattice ( = image of £T«(7.0, Z)0) and 
rational bilinear form Q ( = Hodge bilinear form on Hq(V8Q, C)0), and 
having given Hodge numbers ha'b ( = dimiîa '6(FSo)0). The data and con-
ditions (a), (b), (d) above are equivalent to giving a holomorphic 
mapping (period mapping) 

(2.2) $ :S->I>/r 

where TC.A.utz(E) is the global monodromy group (which, by defini-
tion, is the image of 7Ti(5, S0) in Autz{Hq(V8o, C)o}). 

To explain the infinitesimal period relation (2.1) in (c), we recall 
from [2] and [4] that D is in a natural way a homogeneous complex 
manifold H\G, where G is the identity component of the real ortho-
gonal group of the bilinear form Ç, and where H is the compact sub-
group of G which leaves a given Hodge structure invariant. Letting 
K be the maximal compact subgroup of G and R = K\G the corre-
sponding Riemannian symmetric space, in the equivariant fibering 

D = H\G 

(2 .3) c5 I I 

R - K\G, 
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there is a unique, G-invariant connexion 

TQ(D) = VÜ®HQ 

(£2£Z>) where the vertical space Vn is tangent to the iST-orbit of 
0,-K in D and HQ is the complementary horizontal space [4]. Now 
the condition (c) above implies to the statement: 

(2.4). The period mapping <3>: S—>D/T is horizontal in the sense that 
$*(0GH<i,w for a tangent vector t(E.T8(S). 

In general, a locally lif table holomorphic mapping ^ from a complex 
variety W to J9/T is said to be horizontal if the condition on the differ-
ential S£* given in (2.4) is true at simple points of W. (Recall that a 
holomorphic m a p p i n g ^ : W—>D/T is locally lif table if, for each point 
«>E W there is a neighborhood Uw of w in W and a holomorphic map-
ping ^ : UW—*D such that the diagram 

f D 

* p/r 
commutes.) 

I t is perhaps worth recalling here that the fibering (2.3) has the 
following properties [2]: 

(i) the projection is not holomorphic unless H = K and D is a 
bounded symmetric domain in the sense of E. Cartan; 

(ii) the fibres o)~l(r) are all nonsingular, complex submanifolds 
of D which are biregularly equivalent to the rational, homogeneous 
projective variety H\K; and 

(iii) R may roughly be thought of as the set of "real points" in the 
"Chow variety of all deformations of a fixed fibre w_1(ro) in D" (cf. 
Remark 11. 2 below). 

3. Theorems about monodromy of homology. There are two main 
results here: the essential unipotence of the local action of iri(S) on 
Hq( Vs, C) around the branches of 5— S at infinity (this is the so-called 
monodromy theorem), and the global complete reducibility of the 
monodromy group T. 

(a) The local theorem is this: We localize J:X—*S around a single 
irreducible branch of 3 - S and let T:H«(V9y C)-+H«(V8y C) be the 
Picard-Lefschetz transformation (P.-L. transformation) obtained by 
transporting cycles around the branch of S—S [3], [7], [8], [l9J. A 
more precise description of this localization is given in §8 below. 

(3.1) THEOREM (MONODROMY THEOREM), (i) The eigenvalues of T 
are roots of unity, so that TN is unipotentfor some N>Q* 
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(ii) The elementary divisors of TN are less than g + 1 , so that 
(TN-I)«+l = 0. 

(3.2). REMARK. There are f our methods of proof of this theorem 
which I know of, and which I will discuss briefly. 

(P- l ) . The first is the original topological argument based on the 
methods of Lefschetz (Landman [22]) and the direct topological 
proof by Clemens [ l4] . Grothendieck has also found a cohomological 
proof which is similar to Clemens'. In §15 we will sketch this proof in 
conjunction with a discussion of one of our problems. Both arguments 
use the resolution of singularities of a singular fibre of f:X—*S, and 
each gives estimates on N and on the index of nilpotency of TN~L 

(P-2). The second is Grothendieck's original arithmetic argument 
[ l9] , which also uses resolution of singularities. 

(P-3). The third is a combination arithmetical and analytic argu-
ment based on the fact that the Picard-Fuchs equations (Gauss-
Manin connexion) have regular singular points ( [3 ] and §4 below). As 
best as I can determine the two proofs of this kind are due to Bries-
korn and Grothendieck-Katz. These methods do not require resolu-
tion of singularities, but the proofs I have seen only give the eigen-
value statement (i) in Theorem 3.1. An outline of this proof is given 
following Theorem 4.1 below. 

(P-4). The last is a proof using hyperbolic complex analysis (cf. §6, 
and (8.3), (8.4) below), this argument being due to Borel. Here again 
use is not made of resolution of singularities, and thus far Borel gets 
out only the eigenvalue statement—cf. Problem (8.3) in §8 below. 

(b) The main global theorem is the following result of Deligne [ l ] 
(cf. Lefschetz [7] and Hodge [ó] for special cases). 

(3.3) THEOREM. The global monodromy group rCAut0(f l*9(F,o , C)) 
is completely reducible. 

(3.4). REMARK. In outline, Deligne's proof of semisimplicity goes 
as follows: First, Deligne observes that the Leray spectral sequence of 
f:X—>S degenerates at the £2-term, so that in particular we have 

(3.5) H*(X, C) A £T°(5, R/*(C)) -+ 0. 

Deligne then proves the basic fact that, in the diagram 

H*(X,C)^H*(y9,C) 

(3.6) t y* 
H*(X,Cf 
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the image of r equals that of f. This proof is based on his notion of 
"weight filtration and generalized Hodge structure" on H*(X, C) 
(cf. §9 below). Consider now the invariant part / * = iüT*(F,0, C)*1(S) 

= £r°(5, R*(C)). According to (3.5) and (3.6), ƒ* is the image in 
r:H*(X, C)->£r*(7 fof C) and is thus a "sub-Hodge-structure"; in 
particular, using the Hodge inner product, we have a 7Ti(5)-invariant 
splitting H*(Vê„ C) = / * e ( / * ) - L . If now FCH*(Vê„ C) is a maximal 
7Ti (5)-invariant subspace, then, if d i m ^ = / , the Zth exterior power 
AlFQAl {Hq(V8Q, C)} gives an invariant line in 

H«\V8QX • • • XV.„ C), 

(/ times) 

and we can find an invariant vector generating this line and proceed 
as before. 

4. Theorems about Picard-Fuchs equations (Gauss-Manin con-
nexion). The basic general fact is the result announced in [3] that 
the Picard-Fuchs equations have regular singular points. This is es-
sentially equivalent to saying that the "periods" in our family ƒ :X—>S 
do not have essential singularities on S — S, or what amounts to the 
same thing, that these periods have polynomial growth at infinity. 
Before stating the theorem, we will define the notion of regular singu-
lar points in our context. 

Let 5 be a smooth algebraic variety and E-+S an algebraic vector 
bundle with a flat algebraic connexion D. (This applied to our situ-
ation as was remarked in (b) of §2). We will say that D has regular 
singular points at infinity on S if the following is true: 

For any smooth compactification S of 5 given locally by (1.1), 
given sÇzS — S there is a topological neighborhood U of s in S and ra-
tional sections 0i, • • • , </>m of E-+S with the following properties: 

(i) 0i, • • • , <t>m are holomorphic in UC\S and give a basis for all of 
the fibres E8 (sE Ur\S); and 

(ii) the connexion D is given by 

k dz n t 
(4.1) D<t>j = X ) A)a4>i ® —- + IL AJ»<t>i ® dz* 

where the Aja1 A)^ are holomorphic in U. Thus, e.g., if d imS= 1, then 
D will have a regular singular point at 5 = 0 if 

(4.2) D4>j(s) = E A)(s)Ms) ® - • 
»»1 S 
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(4.3). THEOREM (REGULARITY THEOREM). The Gauss-Manin con-
nexion has regular singular points. Moreover, there exists a locally free 
coherent analytic sheaf Os(E) on S such that: 

(i) Qs(E) restricted to S is just Os(E) ; and 
(ii) if 0 is a local section of Os(E) in a neighborhood of sÇES—5, then 

k fa. n 
D<t> = Z ) <t>j ® —- + ] C <t>i ® tel 

i==l Zj l=k+l 

where fa, • • •, $ n are sections of Os(E). 

REMARKS. We shall outline the original proof of (4.1) and then 
comment on two very interesting recent proofs by Deligne and Katz. 
Consider for simplicity the case d imS= 1 and let s be a local holomor-
phic coordinate on 5 such that S — S is given by 5 = 0. Fix s0 near to 5 
and let ¥ i , • • - , * „ be a basis for Hq(VSQ} C). Then * i , • • • , ^ » will 
displace to a many-valued basis for Hq(Va, C) in the punctured disc 
0 < | s\ <e. The indeterminacy in this procedure is given exactly by 
the P.-L. transformation T discussed in §3. 

For simplicity we assume that the eigenvalues of T are all equal to 
1. The case when all eigenvalues are equal to a fixed number p is done 
exactly the same way, and the general case is then done by writing 
Hq{ VSo, C) as a direct sum of subspaces on which T has a single eigen-
value. If we define 

log T = ( r - / ) - ( r - 7)2/2 + • • • + (-\)*-\T - ƒ)*/«, 

then the matrix log T h a s the properties: 
(i) (log r ^ + ^ O , and 
(ii) T = elosT — I+log T+ • • • + log T/ql is a polynomial in log T. 
Let now $i , • • • , $ m be any rational sections of E—>S which are 

holomorphic and give a basis of Es for 0 < | s\ <e. Then we will have 

m 

where the matrix C(s) = (Cji(s)) is locally holomorphic in 0 < | s | <€ 
and satisfies 

(4.4) C(e**s) = C(s)-T, 

where C(e*ris) denotes the result of analytically continuing C(s) 
around s = 0. The entries Cji(s) are to be thought of as integrals 

f */W 
J y. 
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of rational differential forms $j(s) on V8 which depend rationally on 
s £ S , and where the ji are cycles in Hq(V8, Q). The main step in the 
proof of (4.1) is to prove the estimate 

^ a\ s\~b\ log s \6 

for suitable constants a, &, c. This estimate is done using the method 
of Lefschetz [7] to describe the cycles on V8 as 5 tends to zero. 

Now let l(s) =log s/2iri and write 

(4.6) C(s) = B(s)e^l^'1^TK 

By (4.4) we have B(e2iris) = B(s), and it follows from (4.5) and the 
fact that eti(«)iogTi=^j=0 ;(5)M (log TY is a polynomial in log (s) that 
B(s) =y^JT^-.jjBySv is single-valued and meromorphic a t s = 0, and 
holomorphic with det B(s) 5*0 in 0 < | s| <e. We may then obviously 
assume that our rational sections $i , • • • , 4>i» have been selected so 
as to give a holomorphic basis for E8 in 0 < | s\ <e and such that the 
matrix B(s) in (4.6) is holomorphic in the whole disc 0^§ | s| <€ and 
det £(0) 5^0. Since Z>^ = 0 it follows that D®i=52j0ji<ï>j where 

0 = dB-B-1+ (B log TB~l)ds/s 

is the connexion matrix. Comparing this with (4.2) we find our 
theorem. 

The proof by Deligne is of a somewhat more general result and is 
also based on the characterization of a flat, algebraic connexion with 
regular singular points by growth estimates similar to (4.5). 

Before discussing Katz ' argument, we remark (as was done in [3]) 
that (4.3) is a purely algebraic theorem whose proof was, however, 
based on analysis. This state of affairs has just been remedied and 
clarified by Katz, who gives a purely algebraic proof of the regularity 
theorem and which I will now outline. 

(i) The first step is that the Gauss-Manin connexion admits a 
purely algebraic definition (cf. Katz and Oda, J. Math. Kyoto Univ. 
8 (1968), 31-45). This is an extension of Grothendieck^ comment 
given in §2(b). Thus we may think of D as a rational differential 
operator 

D: R*.(Qr/fl)^JRj(Ôx/fl) ® o i 

where Rf% (Slx/s) is the algebraic coherent sheaf coming from the pre-
sheaf U—>H*(f~1(U), Ùx/s) where U is a Zariski open set in 5, Ùx/s is 

(4.5) * iW 
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the algebraic coherent sheaf of relative rational, holomorphic differ-
entials on X, and H*(j~l(JJ), Ùx/s) means hypercohomology. 

(ii) From (i) it follows that D may be "reduced modulo pn for al-
most all primes p whenever the same is done to the situation ƒ :X—>5. 
Katz then observes that, in the reduced situation modulo p for al-
most all p, we have 

(4.7) DM = 0 

for a suitable M~M(p), this being related to the fact that, for ra-
tional, holomorphic functions ƒ (x), we have dkf(x)/dxk^0 (modulo p) 
for k^p. We may think of (4.7) as the nilpotence of the Gauss-Manin 
connexion in characteristic p. 

(iii) From the nilpotency of the Gauss-Manin connexion in char-
acteristic p for almost all p, Katz uses the following result of Turritt in 
(Acta Math. 93 (1955), 27-66) to deduce the regularity theorem: 
Let A(z) — y"^T,.-m ApZ» be a meromorphic (in the usual sense) nXn 
matrix defined on the disc \z\ < 1 which is holomorphic f or 0 < | z | < 1, 
and consider the system of ordinary differential equations 

(4.8) du(z)/dz = A(z)u(z) 

for an unknown vector function u(z) in 0 < | z\ < 1. Then, by a change 
of variable z — tk and change of coordinates B(t) = C(t)A(t) where 
C(0 = ]C"--i &>& *s nieromorphic in \t\ < 1 and holomorphic with 
det C(t) 7^0 in 0 < | /| < 1, we may bring the system (4.8) into the ca-
nonical form 

(4.9) dv(i)/dt = B(t)v(t) 

where B(t) = X)r»-» B^ a n d where B-h is not nilpotent if h>\. 
The link between the nilpotency of the Gauss-Manin connexion in 

characteristic p and (4.9) is roughly that, if we set D = {d/dt — B(t) \, 
then we cannot have DM^ 0 (modulo p) for infinitely many primes p if 
h>\ because B-n is not nilpotent in (4.9). Thus we must have h = l 
and so (4.9) has a regular singular point at / = 0. 

T h e proof of the eigenvalue statement in the monodromy Theorem 
3.1 also follows by a similar argument, since in fact T = exp (J3_i) in 
(4.9) while B-\ must be nilpotent for the same reasons as before. 

There are three applications which I know of the regularity 
theorem. 

(a) The first is in the proof of the monodromy theorem discussed 
in Remark 3.4 and given in outline form just above. 
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(b) The next is Deligne's generalization [l5] of Grothendieck's 
algebraic deRham theorem [S]. For affine S, this result is: 

(4.10). THEOREM. The cohomology H*(S, R^ (C)) is the same as the 
deRham cohomology of the complex of rational, holomorphic differential 
forms with values in E {this has a meaning because of Theorem 4.3). 

(c) The last application of Theorem 4.3 is the first, and fairly-
crude, result on the behavior of the period mapping (2.2) at infinity (or 
what amounts to the same thing, the limiting position of the Hodge 
filtration of Hq(V8, C) as s tends to s £ S —S). To explain this result, I 
first recall that there is naturally associated to D a dual D with the 
following properties [4]: 

(i) D is a rational, homogeneous projective algebraic variety of the 
form D = B\G where G is a complex, simple Lie group and B is a para-
bolic subgroup\ 

(ii) the period matrix domain D~H\G where G is a real form of G 
and H = GC\B\ and 

(iii) from (ii) it follows that there is a natural equivariant em-
bedding D(ZD whose topological boundary dD = D—D is a disjoint 
union of G-orbits. 

The relation of D to Hodge structures is the following (cf. [2], [3]) : 
If we think of D as all points on a flag manifold which satisfy the two 
Hodge bilinear relations Q(£2, O ) = 0 and Q($l, S ) > 0 , then D is just 
these Î2 which satisfy the first relation Ç(12, Q.) = 0 (cf. §13 below where 
the case g = 1 (Siegel-upper-half-plane) is discussed in this setting). 

We now localize the period mapping around an irreducible branch 
B of S — S. If s l , • • • , zn is a coordinate system on S such that B is 
given by z1 = 0, we set 21 = exp(w), z = (z2, • • • , zn), and lift the period 
mapping to 

H X A*-1 = #.X~A X • • • X A 

(« — 1 times) 

where H is the usual upper-half-plane {w:lmw>0} and A is an 
ordinary disc in C. The lifted map $:iJXAw_1—>i9 satisfies 

3>(w + 1, z) = $(w, z)-T 

where T:H<*(V81 C)-*H<*(V9, C) is the P.-L. transformation obtained 
by turning around B. 

(4.11). THEOREM. The limit limim^» $(w, z) exists as a point 
$(0, z)ÇzD and has the properties: 
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(i) <Ê>(0, z) =$ (0 , z) • T is a fixed point of T, and 
(ii) $(0, z) depends holomorphically on z = (z2, • • • ,zn). 

REMARK. In particular if T is of infinite order, then $(0, z)Ç:dD 
= D—D (cf. (6.4) below for the complement to this remark). Ex-
amples of Theorem 4.11 are given by (13.28) and (14.38) below. The 
general problem of describing the limiting period matrix in a family 
of degenerating algebraic varieties is discussed in §9. 

5. Global theorems about holomorphic and locally constant 
cohomology classes. Let S be a smooth algebraic variety and E-+S 
a holomorphic vector bundle with a flat holomorphic connexion 

D: 0fl(E)-»oa(fl) 

as was discussed in §2. We suppose that E has a flat conjugation 
e—>ë, a flat bilinear form 

Q: E ® E-+ C, Q(e, e') = ( - 1 ) W , «), 

and a holomorphic filtration J ^ C ^ C • * • C F « - 1 C F « = Esuch that 
the conditions (c) and (d) of §2 are satisfied. We call S = (E, D, Q, 
{F*}) a variation of Hodge structure, and we observe that it is not 
necessary that S arise from an algebraic family of algebraic varieties 
ƒ : X—>5. In case 8 does come from linearizing such a family as dis-
cussed in §2, we shall say that 8 arises from a geometric situation. For 
the obvious reasons it is desirable to prove as much as possible about 
a variation of Hodge structure 8 = (£, D, Q, {Fk}) without assuming 
that it arises from a geometric situation. 

We shall give some results about a variation of Hodge structure 8 
when the base space 5 is complete. These were given in [16] where it 
was falsely claimed that the results held for general 5 (this claim was 
based on the assertion that Conjecture 8.1 below was "obvious")- In 
[l ] Deligne has given an independent treatment of some of the ma-
terial below and, using (3.5) and (3.6), he is able to remove the as-
sumption that 5 is complete in case 8 arises from a geometric situation 
f : X->S. 

Our methods are based on the structure equations of the variation of 
Hodge structure 8 = (E, D, Ç, {Fk} ), especially the curvature proper-
ties of the Hodge bundles Ek = Fk/Fk~l

1 together with use of the maxi-
mum principle. These structure equations, especially those arising 
from the infinitesimal period relation (2.1), are quite interesting in 
themselves. 

The first result is 
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(5.1) THEOREM. Assume that S is complete and that <j> is a global 
holomorphic section of Fk such that D<f> projects to zero in E/Fk. Then 
there exists a global, constant section rp of E such that dj> —xf/ is a section of 

(5.2). COROLLARY. If <f> is a section in H°(S, C(-E)), then the Hodge 
(py Q) components of <j> are also global sections of 6(E). 

This corollary is given in [l ] in case S arises from a geometric situ-
ation ƒ : X—>S where 5 is arbitrary. As mentioned above, the proof of 
(5.1) follows from the maximum principle and a formula for the cur-
vature in Ek which we shall now explain. Recall first that if H-+S is 
an arbitrary holomorphic vector bundle which has a (not necessarily 
positive-definite) Hermitian metric, then there is a unique metric 
connexion 

DH: A°(H) -> A\H) (A«(H) = C°°ff-valued g-forms on S) 

which satisfies 
(i) the metric in H is flat, and 
(ii) DH = S where D H = D'H+DH is the type decomposition of DR* 

For example, if we take the Hermitian metric 

(e, e') = ( - l ) ' Q ( e , ê') 

in E, then the metric connexion DE is just D. The Hodge bilinear form 
also induces Hermitian metrics in Fk and Ek, where the metric in the 
latter bundle is positive definite. Returning to the general situation 
H—+S, the curvature ®H of the metric connexion is a Hom(H, H)-
valued (1, 1) form defined by 

(DHn = ©H.^ (* e A°(H)). 

Thus, for example, @ £ = 0 . To give the formula ®E
k for the metric 

curvature in the Hodge bundles, we refer to ( £ ! ) and let 

(5.2) <rk:E
k->Ek+l® T* 

(T* = cotangent bundle of S) be the linear bundle maps induced by D. 
Using the (positive-definite) Hermitian structure in the {Ek}, we may 
interpret 

(o-*, crjfc) — (*(Tjfe_i, Vjfc-i) (cr_i = 0 = <rq+i) 

as a Hom(E&, E^-valued (1, 1) form on 5, which has a local expression 
A A ' 3 " ~ B/X^B where A, B are matrices of (1, 0) forms on S. 

(5.3). THEOREM. ®E
k = (cr&, <rk) - (eo&-i, *<r*-i). 
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We have two applications of Theorem 5.1. To explain the first we 
let 8 = (E, D,Q> {Fk} ) be a variation of Hodge structure and observe 
that 8 gives rise to a period matrix domain D, global monodromy 
group T, and period mapping <ï>: S—>D/T. 

(5.4). THEOREM (RIGIDITY THEOREM). Assume that 8, 8' are two 
variations of Hodge structure giving rise to period mappings $ , <£'. As-
sume furthermore that 

(i) either S is complete or 8 and 8' both arise from geometric situations; 
(ii) there is an isomorphism ty : Eg0—^E8Q which is a T-invariant isomor-

phism of polarized Hodge structures. 
Then the period mappings $ and <J>' coincide. 

REMARKS. This rigidity theorem is due to Grothendieck [18] when 
<? = 1; it was also Grothendieck who conjectured (5.2) on the basis of 
the Tate conjectures. In case the period matrix domain D is a bounded 
symmetric domain, a function-theoretic proof of (5.4) has been given 
by Borel-R. Narasimhan [ l l ] . 

-The second application is a Mord ell-Weil theorem for families of 
intermediate Jacobians. Let ƒ : X—>5 be an algebraic family of alge-
braic varieties as in §1 and let V8=f~l{s). We set 

ET\V.) - Hiq+1' V.) + • • • + H*+1-\V.) 
and let 

(5.5) T(V.) = HT\V.)\HU+\V., C)/H2q+\V„ Z) 

be the qth intermediate Jacobian of V8 (cf. [2], [3], [23]). For g = 0, 
T(V8) is the Picard-variety of V8, and for q = n — 1 (n = dimcV8), 
T(V8) is the Albanese-variety of V9. 

(5.6). PROPOSITION. There is a complex manifold 3 which is an 
analytic fibre space w: 3—»S of complex tori with &r1(s)~T(V8)for 

ses. 
Let 6s(3) be the sheaf of holomorphic cross-sections of œ: 3—>5. 

From (2.1) and the definition of T(V8) we have an induced sheaf 
homomorphism 

(5.7) D 3 : es(3)-^ul(E/Fq+1). 

To explain the geometric meaning of D3, we let ®(V8) be the group of 
algebraic (»—g—1)-cycles on V9 which are homologous to zero. Then 
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there is an Abel-Jacobi homomorphism [3 ], [23 ] 

(5.8) *: 0 (7 . ) -> r ( 7 . ) , 

which for g = 0 and w —1 is just the classical mapping of divisors and 
zero-cycles on V8 to the respective Picard and Albanese varieties. Let 
now ©(5) be the sheaf on 5 which assigns to each open set UC.S the 
group ©(£/) of analytic cycles Z i n / _ 1 ( t / ) which are of codimension 
q-\-1 on f~l{ U) and have the properties that all intersections Zs — Z-V* 
are proper and that Z8 is an algebraic (n—q—l)-cycle on Vs which is 
homologous to zero. Then the Abel-Jacobi maps (5.8) fit together to 
give an Abel-Jacobi mapping 

(5.9) v: 0(S)->0 f l(3) 

depending holomorphically on parameters. 

(5.10). PROPOSITION. The homomorphism v in (5.9) satisfies D%(v) 
= 0 in (5.7). 

Our main result is 

(5.11). THEOREM ( M O R D E L L - W E I L FOR FAMILIES OF INTERMEDIATE 

JACOBIANS). Assume S is complete. Then the group Hom(5, 3) of 
holomorphic sections v of 3—>5 which satisfy D$v = 0 is an extension of 
the intermediate Jacobian T(X) of X {the trace or fixed part) by a 
finitely generated abelian group. 

REMARK. This theorem should remain true for arbitrary base 5 
as soon as a satisfactory theory of generalized intermediate Jacobians 
has been worked out. This theory has been worked out in case the 
singular F ? (sÇîS — S) have ordinary double points as their only sin-
gularities (cf. §§15, 16 of the author's paper On the periods of certain 
rational integrals, Ann. of Math., November, 1969). 

There is one final geometric application of Theorem 5.3 which we 
should like to give. For this recall that a cohomology class ^ £ 
H21 (5, R) is positive (semidefinite) if 

f *è0 
•J z 

for all complete, /-dimensional subvarieties Z of 5. 

(5.12). THEOREM. Let f: X—>S be an algebraic family of algebraic 
varieties. Then the Chern classes Ci = Ci(RQ

f(Qx)) of the Leray sheaf 
R; (Ox) are positive. In particular, if S is complete curve, then fsC\>0 
for 2 = 1, 2 if the variation of Hodge structure is nontrivial 
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6. Global results on variation of Hodge structure. The global 
information on the behavior of the period map (2.2) near infinity 
seems thus far to have come principally by the methods of hyperbolic 
complex analysis, but with reduction theory becoming increasingly im-
portant. To explain what we mean, we localize the period mapping 
around a point of S — S (cf. (1.1)) so that we have a horizontal, 
holomorphic mapping 

(6.1) $ : A** X An~k-> D/T 

where A, A* are a disc, respectively punctured disc in C. Now 
A**XAn~* carries the usual Poincarê metric, and the Cartan-Killing 
form on G induces an invariant Hermitian metric ds2

D on D. From [4] 
we then find that : the period mapping (6.1) is negatively curved in the 
sense that, with suitable normalization of constants, we have 

(6.2) KD(M*)) ^ - 1, 

where 7r is a holomorphic 2-plane given by T—T/\T for some (1, 0) 
tangent vector r to S, <£*(7r) is the induced 2-plane on Dy and 
KD($* (T)) is the holomorphic sectional curvature in <1>* (T) [26]. 

From (6.2) and the generalizations of the classical Schwarz lemma 
due to Ahlfors, Chern, Kobayashi, Wu [l3], [26], we have [17]: 

(6.3). THEOREM (GENERALIZED SCHWARG LEMMA). The period 
mapping <£: S—+D/Y is both distance and volume decreasing locally 
near infinity. 

One of the main uses of this result is to allow us to prove in general 
certain statements which were easy in the special case when D is a 
bounded domain (Hermitian symmetric space). For example, we have 
(cf. [l6] and the references given there): 

(6.4). THEOREM (REMOVABLE SINGULARITY THEOREM). Let B be 
an irreducible branch of S — S around which the P.-L. transformation T 
is of finite order. Then the period mapping (2.2) extends holomorphically 
across B. 

Assume now that $ : S-+D/Y has been extended across the branches 
of S — S where P.-L. is of finite order. Then from [17] we have 

(6.5). THEOREM. The image $ (5) (ZD/T is a closed complex analytic 
set of finite volume. 

REMARK. Without assuming that we have extended $ across the 
branches ol S — S where P.-L. is of finite order, we can only assert 
that $(S) is a locally closed analytic subvariety of D/T. 

Using (6.3) and the methods of reduction theory, Borel has proved 
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the eigenvalue part of the monodromy theorem (3.1) and the follow-
ing 

(6.6). THEOREM (BOREL) . In case D is a bounded domain, the period 
mapping <3> : S—>D/T extends to a holomorphic mapping <ï> : S—•> {D/T} * 
where {D/T}* is the Baily-Borel compactification of D/T [lO]. 

REMARKS. This result applies in case the fibres of/: X—>S are, for 
example, curves, K—3 surfaces, or cubic threefolds. Borel's proof of 
(6.6) makes use of the assumption that 5 — 5 has normal crossings, 
and so it is not known whether or not (6.6) remains true for other 
smooth compactifications of 5 (i.e. it is not known in what sense 
D/T is "minimal at infinity"). The proof of (6.6) when the fibres of 
f:X~^S are curves is due to Mayer and Mumford, whose used a com-
bination algebro-geometric and hyperbolic-complex-analytic argu-
ment (cf. §13 below for a proof of their theorem). 

PART II . PROBLEMS AND CONJECTURES 

7. Problems on Torelli-type theorems. The local Torelli problem 
is the question of deciding when the Hodge structure on 2J*(F8, C) 
separates points in the local moduli space (Kuranishi space) of Vs. This 
problem leads to a rather interesting multiplicative problem in coho-
mology [2], [3] which, in specific cases, usually reduces to a geometric 
question on linear series. Somewhat surprisingly the local Torelli 
theorem holds in many examples (e.g. curves (Rauch), nonsingular 
hypersurfaces in projective space (with the one exception of the cubic 
surface), hypersurfaces on abelian varieties, and varieties with trivial 
canonical bundle (essentially due to Andreotti)), and, so far as I 
know, has yet to fail significantly. 

(7.1). PROBLEM*. Find methods to treat the local Torelli theorem. 
In particular, decide whether it is true or false for simply-connected 
canonical surfaces (i.e. surfaces with ample canonical bundle). 

The global Torelli problem is the question of 'whether or not the 
total period matrix (i.e. the polarized Hodge structure on ©^L0 

Hq(V8, C), n — dimcVs) characterizes uniquely the polarized algebraic 
structure of Vs. This is a really beautiful question about which noth-
ing substantial, other than the case of curves (the affirmative answer 
in this case being the usual Torelli theorem), seems to be known (cf. 
the second remark below Problem (7.3)). 

The main conjecture, which is due to Andreotti and Weil (cf. [2], 
[20] and the references given there), deals with polarized K—Z sur-

faces. By definition such surfaces are simply-connected, polarized 
algebraic surfaces which have a trivial canonical bundle. The period 
matrix domain for the 2-forms is the bounded symmetric domain 
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D = S0(19) XSO(2)\SO(19, 2) [2], and as mentioned above, the local 
Torelli theorem is true in this case. In fact, both the local moduli 
space and period matrix domain are 19 dimensional. 

(7.2). CONJECTURE***. The global Torelli theorem holds for K-3 
surfaces. 

REMARKS. I t follows from Borel's Theorem 6.6 that the period 
matrices coming from any maximal algebraic family (e.g. any of the 
countable sequences of algebraic families of polarized K — 3 surfaces 
appearing in Italian algebraic geometry—cf. the Enriques book Le 
superficie algebriche, Bologna, 1949) form a Zariski open set in D/Y. 
Furthermore, in this case the boundary d(D/T)— { D / T } * —D/Y of 
D/Y in the Baily-Borel compactification has complex dimension one, 
and we can identify a family of degenerate K—3 surfaces lying over 
d(D/Y) as being certain rational surfaces with an elliptic double curve. 
There has also been recent work by A. Mayer on K — 3 surfaces with 
rational singularities (or du Val singularities) ; he used these to account 
for some of the elliptic transformations in Y. 

Speaking personally, it seems to me that the most promising avenue 
of approach to (7.2) is some sort of direct construction of the function 
field of a K—3 from its period matrix. This might be essentially a uni-
formization question (cf. §12 below). 

I should like to also put forth the problem of the global Torelli 
theorem for nonsingular cubic threefolds (cf. [2] and §23 of the au-
thor's paper On periods of certain rational integrals, Ann. of Math., 
November, 1969). 

(7.3). PROBLEM.** IS the global Torelli theorem true for non-
singular cubic threefolds? 

REMARK. I only put two asterisks here because of the following: 
(i) the cubic threefold can most likely be reconstructed from the 

Fano surface of lines lying in it; 
(ii) this Fano surface has irregularity hlt0 = 5 and should be em-

bedded in its Albanese; and 
(iii) if this were the case, then the methods from the theory of 

curves might apply. 
REMARK ADDED IN PROOF. I would like to call attention to the 

recent paper Periods of a moduli space of bundles on curves, Amer. J. 
Math. 90 (1968) by Mumford and Newstead which gives an interest-
ing global Torelli theorem. 

8. Problems on local monodromy and variation of Hodge struc-
ture, (a) In this paragraph we shall localize the s i tuat ion/ : X-+S of 
§1 over a disc A which meets a single irreducible branch of S — S 
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transversely. Thus we assume we have the situation ƒ : F—»A where 
(i) A C C is an ordinary disc around the origin and with holomor-

phic coordinate s; 
(ii) F is smooth and the geometric fibres V8=f~1(s) are all con-

nected ; 
(iii) ƒ is proper and its restriction to F = F — V0 is smooth ; and 
(iv) there is a distinguished embedding F C ^ V . 
We let A*=A— {o} be the punctured disc and select a base point 

SoGA*. Denote by T:H«(V8Q, C)-±H<i(V80, C) the local P.-L. trans-
formation (§3). The following is the local invariant cycle problem: 

(8.1). CONJECTURE**. Let \l/GHq(V8Q, C) be a local invariant 
cohomology class (i.e. T\f/—\//). Then there is a class ^ G # a ( F , C) 
with $ | VH=yp. 

REMARKS. I t is trivial that there exists tyEHq(Y, C) with ^ | V8Q 

— \p. However, it has thus far been amazingly difficult to prove 8.1, 
and the special cases which have been checked (essentially curves and 
some special surfaces—cf. §15) suggest that some sort of Hodge theory 
is needed so that the result (if true) is probably not topological. The 
global form of the conjecture is due to Deligne (3.6). It is not obvious, 
but would probably be the case, that the local version would imply 
the global one. 

The principal motivation for the local invariant problem is the 
question of describing the local vanishing cycles in terms of the P.-L. 
transformation T. By definition, the local vanishing cycle group is the 
kernel of the inclusion HP(V8Q, C)—*HP(Y, C). An affirmative answer 
to (8.1) would give this vanishing cycle group as (T — I) -Hp(V8o, C). 

(b) The next problem is a question raised by Brieskorn and related 
to me by Deligne. Assume that we are given the s i tuat ion/ : F—»A as 
above, but where the fibres V8 are now only assumed to be local ana-
lytic hyper surfaces in an open set U(ZCn+l, which we may take to be 
given by 

/ (z i , • • • , Zn+i) = s 

where ƒ is a suitable analytic function of 21, • • • , zn+i. We assume 
that the V8 are nonsingular for sGA* and that V0 has an isolated 
singular point at the origin in Cn+1. This is the situation studied ex-
tensively by Pham, Brieskorn, et al., and reported on in Milnor's 
book [8], where also numerous examples are given. We let M8 

= V8C\B where B is a small ball around the origin in Cn+1. It may be 
assumed that the M8 (sGA*) are smooth, real 2w-manifolds with 
boundary, and we consider the cohomology group Hn(M8Q, Q) and 
corresponding P.-L. transformation T [s]. 



250 P. A. GRIFFITHS [March 

(8.2). PROBLEM. IS the P.-L. transformation T:Hn(M8Q1 Q) 
->Hn(M8Q, Q) of finite order? 

REMARK. Grothendieck has verified that the eigenvalues of T are 
roots of unity in this case—cf. [19]. 

(c) In this problem we return to the usual s i tuat ion/: Y—>A* where 
ƒ is proper as in §8 (a) above. 

(8.3). PROBLEM*. Complete the proof, which is outlined in the 
remark below, of the eigenvalue statement of the monodromy the-
orem so as to also get the result about elementary divisors. 

The solution to (8.3) along the lines proposed in the second remark 
below would lead to a solution of the following, which is implied by 
the Hodge conjecture [ó]: 

(8.4). CONJECTURE*. If the Hodge numbers Aa«& = dim Ha>b(Vs) 
satisfy: 

fo2p+l,Q _ 

h2p,0 = 

(TV-IY+1 

= . . . = fcp+i+« 

}]%>+8tp-

= 0 where 

r = 2s-

= 2s-

- 1 

- 2 

,p-« = o 

-• = o 

in case q 

in case q 

where q = 

where q = 

= 2p + l, 

= 2f. 

2p+l, 
-2p, 

REMARK. We can state this conjecture verbally as follows: If the 
Hodge numbers for the group Hq(VSQ, C) start to vanish from the 
ends, then we should be able to accordingly lower the index of nil-
potency in the monodromy Theorem 3.1. 

REMARK. An outline of the proof of this problem-conjecture might 
be as follows: Write D = H\G where G is a real, simple Lie group and 
H = HiX • • • XHSXZ(H) is a compact subgroup (§2, (d)), the 
F ; (j = l , • • • , s) being the simple f actors of H and Z(H) being the 
center of H. The point should be that the number s of simple factors 
of H is the same as the number 5 in the Conjecture 8.4. 

In more detail, we restrict the period mapping (2.2) to the base 
space of our situation ƒ : F—»A* and then lift to universal coverings 
to obtain a holomorphic mapping 

(8.5) <£: H->D, 

where H is the usual upper-half-plane of all z — x+iy, y>0. The 
mapping satisfies: 

(8.6). $ is horizontal and $(2 + 1) =$(3) • T where T is the P.-L. 
transformation. 



ï97o] PERIODS OF INTEGRALS 251 

Since T is an integral matrix, the eigenvalue statement will follow 
from Kronecker's theorem if we can show that the eigenvalues are 
all of absolute value one (this was pointed out to me by Weil). Having 
done this we would then want a bound on the index of nilpotency of 
TN — I. Write T=T8-TU (Chevalley decomposition) where T8 is semi-
simple, Tu is unipotent, and TSTU — Tu- T8. First we must show that 
T8 is elliptic; this should be done directly using (8.6) and (6.3), but 
in any case it is true. Assuming now that T8 — I, we write Tu — exp y 
for 7 in the Lie algebra of G. Using (6.3) we will find an estimate on 
the norm, with respect to ds2D, of the infinitesimal linear transforma-
tion 7 acting on D. Taken with suitable information about ds2

D} we 
should get (8.4). The point of this approach is that all the calculations 
can be done in the Lie algebras, and doing this ought to be a manage-
able problem. 

9. Questions on compactification and the behavior of periods at 
infinity, (a) The discussion in this section was given in preliminary 
form in [3]. The present reformulation and clarification owes much 
to discussions with Borel. 

Let 

I C I 

(9.1) f I if 

ses 
be a situation as described in §1 and denote by TC.Aut(Hq(V8Q, C)o) 
the arithmetic group leaving the lattice Hq(V8Q, Z)r\H9(VS0, Q)0 

invariant. Denote by <£>:5—»£>/T the corresponding period mapping 
(2.2). Following the lead of Theorem 6.6, we should like to be able 
to find an analytic space { ^ / r } * which has D/Y as a Zariski open 
subset, and which has the property that the period mapping extends 
to a holomorphic mapping 3>:S—>{D/T} * for all situations (9.1) 
(where it is still assumed that S — S has normal crossings). 

Before stating a formal conjecture, we want to comment about the 
boundary components [lO] of DC.D (cf. (c) in §4). Namely, a bound-
ary component of D in its dual D is, as a tentative definition, a locally 
closed complex submanifold F of D which satisfies the conditions 

(i) F is contained in dD = D — D\ 
(ii) F is itself a homogeneous complex manifold which is the orbit 

of a suitable parabolic subgroup N(F) (called the normalizer of F) of 
G under the natural action of G on dD; and 

(iii) if Z(F) is the set {gGN(F) such that g-iï = ü for all £2£^} is 
the centralizer of F, 
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then J F = GF/HF where GF = Z(F)\N(F) is a real semisimple Lie group 
and HF is a compact subgroup. The boundary component F is said 
to be a rational boundary component if the group N(F) is a Q-subgroup 
of G (cf. [lO]). Examples of these concepts are given in §13. 

(9.2). CONJECTURE**. There exists a separated, locally compact 
topological space {Z?/r}* with the following properties: 

(i) {D/T}* contains D/T as an open, dense subset; 
(ii) set-theoretically {-D/T} * is the disjoint union 

D/T W j £ F,/v)j 

where the F3- are different rational boundary components of D and 
Tj = TH\N(Fj) acts properly discontinuously on Fj; 

(iii) the induced topology on Fj/Tj is the natural topology there; 
and 

(iv) a horizontal, holomorphic mapping <£:S—>D/T extends to a 
continuous mapping 3> : 5—> {D/T} *. 

(9.3). REMARKS. We should call such a Z)/T a partial compactifica-
tion of .D/T, and we should think of {D/T} * as giving a (topological) 
compactification of D/T with respect to the holomorphic mappings which 
arise in algebraic geometry by taking period mappings. In fact, it should 
be observed that we have made no assertion that either 

(i) {D/T} * is a compact topological space, or 
(ii) {D/T} * is an analytic space. 

Both of these points deserve comment. 
Regarding the first, it was pointed out to me by Borel that it seems 

quite unlikely that there will be a natural (i.e. functorial) compactifi-
cation of D/T as an analytic space. Rather, what Borel suggested 
was that, at best, we should hope for a partial compactification as 
described in (9.2). I t turns out that both the impossibility of a full 
compactification and the possibility of such a partial compactification 
receive support from the theory of intermediate Jacobians [2], 
[3], [23], and I should like to explain this. 

The idea is that the theory of intermediate Jacobians has provided 
a very useful and simpler "abelian" analogue of the period mappings. 
This being the case, it is natural to see what happens to compactifica-
tion questions here. 

To be more explicit, we take the localized situation ƒ : Y—»A of 
ƒ: X-^S as was done in §8(a). Denote by S(F«) the group of algebraic 
cycles of codimension a on V8 which are algebraically equivalent to 
zero there. In case 5 = 0 we should, at least as a first approximation, 
take cycles on V0 which have compact support outside the singular 
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locus of Vo and which are algebraically equivalent to zero there. In 
any event, for s?£Q, there is a holomorphic mapping, the Abel-Jacobi 
mapping 

(9.4) * 5 : X(VS)^T(V8) 

where T(V8) is the intermediate Jacobian for cycles of codimension q 
on Vs [2], [3]. The map >?, has differential restrictions of the same 
nature as the infinitesimal period relation (2.1) (cf. [2]), and, as 
mentioned above, gives a simplified model of the period mapping. 
Now let us assume that, as FS—>F0, the intermediate Jacobian T(VS) 
tends somehow to a generalized intermediate Jacobian T(Vo). For 
example we could take V8 to be the product of 3 elliptic curves each 
acquiring an ordinary double point (in this case we take q — 2). Con-
trary to the classical case when T(VS) is a Picard or Albanese variety, 
it need not happen that T( Vo) has a compactification as an analytic 
space and which fits nicely into the complex analytic family { T{ V8)} s e A*. 
The reason for this is that, if we could so compactify T(Vo), then by 
the monodromy Theorem 3.1 (Clemens' proof [14] works for ana-
lytic spaces), we would have (TN-I)2 = 0 where T:Hl(T{V8),C) 
->Hl(T(Vs),C) is the P.-L. transformation. But Hl(T(V.),C) 
= H2Q+I(VS,C) SO the best we can expect is (TN — I)2q+1 = 0 (e.g. the 
above example of the product of elliptic curves). On the other hand, 
it seems quite reasonable to expect, and can be checked in easy ex-
smples such as the one given above, that there is a natural partial 
aompactification { r ( F 0 ) } * of T(Vo) so that if a cycle Z in S(Fo) 
cpecializes to a cycle Zo on VQ which may meet the singular locus of 
Vo, then ^ ( Z ) will specialize to a point ^o(Z0) in { T(V0)} *. In other 
words, the analogue of (9.2) in the simpler case of intermediate 
Jacobians can be checked in some examples and seems plausible in 
general. 

As to the second point in Remark 9.3, we will venture the 
(9.5). CONJECTURE***. Assuming (9.2), the compactification 

D/T has the structure of an analytic space such that 
(i) D/T is a Zariski open subset, and 
(ii) the extended mappings $ : S—> {D/T} * in (iii) of (9.2) will be 

holomorphic. 
The reason for putting three asterisks on (9.5) is that, whereas one 

can see some possible approaches to (9.2), the analytic structure on 
{ P / r } * has in the past only been possible through the use of some 
global functions or automorphic forms on D/T (cf. [lO]; the reason 
for this is because neighborhoods of points at infinity in {.D/r}* 
—D/T are in some sense quite "large"), and this theory is completely 
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missing in the non-Hermitian symmetric case (cf. [4] and §10 below). 
In fact, the only real reason for venturing the Conjecture 9.5 is some 
faith in the global theory of moduli. 

(b) L e t / : F—»Â be a localization, as in §8(a), oîf:X—>S around an 
irreducible branch of S — S. If the Conjecture (9.2) is to hold, then it 
should be the case that the Hodge structure of HQ(VS1 C) tends to 
some definite "object" whose parameter space is the rational bound-
ary component Fj which contains lims^0 3>(V«)£ Fy/Ty (using the 
notation of (9.2)). Examples (cf. §7, §13, §14) suggest that this limit 
object should be a "weighted Hodge structure"; i.e., the limit lims_»o 
Hq(Vs, C) should in first approximation look like the Hodge struc-
ture on a vector space Hq(W0lC)® • • • @H1(Wg-.i9C)®H°(Wq9C) 
where W0, • • • , Wq are nonsingular algebraic varieties, and where 
the piece Hk(Wq-h, C) is thought of as having weight k. 

The precise conjecture here is due to Deligne, who arrived at the 
formulation given below using his and Grothendieck's yoga of 
"weights on the cohomology of singular or noncomplete algebraic 
varieties," this yoga arising by translating back to the complex 
cohomology some consequences of the Weil conjectures for varieties 
defined over finite fields. 

Before giving this conjecture, we need to give a few preliminary 
explanations. If E is a complex vector space having a conjugation 
e—>ë ( e £ E ) , then a Hodge structure of weight k on E is given by a 
filtration 

(9.6) F° C F1 C • • • C F* = E 

with the property that the mapping 

(9.7) F*> 0 Fk~*>-1 - > E 

is, for each p — 0, • • • , k, an isomorphism. This is the same as giving 
a direct sum decomposition 

(9.8) E = 0 £*•«, £*•« = E9 'p . 

If E is defined over Q, and if we are given a rational bilinear form 
Q:E®E-+C such that Q(e, c') = (- l )*Q(«' , *) («, e'EE), then there 
is the obvious conjugation on E and we have the notion of a polarized 
Hodge structure of weight k on E, which is given by a filtration (9.6) 
such that (9.7) and the two Hodge bilinear relations [2], [ó], [9] are 
satisfied. Referring to (9.8) these relations are: 

(9 9) Q(£*'S !*'•«') = 0 iîp^p', q^qf; 

(-;)*(-l^QCE*'3, E™) > o. 
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We now consider the local system Rj^(C) = ^ ( 0 ) ® C associated 
to a localized s i tua t ion / : F—>A* as in §8(a). The P.-L. transforma-
tion T acts on each fibre ^ ( C ) s = Hq(V8y C), and we will assume that 
T is already unipotent so that (Z1—I)q+1 = Q. 

Let E = Rj (C)8 be a typical fibre, which we consider as a complex 
vector space defined over Q and which has a rational bilinear form 

(9.10) Q:E ® £ - » C, Q(v, w) = (-l)«Q(w, v). 

The first thing we want to do is to use 

log T = (T - 7) - (T - 7)2/2 + • • • + ( - l ) « + 1 ( r - Dq/q 

to put on E the structure resembling that of the cohomology ring on 
the topological manifold underlying a g-dimensional Kàhler manifold, 
and where log T plays the role analogous to the Lefschetz-Hodge L 
operator [9]. 

To do this we define the Picard-Lefschetz filtration 

(9.11) W°C - - - CW2« = E 

as being the unique rational filtration on E such that log T(Wk) 
C Wk~2, and the induced map 

(9.12) (log T)k: Wq+k/Wq+k~1->Wq-k/Wq-k-1 

is an isomorphism. Thus, as mentioned before, log T is to be similar 
to the "L" in Kâhler geometry, except of course that log T decreases 
indices by two instead of raising by two. 

Before continuing, let us show how to construct the P.-L. filtration. 
Because of (9.12) when k = q we must have 

W2q~l = kernel of (log T)q on E, and 

W° = image of (log T)q. 

Having defined W2q~x and W° in this way, we may replace E by 
E'= W2q~l/W° on which log T:E'—>E' is well defined and now satis-
fies (log r ) 9 = 0. Because of (9.12) again we must have 

W2q~2 = inverse image in W2q~l of ker(log T)q~l on E', and 

W1 = inverse image in W2q~l of im(log T)q~l in E'. 

Continuing inductively in this way we will have defined the P.-L. 
filtration (9.11). 

Using the equation 

(9.13) Ç(log T-v, w) + Q(v, log T-w) = 0, 
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we find that the P.-L. filtration (9.11) is an isotropic or self-dual 
filtrationj which by definition means that we have 

(9.14) j j 
(T^-i)-L = w* 

where (TFfc)-L= {vEE:Q(v, Wk) = 0 } . I t follows from (9.14) that there 
are nonsingular rational bilinear forms 

(9.15) Qk: W
k/Wk~l ® Wt/W*"1 -> C, &(!>, w) = (-l)*Q*(w, t») 

such that the maps (log T)k in (9.12) are isometrics. For example we 
define Q2q by 

(?2a(fl, w) = Q(v, (log JT)*«0, for v, w G W^/W2*-1. 

These bilinear forms (9.15) are the analogues of the usual ones in 
Kâhler geometry. 

There is one final ingredient to put in before giving the conjecture. 
Namely, we define as usual the primitive part PQ+k of Wq+k/Wq+k~l 

(Jfê O) to be the kernel of (log Ty^lW^/W^^^W^^/W^-2. 
Then we have the Lefschetz decomposition 

Vol 2] 

(9.16) w^/W^-1 = 0 (log T)lPq+k+2l 
i=0 

as an orthogonal (with respect to Qq+k) direct sum. This is proved 
just as in the Kahler case [9]. 

Deligne's conjecture relates the Hodge filtration of §1 

F.° C • • • C F! = Rfl(C)8 

with the Picard-Lefschetz filtration (9.11) as follows: 
(9.17). CONJECTURE**. The induced nitrations 

Fl(s) = w"r\F*/wk-1r\rf 

have the following properties: 
(i) the filtration F°k(s)C • • • CF*(s) = Wk/Wk~l is a Hodge filtra-

tion of weight k on Wk/Wk~1; 
(ii) the Hodge filtrations in (i) induce polarized Hodge filtrations 

on the primitive pieces Pq+k with the quadratic forms being given 
by (9.15); 

(iii) the Fl(s) vary holomorphically with s£A* ; and 
(iv) because of (iii) and Theorem 6.4 we see that the Hodge filtra-

tion in (i) extends across 5 = 0, and we are to then have 
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l o g T : tf(0)-»*LÎ(0). 

REMARK. From (9.12) and (iv) in the conjecture, we see that the 
maps 

(log T)k: Wq+k/Wq+k~l —* Wq~k/Wq~-k~~1 

are, at 5 = 0, isomorphisms of polarized Hodge structures. I t is in this 
sense that lims^0 Hq(VSi C) is given by a set of q+1 period matrices 
corresponding to polarized Hodge structures of weight k for k = Q, 

i , • • • i q.-
(9.18). REMARK. For k — q the conjecture says that 

Q2q:W
2£/W23-1®W%/W2£-1-+Q 

should be positive definite. This is true for q = 1, 2 [l4] by using explicit 
formulae for the P.-L. transformation T. 

REMARK. We will prove (9.17) for g = l in §13 below, and will in 
§14 give a nontrivial example when g = 2. At this time the best hope 
for doing (9.17) in general seems to be to relate it to the compactifi-
cation question (9.2) so that the methods of group theory and hyper-
bolic complex analysis become available. 

10. Problems on normalization and uniformization of periods. 
(a) I t is of course well known to be the case that the period matrix 0 
of a nonsingular curve can be normalized; that is to say there is a 
definite nonzero maximal rank minor of 0, so that we can in fact put 
Q, in the usual form 0=(7 W , Z) where Z — X-\-iY is an nXn matrix 
with Z = 'Z, F > 0 . This implies that whenever we are given the 
situation ƒ iX—^S as in §1 where the fibres V8 are curves, then after 
passing to the universal covering 5 of S to have the lifted situation 
ƒ : X—>S, we will have a definite isomorphism of filtered holomorphic 
vector bundles over S 

*: { O C F ° c £ } - > { O C o ] | C 0 f } 

where the image of \f/ is given by bounded analytic f unctions on 5. 
This kind of normalization can equally well be done whenever the 

period matrix domain D — H\G happens to be a bounded symmetric 
domain in some CN, which is the same as saying that H = K is the 
maximal compact subgroup of G. 

In general, there is a topological obstruction to finding such a global 
coordinate system on D. However, for any situation ƒ :X—>S as above, 
we may pass to universal coverings to have the lifted period mapping 
<l : 5-->D.Then the bundles Fv appearing in the lifted Hodge nitrations 

0 C F° C • • • C Fq = É^ S X Hq(V,Q, C)o 
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are all of the form #* (L) where L—>D is a homogeneous vector bundle 
[4]. If we want to find an isomorphism of filtered bundles 

*: {0CF°C • • • CF°}-{OC0?C • • • CeJ4}, 

then a necessary condition is that the Chern classes of the FP—*S 
vanish. This happens as a consequence of the infinitesimal bilinear 
relation (2.1). 

Now, even if we could find an isomorphism \p as above, there is an 
analytic obstruction to giving x// by bounded analytic functions. This 
obstruction is that the period mapping <ï> : S—+D/T should be constant 
whenever there are no bounded holomorphic functions on 5. Using 
hyperbolic complex analysis, it has been seen to partially be the case 
that this analytic obstruction also vanishes (cf. [4] and [26] where 
precise statements are given). 

(10.1). CONJECTURE**. Given f:X—>S, there exists a simultaneous 
normalization of all of the periods &(Va) ( s £ S ) . More precisely, 
suppose we lift the period mapping to the universal coverings to have 
<ï>:5—>D. Then there exists a natural embedding of the image $(5) 
in a bounded domain B in some CN. 

REMARK. Suppose that the period mapping $ : S—+D/Y satisfies the 
following conditions: 

(i) the differential <£* is everywhere injective; 
(ii) each of the P.-L. transformations around the branches at 

infinity is of infinite order (cf. (6.4)) ; and 
(iii) the induced map <£**7Ti(S, SO)—^T is injective. 

Let BCD be the total inverse image of <î>(5) in the diagram 

D 

1 7T 

S-+D/T 

From (6.2), (6.5), and [2] we have: 

(10.2). THEOREM. B is 
(i) topologically a cell, 
(ii) strongly Levi-pseudo-convex and therefore a Stein manifold, and 
(iii) strongly negatively curved, i.e., has a complete metric ds\ with 

all holomorphic sectional curvatures satisfying KB(Tr)i^—\. (cf. (6.2)). 

How much more like a bounded domain can a complex manifold 
be? 
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(b) The following is, to me, the central remaining foundational 
question in variation of Hodge structures. I t is the problem of finding 
the analogue of "automorphic functions" for general period mappings 
<&:S—>D/T in case D is not a bounded domain. Another way of 
phrasing the question is to find a natural way of algebracizing the 
images $(S)CD/T so that the mapping $:S—*b(S) is a morphism. 
For example, although it could perhaps be squeezed out of the meth-
ods used to prove (6.5), it is certainly not a priori clear to me that the 
equivalence relation on 5 given by "s^s'<=>Hodge structure (with 
distinguished lattice and polarization) on Hq(V81 C )^Hodge struc-
ture (with distinguished lattice and polarization) on Hq(V8»9 C)" is 
an algebraic equivalence relation (cf. [2]). 

To state the conjecture, we denote by K—+D the canonical bundle 
[4] {canonicalfactor of automorphy) and let L=©* = s 0 K

1* be the formal 
direct sum. If WQD/T is a locally closed analytic subvariety, the 
sheaf 0(L) of holomorphic sections of L is, by definition, the sheaf 
associated to the presheaf which assigns to each open set UQW a 
T-invariant holomorphic section of © J L i K" over ir~l(U), for some 
N and where ir:D—*D/T is the canonical projection. We observe that 
there is induced from ds2£> an Hermitian metric ds\ on W, defined at 
least at the simple points of W, and there is also a pointwise Hermi-
tian metric in L—>W [4]. Thus it makes sense to speak of "holomor-
phic sections of L—>W which have prescribed growth conditions at 
infinity." We do not want to make this too precise, but will only 
mention that one example of such growth conditions would be to say 
that "a holomorphic section 4>£:H0(Wy 6(L)) is square-integrable " 

We consider now horizontal, holomorphic mappings $:S—>D/Y 
from algebraic varieties 5 to D/T. Recall from Theorem 6.5 that the 
image «S$=<£(S) is a locally closed complex analytic subvariety of 
D/T. Also the bundle $*L = L$ satisfies g*L$> = L$ whenever we have 
a commutative diagram 

S —>S' 

(10.3) À A' 
D/T 

where $ , 4?' are horizontal, holomorphic mappings and g is a mor-
phism of algebraic varieties. In particular (10.3) gives a map 

(10.4) g*: H°(S', 6(L*0) -> #°(S, 0(L»)). 
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(10.5). CONJECTURE (EXISTENCE OF AUTOMORPHIC FORMS)**. 

Given $:5—>D/T as above, the image 5$ of $ is an algebraic variety 
with the following properties: 

(i) the holomorphic map $ : S-^S* is a morphism of algebraic 
varieties; and 

(ii) the canonical bundle K—>S$ is ample (i.e. there is an algebraic, 
projective embedding S$CPN given by a subspace of -ff°GS*, 0(JK>)) 

for some ju>0). 
(10.6). REMARK. The conjecture is true in case 
(a) S is complete (i.e. compact), or 
(b) the period matrix domain D is a bounded symmetric domain 

(cf. Theorem 6.6 and [l0]). 
(10.7). REMARK. The way one probably should algebracize 5$ is 

to prove that there is a graded homogeneous subring A(S$, ö(L)) of 
H°(S$j 0(L)) with the following properties: 

(i) A(S$, 0(L)) is defined by growth conditions at infinity; 
(ii) given a diagram (10.3) so that we have S$ CS$>, then we should 

have A(S$>, 0(L))—>;4(S$, 0(L)) (i.e. the growth conditions are in-
herited on subvarieties) ; and 

(iii) ;40(S$, 0(L)) is a finitely generated and related homogeneous 
coordinate ring whose spectrum is a projective algebraic variety in 
which 5$ is canonically embedded as a Zariski open set. 

(c) Finally we should like to mention the 
(10.6). PROBLEM***. Which Hodge structures come from algebraic 

varieties? 
REMARKS, (i) We should be more precise about what it means for 

a Hodge structure to "come from an algebraic variety." Certainly 
we should include all Hodge structures, or equivalently period ma-
trices, which arise from the primitive cohomology of smooth, projec-
tive algebraic varieties. However, Grothendieck has commented that 
we should also include the following type of Hodge structures: Let 
F be a smooth, complete g-dimensional algebraic variety and 
Z(Z VX V a g-dimensional algebraic cycle. Then the homology class 
of Z gives a mapping <f)Z

m.Hq(Vy C)-*Hq(V, C), where <t>z is obtained 
from the Künneth isomorphism 

H * ( F X V, C) ÊË Hom(H*(F, C), H*(V, C)). 

The i m a g e ^ { H ^ V , C)} of 4>z is a sub-Hodge structure of Hq(Vf C), 
and all such Hodge structures should also be considered as coming 
from algebraic varieties. It is a consequence of Grothendieck's theory 
of motives that these Hodge structures will exhaust those that can 
reasonably be said to arise from algebraic varieties. 
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(ii) If the period matrix domain D for a particular type of Hodge 
structure is a bounded domain, then it is more or less an observation 
that all Hodge structures SlCzD come from algebraic varieties (we 
are purposely being sloppy about the lattices and discrete subgroups 
in the problem). On the contrary, if D is not a bounded domain, then 
it was pointed out by Mumford that the set of 12 £ D which come from 
algebraic varieties is a countable union of proper analytic subsets of D 
(cf. (2.4)), and is thus a set of the 1st category in the Baire sense. 
Thus the problem has completely changed character and it is any-
body's guess as to what is going on. 

11. Problems on automorphic cohomology. (a) Associated to a 
period matrix domain D are two natural objects: 

(i) the set of locally liftable, horizontal, holomorphic mappings 
$:5—>D/T from algebraic varieties 5 to suitable quotients of D; and 
(ii) the automorphism group G of D and, in particular, the unitary 
representations of G which are derived from the complex structure on 
D [4], [24]. 

In case D = K\G is a bounded domain, there is a close connection 
between these objects provided by the theory of automorphic forms 
(cf. [10], [24] wh ere further references are given). Roughly speaking, 
the space of square-integrable, holomorphic sections H?2(Dt K*) of 
sufficiently high powers of the canonical bundle gives a nonzero, 
irreducible, unitary G-module which belongs to the discrete series 
part of L2(G). There is a dense subspace #?(£>, K") of H°2(D} K») given 
by Za-holomorphic sections of .&>—»£>, and for such $Ç:H\(Dy K>) 
and a given arithmetic subgroup F of G we can form Poincarê and 
Poincaré-Eisenstein series with </> to obtain T-invariant holomorphic 
sections in H°(D/T, OÇK»)) (cf. [ l0]). Such automorphic forms can 
then be used to prove Conjecture (10.5) and, in general, they play a 
central role in both the geometric and arithmetic theory of moduli. 

For general period matrix domains D, both H%(D, E) and 
H°(D/T, 0(E)) are zero for all homogeneous holomorphic vector 
bundles E—*D unless D happens to already be a bounded domain 
(cf. [4]). However, it has been recently proved by W. Schmid 
[24] that we do have automorphic cohomology which stands in the 
same relation to L2(G) as the automorphic forms did in the bounded 
symmetric domain case. More precisely, Schmid proves that the 
"L2-cohomology group" Hl(D, l O ) = 0 unless p = q0 = dimcH\K, 
and that HÇ2°(D, K») is (at least for /x = Mo) an irreducible unitary 
G-module appearing with preassigned character in the discrete series 
part of L2(G) (cf. [24] where the undefined terms are explained). 
Moreover, there is a dense subspace H\*(p, KM) of Li-harmonic forms 
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in Hl°(Dt K») and so Poincaré series (and perhaps also suitably de-
fined Eisenstein series?) can be formed as in the bounded domain 
case [2]. In other words, what we quite naturally are led to is auto-
morphic cohomology Hqo(D/T, 0(1S>)), which by definition is the 
T-invariant classes in Hqo(D} 0(K>)) (cf. [4] where a discussion of 
Hqo(D/Tt 0(K>)) is given in case D/Y is compact). 

(11.1). PROBLEM**. Relate the automorphic cohomology 
Hqo(D/Tf 0(K")) to the horizontal, holomorphic maps 3>:S—>D/T 
arising from variation of Hodge structures. In particular, can auto-
morphic cohomology be used to construct the automorphic forms 
requested in (10.7)? 

(11.2). REMARK. A possible interpretation of the cohomology 
HQo(D, QiK»)) is as follows (cf. [3] and the references given there): 
Let ZQD be the compact, complex analytic subvariety H\K em-
bedded in D. Then dimcZ = g0 and K—>Z is a negative line bundle 
[2], [4] in the sense of Kodaira. Now Z is also an algebraic sub-
variety of the homogeneous rational variety D, and so we may con-
sider the Chow variety A(Z) of all effective algebraic cycles Z' on D 
which are algebraically equivalent to Z there. Let A°(Z) be the irre-
ducible component of A(Z) which contains Z and denote by ^ the 
open set of all Z'GA°(Z) such that Z'CD. I t seems likely, but is 
certainly not proved, that if D is not a bounded domain there will be 
an embedding 

* C KC\GC 

of ^ as an open set in the affine homogeneous variety Kc\Gc> (The 
map >£—>Kc\Gc would send Z ' G ^ into Kc-g where Zf = Zg for a 
suitable g £ G o ) Now Kc\Gc is an affine variety defined over the 
rationals Q, and the set of real points of KQ\GC is just the Rieman-
nian symmetric space R = K\G (cf. (c) in §2). 

Let 2?M—>ty be the holomorphic vector bundle whose fibre (EM)z' 
over Z'Ç^f is the cohomology group H%{Z', 0Z '(#>))• Then there is 
a natural infective mapping 

H%(D, G(K<0) -> #°(tf, 0(£M)) 

which serves to faithfully interpret the cohomology H.q*(J), 0(JK>)) as 
holomorphic sections of holomorphic bundle somewhere. Further-
more, we may pass to quotients to have 

Hqo(D/T, 0(#O) -» ff°(¥/r, 0(EM)), 

and thus interpret the automorphic cohomology. (This procedure is 
closely related to recent work of Andreotti-Norguet (Annali della 
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Scuola Normale di Pisa, §3, 21 (1967), 31-82) on complex manifolds 
which are partially convex and partially concave.) 

There is a very interesting recent result of Schmid and Wells which 
says that ^ is a Stein manifold in a special case. Namely, if D 
= SO(4, 1 ; R)/ U(2), the * is given as 

{z EC\w £ C:z-z = w-w - 1, | w\2 > \ z\2} 

where z-z — X)*=i (sy)2> | JS| 2 == s - 0, etc. Wells remarks that it seems 
likely t h a t ^ will always be Stein, but this is not proved yet. 

The trouble with all of this is that it is not the least bit clear what 
our possible interpretation of automorphic cohomology has to do 
with period mappings. 

(b) Let me give an explicit, and perhaps more accessible, special 
case of the automorphic cohomology problem (11.1) above. This 
situation arises in the theory of intermediate Jacobians [2]. 

Consider a 2w-dimensional complex vector space E in which we 
have a fixed lattice A = Z 2 n , and on which we have a skew-form 
Q:E®E—»C which has the standard matrix 

( °'•) 
\ - / n 0 / 

on a suitable basis of A. Let # be the flag manifold of all pairs of sub-
spaces ti= [Siy S2] with S i C S ^ C ^ , dim Si — n — q, and dim Si — n. On 
# we take the algebraic submanifold D of all 12 with Q(S2, 5 2 ) = 0 
(i.e. 52 is isotropic with respect to Q). The complex, simple algebraic 
group C of all matrices T with TQlT = Q acts transitively on Z), so 
that D is a rational, homogeneous projective variety [4]. In D we 
take the domain of all 0 = [Si, S2] such that 

V-lQ(Si,Si) = H=( ) 
\JbL2i t±22/ 

is a nonsingular Hermitian matrix with signature (n — q> g), and with 
Hn = \/ — 1Q(SI, Si) positive definite. Thus 

AW2-f~ °) 
\o - v 

for some matrix 

\ ^ 2 1 A22/ 

file:///JbL2i
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The domain D is the G-orbit of a suitable point in D where G is the 
obvious real form of G. In the usual notation from Lie groups, 
D=U(n-q)XU(q)\Sp(2n, R). 

Given S2£Z), TQ=A\E/S2 is a complex w-torus with a q-convex 
polarization LQ->TÇI [2], [3]. We then have H*(TQl O(Lg))=0 for 
/x>0, p7^qy and also dim Hq(Ta, 6 ( L Ö ) ) = » M , just as in the abelian 
variety case q = 0. We agree to call Hq(Tn, 0(LS)) the /&e/a cohomology 
and recall that it can be constructed directly [2], In the classical 
case g = 0, there is a close relation between theta f unctions and awfo-
morphic forms (given by the "theta-nullwerte")» 

(11.3). PROBLEM*. In the situation just described find the relation 
between theta cohomology and automorphic cohomology. 

REMARK. Let us construct the universal family 3—>D/T 
( r = Sp(2w, Z)) of complex tori with g-convex polarization as follows: 
Over D we have the universal bundle sequence 

where E = DXE, S is the subbundle whose fibre SQ is 52 where 
0 = [Su S2] and where T is the quotient bundle. The projection of 
A to T gives an analytic family A\T—>D of complex w-tori with TQ 
lying over Œ£Z). There is a natural line bundle L—»A\T with L| T« 

Now the modular group T operates naturally on the situation 

L-*A\T 

D 

and we may pass to the quotient to have: 

7T 

£ - » 3 

(11.4) la> 
D/T 

(Here it is convenient to let T be a suitable congruence subgroup so as 
not to have fixed points.) 

With these explanations, I would guess that the Problem (11.3) is 
essentially a question of understanding the cohomology 

Z7*+P(3, 0(£)) S H\D/Y, Rh(£)) 

in some manner analogous to how one understands automorphic 
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forms by knowing about theta-functions and theta-nullwerte. 

12. Some general problems on complex analysis and uniformiza-
tion of algebraic function fields. The questions in this section are not 
specifically about variation of Hodge structure but are, to some ex-
tent, prompted by Theorem 10.2 and by the Torelli problem 7.2 for 
K—3 surfaces. 

To state the first question we let W be a smooth, but not neces-
sarily complete, algebraic variety. Given w(EW, a good neighborhood 
of W is defined to be a Zariski open set f/C W with w £ £/ and which 
satisfies: 

(i) *•<(£/) = 0 for t ^ 2 ; 
(ii) 7Tt([7, w) is a successive extension of free groups of finite type. 

I t is a theorem of M. Artin that good neighborhoods exist (cf. 
S.G.A., Cohomologie étale des schémas, 1963-64, Exposé XI) . 

(12.1). PROBLEM.** Consider a point w(EW and an affine good 
neighborhood U of w as above. Let x :£/—»£ƒ be the universal cover-
ing of U, so that Ü is a Stein manifold which is topologically a cell. 
Then what do such Ü look like complex-analytically? Are they do-
mains in Cn (ft = dimcCO? Does every point wE:W have a good 
neighborhood U whose universal covering 0 is a bounded domain? 

REMARKS. AS evidence that Ü may be a bounded domain, we men-
tion the following results, which are fairly easy to prove: 

(12.2). THEOREM (LOCAL PICARD THEOREM). Given wE.W, there 
exists a good neighborhood U of w such that any holomorphic mapping 
f:Cm—>U is constant. 

(12.3). THEOREM. If dim W = 2 , then there exist good neighborhoods 
U such that there is a smooth holomorphic mapping ƒ : £7—»A of 0 onto 
a disc A in C and where each fibre f ~1(t) is biholomorphically equivalent 
to a disc A. 

(12.4). PROBLEM.*** Assuming in Problem 12.1 that Ü turns out 
to be a bounded domain, we consider the Bergman metric ds2 on 0 
and fundamental group T of U acting as isometries on 0. Then does 
Z7= Ü/T have finite volume with respect to the Bergman metric on 
Ü? Is the field of rational functions on U given as a subfield of the 
T-invariant meromorphic functions on 0 which have suitable growth 
behaviour at infinity? 

PART II I . EXAMPLES AND SPECIAL CASES 

13. Periods of algebraic curves acquiring singularities. We want 
to prove a theorem which is based on an unpublished result of Mayer 
and Mumford. 
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(13.1). THEOREM. Conjectures 9.2, 9.5, and 9.17 are true when g = 1. 

REMARKS. Conjectures 9.2 and 9.5 shall now be combined and re-
written slightly to read as follows: 

(13.1)'. L e t / : F—»A be a localization of ƒ: X—>S over a disc A which 
meets transversely an irreducible branch of 5 —5 as in §8(a). Then 
the period mapping <1>:A*—>D/T for g = l extends to a continuous 
mapping <î>:A—»{jD/r} * into the Satake compactification [lO], [25], 

In fact, for q= 1 the period matrix domain is the Siegel upper-half-
plane (cf. §13(c) below and [25]) of all nXn matrices Z = X+iY 
which satisfy 

(13.2) Z = % Y > 0, 

and T is a so-called paramodular group. In this case the compactifica-
tion of D/T as a normal analytic space of the sort asked for in 9.2 
and 9.5 was done by Satake and Baily [25]. Our proof can be gen-
eralized a little to show that the period map extends to a holo-
morphic map $ : S — * { D / T } * (cf. Theorem 6.6). 

The proof will be given in three steps in sections (a)-(c) below. We 
may assume that the P.-L. matrix T is already unipotent and thus 
satisfies ( 7 W ) 2 = 0. 

(a) Asymptotic form of the period matrix. What we want to prove is: 

(13.3). PROPOSITION. There exists a rational basis Si, • • • , 82n of 
Hi(V81 Q) with respect to which the intersection form Q, P.-L. matrix 
r , and period matrix Z(s) have the following form: 

(13.4) 

(13.5) T = 

_ / 0 / „ \ 

~\-In O/' 

0 A 

In—m vi 

o i„ 
0 0 

0 

0 

0 

/» 

A = «A and A > 0; 

(13 6) Z(s) J^H(K °\ + ( Znis) Zli(s)\ ^ 

where Ztj(s) is holomorphic in A and Im Zw(s) > 0 there. 

PROOF. We will first prove (13.4) and (13.5) (except for the asser-
tion A > 0 in (13.5)), which are purely algebraic results. Since (T—I)* 
= 0 we may find a basis xi, • • • , xm; yi, • • • , ym; z\, • • • , z2r»_2m for 
the rational homology group H\(V„ Q) such that 
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TXJ = Xj + yf 

Tyi = y, 

Tza = Za 

j = 1, • 

i = i, • 
a - 1 , • 

• • , j » ; 

• • , w; and 

• • , 2T» — In 

(13.7) 

Since Q(xt-, yj) = Q(Txiy Ty3)^Q{xi-\ryu yi)9 we have Q(yi} y,) =Q tor 
all i, j . Similarly ()(y*> %*) = 0 for all i, a, and from 

Q(xiy x}) = Q(**+y*-> xj+yj) 

it follows that Q(y»> Xj)+Q(xi, y,) = 0. Thus the intersection matrix 
has the form 

(13.8) Q = 

0 

-'A 

0 

A 

B 

-*C 

0 

C 

D 

b 
}XJ 

}za 

A = *A. 

Now let i k f = ^ ( 4 - 1 5 ) and xj = * H - 2 T - i Mjy<- Then ()(*ƒ, * / ) 
= 5 y < + 2 * -Af*^**—2* MliAij=0, and this eliminates J5 in (13.8). 
Similarly, we can eliminate C. Relettering our basis, we may assume 
that (13.7) holds and that 

(13.9) 6 = 

If we make a substitution x[ = 2 ? - i -£?**> y*' = X X i ^y*» ^ e n in 
(13.9) the new A' = EAlF. Thus we can choose E, F so that A = ƒ in 
(13.9) (of course (13.7) no longer holds). We may also choose the 
za so that 

0 

-'A 

0 

4 

0 

0 

0 

0 

B 

hi 
)xj 

}za 

A = *A, B+'B=0. 

/ 0 /«y 
\-In-m 0 / 

Then if we take our final basis 5i, • • • , 82n for Hi(V8t Q) in the order 
y i i ' * * » ym', Z\y • • • , £ n - m î # l t • • • , #m5 2 n -m+l» * * * » 22n~2ro, Q w i l l 

have the form (13.4) and T will have the form (13.5), except we 
cannot yet say that A > 0. 

We now will prove (13.6) and the A > 0 part of (13.5). For g = l 
the Hodge filtration is just Fg(ZE9 — Hl(V81 C), where dim F° = w and 
where the Riemann bilinear relations (cf. (13.21) and (13.22) below) 

C(F., F.) = 0, iQ(F9, F.) > 0 

are satisfied. I t follows from Theorem 4.1 (cf. p. 35 in [3]) that we can 
find a single-valued holomorphic basis coi(s), • • • , o>n(s) for F« on the 
punctured disc A* such that the periods 0ap(s) = (w«(s), 5p(s)} = 
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fsp(*)0)a(s) have the form ƒ (s)+l (s) g (s) where / , g are holomorphic on 
the whole disc and l(s) =log s/2iri. I t follows that the period matrix 

(13.10) 0(j) = O0(5) + /(j)Oi(j)f / ( J ) - log s/2iri 

where Öo(s), fii(s) are holomorphic nX2n matrices. Since analytic 
continuation around the origin changes Q(s) into ti(s)Tt we may 
rewrite (13.10) as 

(13.11) 0(5) - Oo(*) + Ks)Qo(s)(T - / ) , 

where QQ(S) is holomorphic and T is given by (13.5). Writing Î2(s) 
= (î2i(s), 02(s)) where Oi(s) and fi2(s) are each nXn matrices, it 
follows from (13.11) that Qi(s) is holomorphic, and it follows from 
the Riemann bilinear relations that det Qi(s)5*Q for s^O. Thus we 
may replace ft(s) by Qifc) -^*) = (Jn, Z(s)) where 

Zn(s) Z12(s)\ , f / /A 0\ log * / 2 U ( 5 ) 2i2(*)\ /A 0 \ 

2TT^ 

In (13.12) the Z»;(s) are meromorphic matrices and Z(s) satisfies the 
Riemann bilinear relations (13.2). 

We want to prove that the Z# (s) are holomorphic functions of 5 in 
the whole disc A. Since Z22(s) = 'Z22(s) and Im Z2 2(s)>0, Z22(s) may 
be thought of as a mapping into a Siegel up per-half-plane of genus 
n—mf which is a bounded domain in CN (N=(n—m)(n—m + l)/2) 
[25]. Thus by the Riemann extension theorem, Z22(s) is holomorphic 
in the disc A and Im Z2 2(s)>0 for all s £ A . 

We now prove that Zu(s) is holomorphic in A by using induction 
on the size of the minors of Zn(s). Suppose first that the diagonal 
entry 2,7(5) =a/sk+ • • • for some a ^ O , k>0. We may suppose that 
Ö = 1, and then we will have 

l > exp (i (zjjis) + -j-r *UJJ 

(13.13) 

exp(£)| . . - | «p(^) 

for all 0 < J s\ <€. This clearly is a contradiction. Thus all 1X1 minors 
of Zn(s) are holomorphic. Assuming that all the principal 1X1 minors 
of Zn(s) have been proved to be holomorphic, then a similar argu-
ment to the one just given shows that all principal ( / + 1 ) X ( / + 1 ) 
minors are holomorphic in A. Finally, after we have proved that 
Zn(s) and Z22(s) are holomorphic in (13.12), we can essentially repeat 
the argument just given to show that Zx2(s) is holomorphic in the 
whole disc A. 
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I t remains to prove that A > 0 . Write s = exp (2irit), t^Ç+irj with 
77>0. Then we have an expansion 

(13.14) I m Z ( 0 = A + e~'{B(t)} + v 

where A is a constant matrix. Thus from (13.14) we have 

I m 2 ( 0 /A 0\ 1 , , 

G<-r-(o J + T » 
Taking the limit as 77—»oo gives A^O. Since det Aj^O, we have A > 0 
as required. 

(b) Proof of Deligne's conjecture 9.17 for g = l . This will be a 
straightforward application of Proposition 13.4. Namely, using 
(13.4), (13.5), and (13.6) we can choose a rational basis coi, • • • , o?2n 

iorEê = Hl{y» 0 ) ® O C , and a basis &, • • • ,</>n for F°S=H^ °(VSf C), 
such that we have the following: 

(13.15) Q(œa, o)n+a) = + 1 = — ö(con+«, w«) (a = 1, • • • , w) 

and all other Q(w»-, coy) = 0 ; 

(13.16) Tojp = cop + ]T) Apffojn+<r (p = 1, • • • , m), A = 'A and A > 0, 
<r«=l 

and all other 7cty = «y; 
n 

(13.17) 0a($) == Wa + X) Zap(s)ü)n+fl 
0-1 

where Z(s) is given by (13.6). 
According to (9.12), the Picard-Lefschetz filtration W°CW1CW% 

of Es is to be given by 

Wl = ker(T - / ) , 
(13.18) 

W° =im(T-I). 
From (13.16) and (13.18) we see that the successive quotients are: 

W*/Wl = {«!, • • - , «*}> 

(13.19) Wl/W° = {wm+i, •••,<•>„; con+m+i, • • • , W2M}, and 

W° = {«»+i, • • • , con+m}, 

where {01, • • • . e*} is notation for the vector space with basis 
ei, • • • , <?z. Since (l°g JH)COP= X X 1 ApaCon+<r, the bilinear pairing 
Q2:W

2/W1<g)W2/W1->C is given by Ç2(cop, co,) =AP„ which is ra-
tional and positive definite by (13.5). The bilinear pairing Qi on 

Vo 0/ 
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PF1/T^°isgiven by Çi(wi,con+i) = + l = — Qi(«»+ƒ,«;) (i = ra + l, . . . ,n), 
and all other <2(co, co') are zero. Thus Qi is the standard skew-form 
on Wl/W* with respect to the basis given in (13.19). 

We now compute the induced Hodge filtrations 

Fk/ = Wkr\Fl
s/W

k-ir\Fl
s 

using (13.17) and (13.19). We find that 7^0 = 772,1=^2/^1. 770,0= {0J 
and F°'l= W°; and finally 

/-.* ™\ jFsl,° = Ie0 ' + ^ Zjk(s)œk:j = m + 1, • • • , n> ; 
(iv5.zu; v jfc-m+i ; 

F f ' = {o)yî Un+m+j'j = W + 1, • • • , « } . 

From (13.6) and (13.20) it follows that 
(i) W°f W

2/Wl have (trivial) Hodge structures of weights 0 and 2; 
and 

(ii) Wl/WQ has a Hodge structure of weight 1 which is holomorphic 
on the whole disc A. 
Using (i) and (ii) we then verify the Conjecture (9.17). 

(c) Completion of the proof of Theorem 13.1. We want to use (13.4), 
(13.5), and (13.6) to prove (13.1)'. For this we first need to know 
something about the period matrix domain D and the Satake com-
pacification (D/T)* oî D/T [25]. 

Consider a complex vector space E in which we have a given 
Z-basis (i.e., a given isomorphism EÇ~Z2n®zC where dim E~2n) 
and a given nonsingular, skew-symmetric form Q:E®E—>C which 
is integral on the Z-basis of E. For simplicity we will take the prin-
cipally polarized case, so we assume that Q has the standard matrix 
(13.4) with respect to a suitable Z-basis for E. 

Let G{n, E) be the Grassman variety of all w-planes through the 
origin in £ , and let D be the subvariety of all isotropic w-planes 5 ; 
i.e., those SÇzG(nt E) which satisfy 

(13.21) 0 (5 ,5 ) = 0 . 

The rational, projective variety D is acted on transitively by the 
complex, simple Lie group Gc^Sp(2n, C) of all linear transforma-
tions TÇEGL(E) which preserve Q. In D we take the period matrix 
domain D (which in this case is the Siegel upper-half-plane Hn of 
genus n) of all 5 £ J 9 which satisfy 

(13.22) iQÇS, S) > 0. 
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The group G#~Sp(2w, R) of all real linear transformations T— T in 
Gc acts transitively on D and preserves the boundary dD = D — D. 
In fact it is easy to see that D is denned by (13.21) and 

(13.23) IQ(S,S) ^ 0. 

Now GR contains both the group of rational points GQ and the 
arithmetic subgroup T^Sp(2w, Z) {modular group) of all T which 
leave invariant the given Z-lattice in E. 

The Satake compactification is obtained by letting D* be the dis-
joint union of D with the rational boundary components of D in 
D [10], [25]. Then V acts o n D * and we will have that 

(13.24) {D/T}* = B*/T, 

where a suitable topology has been put on D* so that D*/T is a 
separated topological space. In the case at hand the rational bound-
ary components will be in a one-one correspondence with the ra-
tional isotropic subspaces W° of E [l0]. To each such W° with 
dim W° = m, we let F(W°) be the set of all 5 G D with W°CS and such 
that any of the following equivalent conditions is satisfied: 

iQ(S, S) has rank n •— m; 

(13.25) W° = SnS', or 

(W°)± = S + S. 

Then F(W°) is isomorphic to a Siegel-upper-half-plane Hn-moi genus 
n — m} the map being that obtained by sending SÇzF(W°) into the 
n—m plane S/W° of {W^/W®. Since any two m-dimensional ra-
tional isotropic subspaces of E are related by a transformation in 
T acting on E, referring to (13.24) we will have in our case that set-
theoretically 

(13 . 26) { D/T] * = (Hn/Tn) U ( t f n - l / l V - l ) U • • • U ( f f 0 / r 0 ) 

where Tp is the modular group acting on Hp. 
At this time, we should point out the connection between the def-

inition of rational boundary components given in §9 and that just 
above. In the notation of §9, the group N(F(W0)) is {TE.GR: 
TW°=W0}, and Z(F(W0)) is {TGN(F(W°)):T = I on (W^/W0). 
Obviously then iVXi^PP)) is a maximal parabolic subgroup of GR 

and is defined over Q and Z(F(W0)) is a normal Q-subgroup. Ob-
serve that Wl/W° has a nonsingular skew form 

Qx:w
i/w>® wywo-^c 
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and there is a surjective homomorphism 

h:N(F(W°)) -* GL{W\ R) X Sp(Qi, R) 

where Sp(Çi, R) is the group of real linear transformations of Wl/W° 
which preserve Q\. The kernel of h is the unipotent radical U(F(W0)) 
of N(F(W0)), and we also have that Z(F(W0)) is the semidirect 
product GL(W\ R)-U(F(W0)). Note that the P.-L. transformation 
(13.5) belongs to U(F(W»)). 

PROOF OF CONVERGENCE IN THE ORDINARY TOPOLOGY. Given a 
localization/: Y—>A, we have E = Hl(VSQ1 C) and may choose bases for 
E and F° so that (13.15)—(13.17) are satisfied. The rational boundary 
component will be F(W°) where W° is given by (13.18). 

Let s — exp (2irit) and lift the period mapping to the ordinary upper-
half-plane H. Then according to (13.16), (13.17), and (13.19), we 
can choose a basis ^i(0> * • * > *An(0 for Fr° such that we have: 

W° = {ww+i, • • • , 0)n+m} ; 

(W°)X = { o J m + i , • • • , Wn, COn+i, • • • , C02n} Î 

(13.27) 1 f } ™ 
$a(0 = — {fla(exp(2irt'0 J + 2^ A^con+/3; a = 1, • • • , m\ 

t fi-i 

$p(t) = Up + X) v(exP(27r^))wn+«r;p = w + 1, • • • , n; 
<r=rn-f-l 

where 0a(exp (2wit)) and zp<r(exp (2wit)) are holomorphic on the whole 
disc lm *>0. From (13.27) it follows that 

(13.28) lim F,°= S G F(TT°), 

where the limit is taken in the ordinary topology of DQ.D (cf. (4.3)). 
PROOF OF CONVERGENCE IN THE SATAKE TOPOLOGY. For this we 

will set 5 = exp (2TTÜ) as above, and will change the ordering of our 
basis of Hi(V,9, Q) to Sm+X, • • • , ôw; 5i, • • • , Sm; Sn+m+i, • • • , 52n; 
8n+i, • • • , Sw+m so that (13.6) becomes 

/0 0\ / Zn Z12\ 

<13M) ' • ' ( . > U J ' A"'A>0-
where the Z»y are holomorphic functions of 5 = exp (2irit) at 5 = 0. 

Now we shall describe explicitly & fundamental set or Siegel domain 
[lO] for modular group acting on the Siegel-upper-half-plane Hn. 
For this we write ZÇzHn as Z = X+iY and 
(13.30) F = *WDW 
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where 

(1 Win] 

W = 

10 

is upper triangular and 

D -

dx 

0 

0 1 

dn 

is diagonal with positive entries. Choose a large positive real number 
u. Then a fundamental set $n for Hn is given by the Z = X+iY which 
satisfy 

I Xij I < U, 

(13.31) | wa\ < u} 

1 g di, d,- ^ wd»-+i for f = 1, , » — 1. 

Write Z ' = Zn(0)Giîn-m as Z ' = X ' + * F ' . By a transformation in 
the modular group operating on W1/W° we may assume that Z ' 
satisfies the conditions (13.31) for ïïn-m in Hn-m. By possibly making 
u larger, the same will be true for Zu(s) when | s| <€. 

Now write A = ' FA V where 

F = 

1 V\m 

is upper triangular and 

A = 

«i 

0 

0 ) 

is diagonal. By renumbering our rational basis for W°, we may 
assume that 0 < 5 i g • • • ^ ô m . Let t = ̂ +irj. We may restrict our-
selves to |£| tjsv, r]>v. Then tA = %A+i(tVr)AV). I t follows that we 
may assume |#o*(0| Su for all such /. Also we have 

/ 0 0 \ / Yn Y12\ 
(13.32) F = ( ) + ( J, and 

\ 0 'VrjAVj V F 1 2 Y J ' 
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/ W u 0 \ / D , 0\/Wu WU\ 

„„ „ ~\'WU *wj\0 DJ\0 Wj 
(13 33) 

__ /'WnDiWu W i i Z W i t 

Comparing (13.32) and (13.33) we see that Z(t)&rn for all t if we 
agree to take u large enough. In other words, we have a holomorphic 
mapping 

<I>:H-*DC D 

from the usual upper half plane {t = ̂ +irjlrj>0} to the Siegel-
generalized-upper-half-plane Hn~D which satisfies 

(i) #(J + 1) = T4>(t) where TÇzT, which is the modular group acting 
on D; 

(ii) 4> maps the strip |£ | <v, rj>v into a Siegel domain &C.D; 
and 

(iii) lim^-foo 0 (£+«?) is a point in a Siegel domain 5v_w on an 
jfjn_m embedded in dD as a rational boundary component, and where 
the limit is in the usual topology of D. I t follows from (i)-(iv) that 
we have convergence in the sense of Satake. 

14. Periods of certain algebraic surfaces acquiring singularities. 
My purpose in this section is to discuss and partially verify the Con-
jectures 9.2, 9.5, and 9.17 in a substantial example for q — 2 (periods 
of 2-forms). The term "substantial example" is based on the follow-
ing heuristic considerations: Let V8 be an analytic family of algebraic 
surfaces in some PN which is parametrized by the unit s-disc A in C, 
and where V8 is nonsingular for 5 ^ 0 and V0 is irreducible. By resolu-
tion of singularities, Vo will have a desingularization Fo in some Pjy. 

Now generic projection of PN into Pz gives a family of surfaces W$, 
W8 being the projection of V9, which have only ordinary singularities 
(cf. Kodaira [21 ], Lefschetz [7], and (14.1) below). A reasonable 
geometric assumption is that the projection Wo of Fo still has only 
ordinary singular points, but has acquired additional new ones from 
those imposed by W9 as s tends to zero (cf. Mumford's theorem quo-
ted in the proof of Proposition 15.6 below). 

Since we are interested in periods of 2-forms, another reasonable 
hypothesis is that the surfaces V8 are simply-connected so that in 
particular the irregularity hlt0(Vs)=0 (st^O). 

To be precise, we assume given a local situation ƒ: F—>A as in 
§8(a), and where V8 (s^O) is a nonsingular, simply-connected alge-
braic surface. We will assume that V0 is irreducible, and that we can 

• 
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find local holomorphic coordinates u, v, w on Y such that F 0 has one 
of the following three local equations (definition of ordinary singu-
larities) : 

(14. l)d uv = 0 (double points) 

(14.1) t uvw = 0 (triple points) 

(14.1)0 uv2 = w2 (cuspidal points) 

We will also make use of a projective embedding Y^PN and 
generic projection PJV—>P3, so that in the diagram 

(14.2) 

Pi 

the projected surfaces W, = w(V«) are irreducible surfaces with ordi-
nary singularities given by the affine equation 

(14.3) f(x, y, z\ s) = 0, 

where xf y> z are coordinates in C3 and where ƒ(x, y, z; s) is an irre-
ducible polynomial of degree n whose coefficients are holomorphic 
functions of s. 

Referring to (14.1), the singular curve C on Fo has the respective 
local equations 

u = 0, v = 0; 

(14.4) u = 0, v = 0 or u = 0, w = 0 or v = 0, w = 0; 

t> = 0, w = 0. 

Thus the only singularities of C are triple points at those of F0 . The 
normalization Fo of Fo is also a desingularization, and we have a 
diagram 
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VoDC 

(14.5) ir I I v 

V»DC, 

where C is the inverse image of C in P0- The normalization locally 
around double points and triple points of Vo is clear, and the nor-
malization around the cuspidal point is given by (cf. (14.1)0) 

(14.6) ({,*) -> (£2, V) &,). 

Referring to (14.4) and (14.6) we see that : 

The curve C has only ordinary double points, and the pro-
jection 7r: C—>C is a 2-sheeted covering with simple ramifica-
tion of order two at each cuspidal point, and with three 
double points of C lying over each triple point of C. 

We will assume that C is irreducible. This is the general and more 
interesting case, and the alternatives can be done by similar methods. 
The number of cuspidal points on C is then an even number 2<r. 

Let C and C' be the respective normalizations of C and C. We 
have a diagram 

(14.7) 7T i I 7T 

C' ->C 

and the Riemann-Hurwitz formula gives the relation 

(14.8) hl>°(C') = 2*1-°(C0 - 1 + <r. 

In fact, we have 

(14.9). PROPOSITION. There is an involution j:C'—*C' with C'/(j) 
— C in (14.7). Leiiing hlt0 (J, + ) and hlt0 (j, —) be the respective 
dimensions of the + 1 and —1 eigenspaces of j acting on H°(C', Q1)» we 

have h1'0 ( j , + ) = A 1 ' 0 (CO and 

h*-*(j, - ) = &-*(£') - 1 + cr. 

Having formulated our example and established the necessary 
notations, we will divide the remainder of this paragraph into four 
sections. The first deals with the behaviour of the holomorphic 2-
forms on Vs as s—>0; the second section discusses the topology of V8 

and Vo, and the P.-L. transformation T around 5 = 0; in the third 
section we will put everything together to find out formulae for the 
periods; and in the fourth section we will draw some conclusions. 
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(a) Behaviour of differentials. We will use the notations hli0(C) 
= hl>°(C')y h

1'°(C)=h1'°(C,)t and h2>°(V0) = h*>°(V0). Our purpose is to 
describe the differentials in H°(VS1 tiya) as s tends to zero (written 
s—»0). In particular, we will outline a proof of 

(14.10). PROPOSITION. The following relation holds 

h2>°(V8) = h2>°(Vo) + hl>«(C) - hl>\C) + r, 

where r is the number of triple points on C. 

REMARK. For curves the analogous formula is (15.8) below. 
PROOF. For the proof we will use the notion of a Poincarê residue. 

Let M be a complex manifold of dimension m> NC.M an analytic 
hypersurface, and co a meromorphic m-îorm on M with a first order 
pole along each of the irreducible components of N. The Poincarê 
residue R(co) will be a meromorphic (m — 1) form on each irreducible 
component of N. For our purposes it will suffice to say what the 
differential f*R(o)) is whenever f:N'—>N is a holomorphic mapping 
of a connected, (m —1)-dimensional complex manifold N' into M 
such that the differential of ƒ has maximal rank at some point. With 
these assumptions, ƒ*R(w) will be determined if we say what R(œ) is 
a t a simple point of N. For this we can choose local holomorphic co-
ordinates zi, • • • , zm on M such that N is given by zm = 0, and then 
co has an expression 0) = (F(z)dziA ' • • /\dzm)/zm where F{z) is holo-
morphic. We define 

(14.11) jR(w) « P(*i, • • • , zn^u 0)dzi A • • • A<fa—x. 

With this preliminary about residues understood, we recall [7] 
that the holomorphic 2-forms on V8 are given on W8 by (cf. (14.3)) 

(14.12) $(s) = P(x, y, z\ s)dx A dy/df/dz(x, y, z\ s) 

where P(x, y, z; s) is a polynomial of degree n — 4 whose coefficients 
are holomorphic functions of s and which vanishes on the double 
curve C« of W8 (adjoint conditions). Comparing (14.11) and (14.12) 
we see that $(s) =Rœ(s) where 

co(s) = (P(x, y, z\ s)dx/\dy/\dz)/f(x, y, z; s) 

is a meromorphic 3-form on P 3 with a first order pole along W8. As 
s—>0 we will have o)(s)-~»co(0) where 

û>(0) = (P(xf y, 2; 0)dxAdyAdz)/f(x, y, z; 0) 

and where P(x, y, z\ 0) need not vanish on the new double curve 03(C) 
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of VQ. Using (14.1) and (14.6) we see that the Poincaré residue 
</> =0(0) of co(0) is given locally by 

(14.13)d <t> = F{dvdw/v], 

(14.13) t <t> = F{dvdw/vw}9 

(14.13)c 0 = F{dudv/w] = F{d£dr)/r}}, 

where F is a holomorphic function. Thus, in all cases, cj> is a mero-
morphic 2-form on Vo with a pole of order one along C (cf. (14.5)). 
The Poincaré residue \f/ = Rcj> of <f> along C is then a meromorphic 1-
form on the normalization C' of C (cf. (14.7)) with logarithmic singu-
larities (first order poles) at the 6r points on C' lying over the r 
triple points on C, and which satisfies 

(14.14) ƒ** = - * 

where j:C'—»C' is the canonical involution given by (14.7). Note 
that the usual relation 

(14.15) E Res*(*) = 0 
xeö' 

is in our situation a consequence of (14.14). From (14.13), (14.14), 
and (14.15) it follows that 

(14.16) A*'°(7.) ^ h**(y0) + h^(C) - ^ ° (C) + r. 

The equality in (14.16) now results from the 'classical' theory of 
algebraic surfaces (cf. Zariski, Algebraic surfaces (Chelsea), p. 64). 

(14.17). REMARK. The above discussion tells us that we can find a 
basis 

Us), • • • , *~P-P(S) f = V'*(Q, p = h^(C) 

rji(s), • • • , ?;T(S) r = number of triple points 

for H°(V8, Sly») (sy*0) which varies holomorphically with s £ A and 
which has the following properties: 

(i) the 4>a(s), \//i(s), and rjm(s) are Poincaré residues on V0 of the 
form given by (14.12); 

(ii) the 0a=0a(O) are a basis for the holomorphic 2-forms on V0 

(i.e. the Pa(x, y, z; 0) vanish on Cand no non trivial linear combination 
of the Pa(x, y, z\ 0) is zero); 

(iii) the ty i—ty %($) are a basis for the meromorphic 2-forms on F 0 

whose Poincaré residues Ripi on C induce holomorphic 1-forms on 
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C' (i.e. the Pi(x, y, z\ 0) vanish at the triple points of C and no non-
trivial linear combination of the P»(x, y, z\ 0) vanishes on C); and 

(iv) the Poincaré residues Rrjm (r]m = Vm(0)) induce meromorphic 
1-forms on C' which are linearly independent modulo holomorphic 
1-forms there (i.e. no nontrival linear combination of the Pm{Xj y, z; 0) 
vanishes at a triple point of C). 

(14.18). REMARK. According to the Poincaré complete reducibility 
theorem, we can find a basis Bu • • • , h (p = hl>«(C)) for H°(C', Qtf) 
and a basis 7i, • • • , 72p for Hi(C', Q) with the following properties: 

(i) j*gk=:„ek for i = if . . . f p-p {p = hl-*(C)) where j:C'->C' is 
the involution (14.7). In fact, we may assume that 

6k = jRifc ( * = 1 , • • • , p - £) 

in the notation of Remark (14.17); 
(ii) the intersection matrix of 71, • • • , 72? is 

0 

0 

0 

-I, 

0 \ 

0 

V 
0 , 

[ ° 
J V—p 

I 0 

[ 0 

Ip—P 

0 

0 

0 

and 
(iii) the period matrix (JyBk) splits as a direct sum 

(14.19) 0 = ( ) 
V V 0 Ip 0 Z") 

where Z', Z " are both in appropriate Siegel-upper-half-planes (cf. 
§13 above). 

We will use below the notation 

(14.19)' £2' = (/*-*, Z') 

for the period matrix 

( f R$k\ (1 g k è p - p\ 1 ^ a g 2£ - 2j) . 

(b) Topology and the P.-L. transformation. In this section we will 
extract the results from [14] necessary to give a picture of the topol-
ogy of V8 near V0 (cf. also §15 below). For this we picture Vs (s^O) 
as a generalized fibre space 

h:V8->V0 



280 P. A. GRIFFITHS [March 

lying over Vç> (cf. §2 in [14] and §15 (b) below). The fibres of h have 
the following description: 

(i) For x G ^ o - C , h~l(x) is just a single point. 
(ii) For x G C - {triple and cuspidal points}, hrl{x) is topologically 

C*: 

hr\x) i 8(x) 

FIGURE 1 

Thus h~1(x) has the homotopy type of an oriented circle S(x), which 
we will call the vanishing cycle over x. The Poincarê-Lefschetz dual 
y(x) of ô(x) in hr1(x) will be termed the transverse cycle over x. 

(iii) For x a triple point on C, h~l(x) is topologically C*XC* and 
thus has the homotopy type of an oriented 2-torus A(x), which we 
will call the vanishing cycle associated to the triple point x. 

(iv) For x a cuspidal point, the fibre h~l(x) is somewhat compli-
cated and all we shall need are the following two facts: the fibre k~l{x) 
is topologically a manifold with boundary, the intersection pairing 
on H2(h~1(x)i Q) is nonsingular, and the local P.-L. transformation T 
is of finite order 6 on H2(h~1(x)1 Q) ; and 

(14.20) as 3>£C turns around a cuspidal point x, the vanishing 
cycle S(;y) reverses orientation (cf. Figure 1). 

To describe the topology of V8 near V0, we replace T by T6 so 
as to get rid of the finite order material around the cuspidal point 
thus making T unipotent, and we also assume that the intersection 
number (C-C)v0>0. This is the general case and the alternative can 
be treated by a similar argument. 

We divide the homology H2( VS} Q) into three groups of cycles. 
(C-l) . Cycles associated to triple points. A basis (over Q) for these 

cycles will be labelled (r = number of triple points) 

(14.21) , AT; $ i , <ï> • * i , * r 

and they have the following properties and interpretations: 
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(i) the intersection matrix for the cycles in (14.21) is an orthog-
onal direct sum of r 3X3 matrices, each of which is 

(14.22) 

A 

$ 

* 

A 

0 

0 

- 1 

$ 

0 

1 

0 

* 

- 1 ] 

0 

0 , 

This matrix is equivalent over R to 

fl 0 01 

(14.22)' 1 0 

0 - 1 

and so the cycles in (14.21) contribute 2r positive and r negative 
eigenvalues to the intersection matrix Q for VB. 

(ii) The P.-L. transformation on the cycles in (14.21) is given by 

(14.23) 

TA = A 

2M> = $ + A 

r* = * + $ +1 A 

fl 

0 

[o 

1 

1 

0 

11 
1 

1 

= exp 
[0 
0 

0 

1 

0 

0 

°1 
1 

0, 

and thus T on these cycles is a direct sum of r copies of the standard 
Jordan matrix 

(14.23)' 

(iii) The Am are the vanishing cycles associated to the r triple 
points of VQ along C. These cycles are independent in Hz(V8, Q) 
since 7Ti(F«) = 0 . 

(iv) To describe the <ï>w and ^ m , we choose for each triple point x 
three cuspidal points yi, y^ y% and, on each of the three branches of 
C passing through x, we draw a closed curve from x around one of 
t h e y / s . (cf. (14.1),) 
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FIGURE 2 

(v) To define $(x) (which is the particular one of the <£m associated 
to the triple point x), we will describe <£(#) up to multiplicities and a 
linear combination of Ai, • • • , Aw. The locus of the vanishing cycle 
ô(y) as y traverses one of the paths in Fig. 2 is a 2-chain whose 
boundary is twice the circle \imv^x 8(y); this circle is sitting in the 
2-torus A(x) (cf. (14.20)). A linear combination of these three 2-
chains will then give a 2-chain whose boundary is also the boundary 
of a 2-chain in A(#). Adding on minus this 2-chain from A(x), we 
obtain the cycle <£>(#). 

(vi) We will similarly describe \P"(x) up to multiplicities and linear 
combinations of $i , • • • , $ w and Ai, • • • , AT. This description will 
also only describe &(x)r\h~~l(C), and to do this we take the locus of 
the transverse cycle y(y) as y describes the paths in Figure 2, and 
where it is agreed to add in the limiting position l i n v ^ y (y). 

From these descriptions it is not hard to see that the cycles in 
(14.21) as given by (iii)-(vi) may be normalized so that (14.22) and 
(14.23) hold true. 

(C-2). Cycles over the double curve. A basis over Q for these cycles 
will be labelled 

(14.24) e * . . . , ^ 
I l , • • • i A2p—2p 

where p = h1>0(C), p = hli0(C) and where we have the relation 

(14.25) 2p - 2p = lp + 2a - 2 

by (14.8). The cycles in (14.24) have the following properties and 
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interpretations : 
(i) the intersection matrix is 

(14.26) 

This matrix is equiv 

0 

0 

0 

J-p-p 

aient 

0 

0 

~~" J- p—p 

0 

to 

0 

"""" * p—P 

0 

0 

I, 
0 

0 

0 

(14.26)' 
\ 0 — Ï2p-2p/ 

and so the cycles in (14.25) contribute 2p — 2p positive and 2p — 2p 
negative eigenvalues to Q. 

(ii) The P.-L. transformation on the cycles in (14.25) is given by 

(14.27) 
T0p = 0 , 

I T , = rp + 0p. 

(iii) To describe the 0 ' s we let C* = C— {triple and cuspidal 
points}, C* — C— {double points and branch points of 7r:C—»C}, and 
T T : C * - > C * the projection (cf. (14.5)). Let # i (C , - ) be the - 1 eigen-
space of the involution j*:Hi(C', Q)—>Hi(C\ Q) so that the rank of 
Hi(C, - ) is 2p - 2 ( 7 - 2 (cf. (14.9) and (14.25)). Choose cycles 6U 

• • • , 02p+2«r-2 m Hi(C*, Q) which give a basis for ifi(C, — ) and whose 
intersection matrix is 

(14.28) 
/ 0 I~p„p\ 

\-I~P-P o r 

as in Remark 14.18. Let 0P = 7r*9p and 0 P be the locus of the vanishing 
cycle ô(x) as x traverses 0P. 

FIGURE 3 

(iv) The r p are defined in hrl(C) as the locus of the transverse 

file:///-i~p-p
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cycle y(x) as x traverses the dual cycle 0P to 0P (i.e. 0P=0J_P+P if 
P'èp—p and 0P = — QP-ï+v iî p>p—p). 

FIGURE 4 

(C-3). Cycles away from the singularities. A basis for these cycles 
will be 

(14.29) 2i, • • • , St, 

and they are described as the cycles in H2(V8 — h~1(C)1 0 ) which 
inject into Hi(V8, 0 ) . Since we are assuming C to be the polarizing 
class on Fo, we see that 

(14.30) (0-2,) 0 . . . 0 (0-S6) ~ #2 ( f0 , 0)o, 

where Ü2(Fo, 0)o is the primitive part [ô] of H2(VQ, 0 ) . The cycles 
S;- are all invariant and have intersection matrix Qo= (2y2fc). 

Combining this remark with (14.26)7 and (14.22)' we have that : 
The number of positive eigenvalues in the intersection matrix Q for 
V9 is equal to 

IT + (2p — 2p) + (# positive eigenvalues in Q0). 

Using this formula together with the Hodge index theorem [ö] we 
obtain another proof of (14.10). 

Finally we have from (14.23) and (14.27) the expression relating 
the P.-L. transformation to the geometric genera of V9 and VQ: 

(14.31) * d im{(r - I)H*(yê, 0)} = A*'°(7.) - h™(V0). 

The analogous formula for curves is (15.10) below. 
(c) Asymptotic formulae f or periods. We want to give the formulae 

for the intersection matrix, P.-L. transformation, and period matrix 
of V8 as 5 tends toward zero. In order to condense the notation, these 
matrices will be given in "block form. , , For example the matrix 
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A $ ^ 

A- • •/ 
will be the abbreviation for the matrix 

Ai • • • AT 4>I • • • $ T ^ i • • • ^ r 

Vi 

VT 

whose entries (in this case) are the periods ƒ Aw??y, ƒ AJA/J • • * of certain 
of the holomorphic 2-forms on V8 (cf. (14.17) and (14.22)). As another 
example, the full intersection matrix Q on H2(V8, Q)o is written as 

(14.32) 

A 

$ 

* 

0 

r 

s 

A 

' 0 

0 

- / , 

$ 

0 

Ir 

0 

* 

-Ir 

0 

0 

© r 

0 J 

-J 0 

s 
"\ 

Co. 
where J" is the matrix 

/ 0 /p_A 

\-I~p-.p 0 / 

(cf. (14.26)) and where the blank spaces in (14.32) mean zero. 
Before giving the period matrix we will make two normalizations. 

I will take the basis $, rj, \[/ for H°(V8, O7J given in Remark 14.17, and 
the basis 

¥ , * , A ; r , 0 ; S 
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for H2(V„ Q) 0 as given by (14.21), (14.24), and (14.29); and whose 
intersection matrix is (14.32). According to (iv) in Remark 14.17 we 
may assume that 

(14.33) L Vk' ( l ^ , w ^ r), 

where the notation "a~b" means that lims^o| s~x||a —&| = 0 for any X 
with 0 ^ X < 1 (thus e.g. 5 log s^O). The second normalization is that, 
according to (iii) in Remark 14.17 and (14.19) in Remark 14.18, we 
may assume 

(14.34) UA >& (1 S i ^ p - p', I ^ P S 2p - 2p), 

where 12' = (Ip_p, Z') in (14.19)'. 
The entries in the period matrix will be given only in the sense of 

the notation " ^ " explained above, so that in effect we are only 
giving it asymptotically. Also the following notations will be used: 
I = log s/2iri, Hj will be a holomorphic matrix for any index j , and 
finally we will write 

(14.35) (J>>) 'Üo 

where fi0 is the period matrix for the holomorphic 2-forms on the 
normalization V0 of V0 (cf. (ii) in Remark 14.17 and (14.30)). 

(14.36). PROPOSITION. With the conventions and notations just given, 
the period matrix &(s)for VS1 \s\ <e, is in block form 

(14.37) OW 

'WU 

'lH, 

\El 

Ur 

H3 

0 

ƒ 

0 

0 

IHi 

in' 

H$ 

Ht 

Ü' 

0 

# 2 

H, 

fio 

2 \V 

6 2 

The proof of Proposition 14.36 follows more or less by inspection 
using the normalizations (14.33)-(14.35). 

To put (14.37) in better form, we multiply Q(s) on the left with 
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2Ir 

II 

0 

p—p 

0 

0 

0 

l2ih™(v0)) 

to obtain the new period matrix 

(IT 0 0 0 0 0 

(14.38) Qt(s) ~ 0 0 0 Q' 0 0 

[ 0 0 0 0 0 S20J 

As a check on our computations, let us try to verify the 2nd bilinear 
relation Q(s)Q'{Q(s)} * > 0 (s^O). From (14.32) and (14.38) we have 

(14.39) 

Q(s)Q'{ü(s)}* = 

fKlogU|A)2/r * * 

(-log | s\/ir)tâmf * 

* OoQ^oj 

where the * denotes lower order terms. Since iQVŒ' = Im Z ' > 0 by 
(14.19) and £20(?o£lo>0 by the 2nd bilinear relation for V0l we indeed 
have 0(s)Q«{Q(s)}*>0 (5 5^0). 

(d) Some conclusions. We are not able to draw the same strong 
conclusions in this example as was done in §13 for curves because the 
modular variety D/T has not been compactified, or even partially 
compactified (cf. §9), in the situation at hand. What we can say is 
given by Propositions (14.40) and (14.43) below. 

(14.40). PROPOSITION. Delignës conjecture (9.17) is true "in the 
limit." 

REMARK. Let me explain what this means. The Hodge filtration 

(14.41) H*>°(VS) C H^(Vs) + H^(Vs)o C H*(V8, C)0 

is to be thought of as a (many-valued) holomorphic filtration 

(14.41)' FQ(s) C F^s) C E (Fl(s) = F^s)^) 

of a fixed vector space E ( = H2(VSQ, C)o) with the property that turn-
ing around 5 = 0changes Fp(s) into T- F*(s)where TEAut(H2(VSQ,C)o) 
is the P.-L. transformation. We write s = exp(2TÜ)y t = ̂ +irj where 
rj > 0 , and consider Fp(exp(2irit)) = Fv(t) as a single-valued holo-
morphic function of t satisfying Fp(t+1) = T- Fp(t). Then we will find 
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(cf. Proposition 14.43) that Fp(0) = l im^ + 0 0 Fp(^+irj) exists and gives 
a filtration ƒ*(()) C ^ W C - E of E. If we set 

Fp
k(o) = F\O) n TF*/FP(O) n IF""1 

where F C ^ C ^ C F C ^ = £ is the P.-L. filtration given by 
(9.12), then what we will prove is that (9.17) holds for the filtration 
F°k(0)CFl(0)CWk/Wk-K 

To state the second result, we lift the period mapping <£:A*—>D/T 
to 

(14.42) <t>:H-*D, t = ï + ivEH, *(/ + 1) = <t>(t). T 

as above. 

(14.43). PROPOSITION. There exists a Siegel domain tfCD and an 
equivariant embedding \{/'.D,XDt,-^dD, where D' (~Sp(w, R)/U{n)) 
and D" (=S0(2h, k)/U(h)XSO(k)) are period matrix domains f or 
1-forms and 2-forms respectively, such that: 

(i) the normalizer N(F) = {g(EzG:gF = F\ and centralizer Z(F) 
= {g<EG:gf=ffor all f E F} of F=ip{D'XD") are Q-subgroups of G; 

(ii) if we restrict the period mapping (14.42) to the strip SFi 
= {£+«?: | ? | ë=è> *7 = ?7o}, then<f)($i)C$; and 

(iii) lim^+oo-.s+^e^! $ (0 =0(0) exists and is a point of F(~\5. 

Propositions (14.40) and (14.43) are proved using the asymptotic 
formulae (14.37) and (14.38) for the period matrix in the same way 
that Theorem (13.1)'and (9.17) (for g = l ) followed from (13.6). The 
proof of (14.40) is completely straightforward, and the proof of 
(14.43) is also fairly direct once we have some information on Siegel 
domains in the period matrix space D. The requisite data on such 
Siegel domains can be gleaned from §§11, 12 of Borel's lecture notes 
Ensembles fondamentaux pour les groupes arithmétiques et formes auto-
mo?'pheSy which are available from l'École Normale Supérieure, Paris. 
The computations are a little messy and not particularly enlightening 
so we will omit them. 

15. Some remarks on and examples of the local invariant cycle 
problem. We want to give some comments about, and two examples 
of, the local invariant cycle problem (8.1). 

(a) The first remark is that the local invariant problem should 
probably be stated for cohomology with rational coefficients. If this 
is done, then the problem behaves correctly with regard to taking 
ramified coverings of the parameter space. 

Indeed, let 



197°] PERIODS OF INTEGRALS 289 

_ , 7T _ 

Y'-*..Y 
(15.1) fi [f 

A' -» A 

be a diagram between local situations ƒ' : F'—»A', ƒ: F—>A,F8' = V*(«'), 
as in §8(a), and where A'—»A is a standard ramified covering given by 
s1—>(s')k for some k>0. Fix s0GA and V G A ' with (só)* = So7^0 a n d 
let /C^(V«o» 9)» -f'C-ff^CV/,,,, Q) be the respective invariant part of 
the cohomology. Using the identification if9(78 0 , Q) = iJ<z(F/fi0, Q) and 
that T' = Tk for the P.-L. transformations, we have IQI'. If <££/, 
and if there exists <î?£iï«(F, Q) with <É>| Fso=<£, then <£'=7r*<I> satis-
fies * ' | Fs>0=<£. Conversely, if 0 £ 7 ' , and if there is $ ' G # 9 ( F ' , 0 ) 
with <Ê>'| V>SQ—(I), then we may use the Gysin map (integration over 
the fibre) to define #=7r*$'GH* (Y, Q) and 

(15.2) <*>\V80= t ^ . 

This explains then how the invariant cycle problem behaves under 
ramified coverings of the base. In particular the problem is inde-
pendent of the smooth compactification of/: F—»A*. 

(b) Taking ƒ: F—>A as above and letting h\ V—>F0be the collapsing 
map (defined up to isotopy) of a general fibre V— V8Q (so^O) onto the 
singular fibre V0 and g: VH—>VSQ be the P.-L. homeomorphism, we see 
from §3 of Clemens' paper [14] that h is afibration of a very special 
sort, and furthermore we may assume that hog = h. Using this Clem-
ens, and also Grothendieck, analyzes the Leray spectral sequence of 
h:V-+Vo in which the P.-L. transformation g* operates (Clemens 
uses homology). In this framework, we want to see what the local 
invariant cycle problem comes down to. In so doing we will also 
sketch a proof of the monodromy theorem 3.1. 

Let R^^R^ (Q) be the Leray sheaf on V0, which we recall comes 
from the presheaf U-^Hq(k~l(U)y Q), where U is an open set on Vo. 
Using (1.2) these sheaves are easily calculated as follows: If XoG Vo 
is given locally by zl1 • • • z? = 0, then hrl(xo) has the homotopy type 
of the disjoint union of g.c.d. (ai, • • • , a*) real tori of dimension fe — 1 , 
and the stalk (RlJXo = HQ(h-1(x0)1 0)- The P.-L. transformation g* 
operates on the Leray sheaves Rj^ (cf. §4 of [14]), and it follows from 
the above remark that (g*)N* = I on (R^)X9 where Nx is the l.c.m. of 
(du ' ' • , dk) above. 

Now we recall that there is a spectral sequence {E%'q\ with the 
following properties: 
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(i)EZ* = H*(V09 Rl), and 
(ii) there is an increasing filtration Hr(V, 0 )oC • * 'C.Hr(V, Q)r 

= Hr(V> Q) of Hr(V, Q) with the associated graded module being 
E*+ • • • +£0/. 
Furthermore, the P.-L. transformations g*\R?h —>RQ

h induce linear 
maps Tr:E

P'g-*EP'Q in the spectral sequence which commute with all 
the differentials dr:E™->Ep

r
+r>Q-r+1 ( r ^ 2 ) . The full P.-L. transform 

mation T:Hr(V, Q)-^Hr(V, Q) preserves the filtration on Hr(V, Q) 
and induces Tw on the associated graded XX=o Erüp'v. 

From the above information we have that !T*—-1 = 0 on Erüp,p for 
a suitable N. This gives us that 

(15.3) T" - IiH*(V, Q)P->H'(V, Q)P-U 

from which the monodromy theorem follows. 
The next approximation to TN is 

(15.4) TN -I:ETV-Er^+1-p-\ 

which is calculated using intersection numbers in Theorem 4.4 in 
[14]. 

The image of H*(Y, Q)-*H*(V„ Q) is £&°, and so the local in-
variant cycle problem is just the following: 

(15.5). REFORMULATION OF LOCAL INVARIANT CYCLE PROBLEM. 

Assuming (as we may by (a) above) that T is already unipotent, 
prove that E«>° = ker(T-I). 

(c) We will prove the 

(15.6). PROPOSITION. The local invariant cycle problem is true for 
curves. 

PROOF. We will use the following result of Mumford: Given a 
s i tuat ion/ : Y—>A* where the fibres Vs are all nonsingular curves, we 
may pass to a ramified covering f : Y'—>A'* and find a smooth com-
pactification ƒ ' : F'—»A' such that the singular curve Vo has only 
normal crossings, and where all components of V0 are smooth and 
have multiplicity one. 

Let pu • • • , Pn be the double points of F0 . Then we have for the 
Leray sheaves that 

(15.7) 
Rh* = Qv0, 

R\* = Qpi © • • • © QP 

where QvQ is the constant sheaf Q on Vo and QPj is the "skyscraper 
sheaf" with stalk Q a t pj and zero elsewhere. 
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Let G, • • • , Cm be the irreducible components of V0, and denote 
by TT(F), TT(CJ) the genus of V, Cj respectively. Then we have 

(15.8) T(V) = £ TT(CJ) + n-m+l, 

so that n—m + 1 is the rank of the vanishing cycle group, which is 
just the kernel of the surjective map h*:Hi(V, Q)—>Hi(V0, Q). 

Referring to (15.7), we have E|,<z = 0 unless q = 0 or p = 0 and q = 1. 
Thus the only nonzero differential in the spectral sequence is 

(I2IE2 —> E2 

(15.9) |R |R 

QPl e • • • e QVn -> Qm 

and it follows from (15.8) that d2 in (15.9) has kernel isomorphic to 
0B~m+1. The filtration on Hl(V, Q) has only two steps, and so is just 
the exact sequence 

0 -> H\Vo) -> H\V) -± Q^-^+i -> 0, 

and it is easy to see that T — I is injective on H1(V)/Hl(V0)=Qn~m+l 

using what we have said together with the "classical" P.-L. for-
mula [7], which gives us the relation 

n 

(15.10) r ank{( r - I)Hi(V)} = r(V) ~ l i f t ) = n - m + 1. 

(d) Essentially we were able to prove Proposition 15.6 by using 
Mumford's theorem to put us in a simple enough situation so that 
we could give a direct geometric discussion of the vanishing and 
invariant cycles. On the contrary, if we take even the simplest ex-
ample of algebraic surfaces degenerating, then we are unable to prove 
the invariant cycle conjecture unless we use some transcendental 
methods. Here is an example, due to Landman, which illustrates our 
point. 

(15.11). PROPOSITION. Letf: Y—»A be as above and assume that 
(i) the general fibre V is a nonsingular surface, and 
(ii) the singular fibre V0 = S1US2 where Si and 52 are smooth surfaces 

which intersect transver s ally in an irreducible, nonsingular curve C. 
Then if </>£üP(F) is an invariant cohomology class, there exists 
$eH2(Y) such that * | V=(j>. 

PROOF. We want to use (15.5). The Leray sheaves are given by 
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(15.12) RI* = QV0, R\* = QC. 

Thus £f*fl = 0 if g ^ 2 and £ 3 = • • • = E„. The differentials 

. I ? 0 ' 1 T?2'0 J T?2,1 T 7 4 , 0 

d2\E2 —> E2 , d2\E2 —> E2 

II II II II 
#°(C) H2(Vo) H2(C) E\VQ) 

turn out to be injective since C is irreducible. The remaining differen-
tial 

d2l E2 —* E2 

(15.13) || || 

H\C) H*(Vo) 

is the essential one, and we claim that 

(15.14). LEMMA. In (15.13), we have 

H\C) = (ker d2) 0 (ker d%)± 

as an orthogonal direct sum over 0 , and where the pairing on Hl(C) is 
the cup product. 

PROOF. From the Mayer-Vietoris sequence 

H\S0 @ H2(S2) A H2(C) -> H\Vo) -> H*(Si) ® H*(S2) -> 0, 

and the fact that r is onto, we see that ker d2 is the same as the kernel 
of 

(15.15) H\C) -* H\SX) 0 H\S2). 

Now (15.15) is derived from the mapping of Albanese varieties 

Alb(C) -> Alb(5i) 0 Alb(50, 

and Lemma 15.14 follows from the Poincarê complete reducibility 
theorem. 

(15.16). REMARK. From the proof we see that (15.14) is not a 
topological fact, but depends on having Kâhler manifolds. 

We may now complete the proof of (15.11). The filtration on H2(V) 
induced from the spectral sequence is again just the exact sequence 

0 -> E™-*H\V) - * {ker d2] -> 0. 
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To see that T—7:ker dr~*H2(V) is injective, we consider the dia-
gram 

H\SX) 0 H\S2) +HKQ H\Vo) 

\ 
\ 

where the horizontal row is a piece of the Mayer-Vietoris sequence. 
According to the proof of Lemma 15.14, p is zero on (ker d2)

±, and 
our result follows from Lemma 15.14 and Clemens' formula 5.1 in 
[14], which in our special case is just: 

(r-/)Mp(»)W =iMö[c] , 
for \pf 0 £ k e r rf2. 

APPENDIX. RECENT PROGRESS ON THE PROBLEMS AND CONJECTURES 

(i) In the introduction I listed hyperbolic complex analysis and the 
theory of algebraic Lie groups as being the main tools used thus far 
in studying periods of integrals. To this I should like to add the 
algebraicizing of cohomology and resulting technique of reduction 
modulo p of the {algebraic) de Rham cohomology as a method which has 
led to significant progress in the study of periods. A hint of this was 
given in §4 where Katz's proof of the regularity of the Picard-Fuchs 
equations was outlined. I t was also pointed out there that this argu-
ment also gives the eigenvalue part of the monodromy theorem 3.1, 
but had not yet yielded the elementary divisor part of that theorem. 
Just recently Katz, with some valuable suggestions from Deligne, 
has succeeded in extending his techniques so that he gets out not only 
the full monodromy theorem 3.1, but also obtains the refinement on 
the elementary divisors predicted by (8.4). In summary then, this 
method now gives a unified treatment of the regularity Theorem 4.3 
and the monodromy theorem 3.1 in the strong form discussed in Con-
jecture 8.4, and so this technique must certainly now be listed as 
among the main tools used in the study of periods. 

(ii) In Problem 7.3 the question of the global Torelli theorem for 
nonsingular cubic threefolds was discussed. There has recently been 
progress on this problem in a joint work of H. Clemens and the au-
thor, and it seems now quite likely that the conjecture will go through 
as stated. 

(iii) In §8 I gave a tentative outline of how Conjecture 8.4 might 

V) 

h* 
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be approached group-theoretically. This discussion was somewhat 
off target, especially the second remark following 8.4, and I should 
like to add a few comments here. 

First of all, it was pointed out to me by Borel and Schmid that the 
statement about the number of simple factors of H controlling the 
index of unipotency of the P.-L. transformation was not too good, and 
they suggested how the group theoretic version of the conjecture 
might be phrased. Following the notation and terminology given in 
(c) of §4, we should therefore like to revise (8.4) to read 

CONJECTURE 8.4'. LelQiH—^D be a horizontal holomorphic mapping 
which satisfies 3>(z + l)—&(z)-Tfor some TÇzGz (this is the group of 
integral points in G). We assume that T is of infinite order and let 

Oo = limim (ŝ oo $(2) 

be the point in dDQD as given in Theorem 4.11. Let B(Q0)(ZG be the 
stability group ofti0CE:D = B\Gj so that B(QlQ) is a parabolic subgroup of 
G which contains T. The conjecture is that a suitable power TN belongs 
to the unipotent radical Ru(B(Çl0)). 

REMARKS. This conjecture would yield the monodromy theorem 
3.1 in the strong form conjectured by 8.4. Also, the proof would al-
most certainly give fairly good information on the behavior of the 
period matrix &(z) as I m (2)—> °o . 

I t should be pointed out that the monodromy theorem (in the 
strong form 8.4) does not conversely imply the above Conjecture 
8.4', because a statement about the index of unipotency of T is not 
enough to put T in RU(B(Q,0)). Therefore, it is worth remarking that 
in case <£ : H—>D arises from an algebraic family of algebraic varieties 
and 2 = 1 or 2, then it is in fact the case that T(E.Ru(B(Çlo)) (cf. just 
below (13.26) in §13 and (14.32)). 

(iv) Problem 12.1 has been partially answered in that it can be 
proved that every point w(E:W has a Zariski neighborhood U whose 
universal covering Ü is complex analytically isomorphic to a bounded 
domain in C. The main question now seems to be to somehow rigidify 
the embedding ÜCC.Cn so that it is as "nice" a domain as possible. 

(v) There are two additions to the bibliography which I would like 
to mention. The first is a manuscript Die Monodromie der I solier ten 
Singular it dten von Hyperfldchen by E. Brieskorn which gives a thorough 
discussion of the de Rham cohomology and monodromy associated 
to an isolated singular point on a complex analytic hypersurface. 
The second is the recent paper The action of a real semisimple group 
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on a complex flag manifold. I : orbit structure and holomorphic arc com-
ponents, Bull. Amer. Math Soc. 75 (1969), 1121-1237, by J. A. Wolf 
in which he gives the beginning of a general discussion about homog-
eneous complex manifolds among which our period matrix domains 
are a special case. 
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