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Abstract

Grain and Trivium are the hardware-oriented finalists of the eSTREAM. They are both based
on nonlinear feedback shift registers. In this paper, we study their generalized classes of nonlinear
feedback shift registers with time varying feedback functions, namely, Grain-like and Trivium-like
structures. Some interesting results regarding their periods are obtained.
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1 Introduction

Although block ciphers can be implemented as stream ciphers using OFB and CTR mode, stream ciphers

are in favor of many applications for two reasons. First, stream ciphers may be implemented much faster

than block ciphers. Second, stream ciphers may be much smaller in hardware implementation than block

ciphers. Many widely employed stream ciphers have been analyzed successfully, e.g., RC4 in Internet

[14], E0 in Bluetooth [10], [11], [12], [13], A5/1 and A5/2 in GSM [8], [9].

Linear feedback shift register (LFSR) sequences are widely used as basic functional blocks in key

stream generators in stream cipher models due to their fast implementation in hardware as well as in

software in some cases, e.g., filtering sequence generators, combinatorial sequence generators, clock-

controlled sequence generators, and shrinking generators. Nonlinear feedback shift register (NFSR)

sequences are known to be more resistant to cryptanalytic attacks than LFSR sequences. However,

1



the construction of NFSR sequences with guaranteed long periods is an open problem [3]. Grain and

Trivium are the hardware-oriented finalists of the eSTREAM contest [5], [6]. They are both based

on NFSRs. In Grain, one LFSR is used to control one NFSR. In Trivium, three NFSRs with simple

feedback functions are employed. The first one controls the second one, the second one controls the

third one, and the third one controls the first one.

In this paper, we prove some interesting results regarding the periods of two kinds of NFSRs with

time varying feedback functions, namely, Grain-like and Trivium-like structures. For the Grain-like

structure, if the initial state of the LFSR is nonzero, then the sequence generated by the NFSR is

periodic, and the least period is a multiple of that of the sequence generated by the LFSR. The exper-

imental results about those results were first reported in [4]. For the Trivium-like structure, with high

probability, the sequences generated by three NFSRs are periodic, and possess the same least period.

Such results have been verified using smaller version of Grain and Trivium.

This paper is organized as follows. In Section 2, some necessary background on sequences will be

provided. In Section 3, we present the formal definitions of Grain-like and Trivium-like structures.

Section 4 contains the main results. Some specific results regarding Grain and Trivium will be given in

Section 5. Finally, Section 6 concludes this paper.

2 Preliminaries

Let f(x) = xn + cn−1x
n−1 + · · · + c1x + 1 be a polynomial over F2. A sequence s = {si} is called an

LFSR sequence generated by f(x) if it satisfies the following recursive relation

sn+k =

n−1∑
i=0

cisk+i, k = 0, 1, · · · .

(s0, s1, · · · , sn−1) is the initial state of the LFSR which generates s. The sequence s is an m-sequence

if f(x) is primitive [2].

The minimal polynomial of s is a polynomial with smallest degree which generates s. Let m(x) be

the minimal polynomial of s, then m(x) | f(x). The linear complexity (or linear span) of s is the degree

of m(x), denoted by l(s). In general, m(x) can be found using the Berlekamp-Massey algorithm [16]

from any 2l(s) consecutive bits of s. The (left cyclically) shift operator L is defined by Ls = s1, s2, · · · ,

and Lrs = sr,sr+1, · · · , r ≥ 1. If t = Lrs, then we say that they are shift equivalent, and t is a shift of

s; otherwise, they are shift distinct. A sequence s = {si} is generated by f(x) if and only if f(L)s = 0,

where 0 is the zero sequence.

For any f(x) ∈ F2[x] with f(0) 6= 0, the order of f(x) is defined to be the minimal integer l ≥ 1 such

that f(x) | xl + 1. The period of the sequence s is equal to the order of its minimal polynomial m(x).
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3 Two Structures for Nonlinear Feedback Shift Registers

3.1 The Grain-Like Structure

Figure 1: The Grain-Like Structure

In the Grain-like structure, one LFSR is used to control one NFSR (see Figure 1).

Suppose that the content of the LFSR contains n bits denoted by si, si+1, ..., si+n−1, and the content

of the NFSR contains m bits denoted by bi, bi+1, ..., bi+m−1. The feedback polynomial of the LFSR is

f(x) which is primitive of degree n, and the feedback function of the NFSR is x0 + g(x1, x2, ..., xm−1).

Then the sequence {bi}∞i=0 generated by the Grain-like structure is defined by

bi+m = si + bi + g(bi+1, bi+2, ..., bi+m−1), for any i ≥ 0.

3.2 The Trivium-Like Structure

Figure 2: The Trivium-Like Structure

In the Trivium-like structure, there are three NFSRs. The first one controls the second one, the

second one controls the third one, and the third one controls the first one (see Figure 2).

Suppose that the content of the first NFSR contains m bits denoted by ai, ai+1, ..., ai+m−1, the

content of the second NFSR contains n bits denoted by bi, bi+1, ..., bi+n−1, and the content of the third

NFSR contains l bits denoted by ci, ci+1, ..., ci+l−1. Let d1, d2, and d3 be three integers satisfying

1 ≤ d1 < m, 1 ≤ d2 < n, and 1 ≤ d3 < l. The feedback function of the first NFSR is xd1 + y0 +

f1(y1, y2, ..., yl−1), the feedback function of the second NFSR is xd2
+ y0 + f2(y1, y2, ..., ym−1), and the

feedback function of the third NFSR is xd3
+ y0 + f3(y1, y2, ..., yn−1). Then the sequences {ai}∞i=0,
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{bi}∞i=0, and {ci}∞i=0 generated by the three NFSRs are defined by

ai+m = ai+d1
+ ci + f1(ci+1, ci+2, ..., ci+l−1),

bi+n = bi+d2
+ ai + f2(ai+1, ai+2, ..., ai+m−1),

ci+l = ci+d3 + bi + f3(bi+1, bi+2, ..., bi+n−1),

for any i ≥ 0.

4 Main Results

In this section, we keep all notations in Section 3.

4.1 The Grain-Like Structure

It is known that {si} is periodic, and {bi} is ultimately periodic. Let T0 denote the pre-period of {bi},

and T denote the minimal period of {bi}, i.e., bi = bi+T for any i ≥ T0.

Theorem 1 If {si} is not the all-0 sequence, then (2n − 1)|T .

Proof. Because bi+n = bi+T+n for any i ≥ T0, we have

si + bi + g(bi+1, bi+2, ..., bi+m−1) = si+T + bi+T + g(bi+T+1, bi+T+2, ..., bi+T+m−1)

= si+T + bi + g(bi+1, bi+2, ..., bi+m−1)

holds for any i ≥ T0. Hence si = si+T for any i ≥ T0 which means that si = si+T for any i ≥ 0. If {si}

is not the all-0 sequence, then the minimal period of {si} is 2n − 1. Thus, (2n − 1)|T . �

Theorem 2 If {si} is not the all-0 sequence, then {bi} is periodic.

Proof. Suppose that T0 > 0. Because bT0+n−1 = bT0+n−1+T , we have

sT0−1 + bT0−1 + g(bT0
, bT0+1, ..., bT0+m−2)

= sT0−1+T + bT0−1+T + g(bT0+T , bT0+1+T , ..., bT0+m−2+T )

= sT0−1+T + bT0−1+T + g(bT0
, bT0+1, ..., bT0+m−2)

Thus, sT0−1 + bT0−1 = sT0−1+T + bT0−1+T . Since (2n − 1)|T by Theorem 1, we have sT0−1 = sT0−1+T .

It follows that bT0−1 = bT0−1+T which means that bi = bi+T for any i ≥ T0 − 1. It is a contradiction.

Hence T0 = 0. �

Let Bt = (bt, bt+1, ..., bt+m−1) be the state of the NFSR at time t, and St = (st, st+1, ..., st+n−1) be

the state of the LFSR at time t, t = 0, 1, · · · . Then B0 and S0 are the initial states of the NFSR and

LFSR, respectively.
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Theorem 3 Let the initial state S0 of the LFSR be nonzero. If there exists an initial state B0 =

(b0, b1, ..., bn−1) of the NFSR such that the period of {bi} is (2n − 1)d, then there exist d − 1 initial

states B2n−1,B2(2n−1), ...,B(d−1)(2n−1) other than B0 of the NFSR such that the period of the sequence

generated by Bj(2n−1) and S0 is also (2n − 1)d, where 0 < j < d.

Proof. Because the period of {si} is 2n − 1, we have Sj(2n−1) = S0 for any 0 < j < d. The sequence

generated by Bj(2n−1) and Sj(2n−1) is {bi+j(2n−1)}, the shift of {bi}. Hence, there exist d − 1 initial

states B2n−1,B2(2n−1), ...,B(d−1)(2n−1) other than B0 of the NFSR such that the period of the sequence

generated by Bj(2n−1) and S0 is also (2n − 1)d, where 0 < j < d. �

For the distributions of periods of {bi}, we provide two examples below.

Example 1. Both the contents of the LFSR and the NFSR contain 8 bits. The linear feedback

is defined by si+8 = si + si+2 + si+3 + si+4, i ≥ 8. The nonlinear feedback g(x0, x1, ..., x7) is defined

as g(x0, x1, ..., x7) = x0 + x1 + x3 + x5x7 + x5x6 + x4x6x7, and the recursive relation is given by

bi+8 = si + g(bi, ..., bi+7), i ≥ 8. The distributions of periods of {bi} are listed in Table 1 in the case

that the initial state of the LFSR is nonzero.

Table 1:

Period Frequency

255× 190 48450

255× 26 6630

255× 10 2550

255× 9 2295

255× 7 1785

255× 5 1275

255× 4 1020

255× 2 1020

255× 1 255

Example 2. Both the contents of the LFSR and the NFSR contain 8 bits. The linear feedback

is defined by si+8 = si + si+2 + si+3 + si+4, i ≥ 8. The nonlinear feedback g(x0, x1, ..., x7) is defined

as g(x0, x1, ..., x7) = x0 + x2 + x6 + x5x7 + x5x6 + x4x6x7, and the recursive relation is given by

bi+8 = si + g(bi, ..., bi+7), i ≥ 8. The distributions of periods of {bi} are listed in Table 2 in the case

that the initial state of the LFSR is nonzero.

Based on such examples, we propose the following open problem.
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Table 2:

Period Frequency

255× 140 35700

255× 40 10200

255× 35 8925

255× 33 8415

255× 6 1530

255× 2 510

Open Problem. For fixed feedback of the LFSR and the NFSR, determine the minimal period

2n − 1 of {bi} is achieveable or not. If achieveable, provide at least one pair of initial states B0 and S0

explicitly.

4.2 The Trivium-Like Structure

Lemma 1 Let s = {si} be a sequence with least period N . For any integer 0 < d < N , if gcd(d,N) = 1,

then the least period of {si + si+d} is N .

Proof. Let f(x) be the minimal polynomial of s, and T be the least period of {si + si+d}. Then

T |N . For any i ≥ 0, we have

si + si+N + si+d + si+N+d = 0

which means that f(x)|(xT + 1)(xd + 1). The order of (xT + 1)(xd + 1) is lcm(T, d). Hence N |lcm(T, d).

Because gcd(d,N) = 1, we get N |T . So T = N . �

Theorem 4 ([15]) Let N = 2vn with v ≥ 0 and gcd(n, 2) = 1. Let l1, l2, ..., ls be the cardinalities of

cyclotomic cosets modulo n. Then the expected value EN of the linear complexity of random binary

sequences of period N is given by

EN = N −
s∑

i=1

li(1− 2−2
vli)

2li − 1
.

Lemma 2 Let EN be the expected value of the linear complexity of random binary sequences with period

N . Then we have EN > 5N/6− 1 if N is even, and EN > 2N/3− 1 if N is odd.

Proof. Let N = 2vn with v ≥ 0 and gcd(n, 2) = 1. Let l1, l2, ..., ls be the cardinalities of cyclotomic

cosets modulo n. Assume that l1 ≤ l2 ≤ ... ≤ ls. Then l1 = 1, and l2 > 1. Thus, by Theorem 4, we
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have

EN = N −
s∑

i=1

li(1− 2−2
vli)

2li − 1
> N −

s∑
i=1

li
2li − 1

= N − 1−
s∑

i=2

li
2li − 1

> N − 1− n− 1

3
> N − 1− n

3
.

Thus, EN > 5N/6− 1 if N is even, and EN > 2N/3− 1 if N is odd. �

Lemma 3 ([1]) Let N = 2vn with v ≥ 0 and gcd(n, 2) = 1. Let VN be the variance of the linear

complexity of random binary sequences with period N . Then we have VN < 2 + (d(n)− 1) log2(n+ 1),

where d(n) is the number of positive divisors of n.

Remark 1 Because d(n) < log2 n, by Lemma 3, we have VN < 2 + (log2 n − 1) log2(n + 1) < 2 +

(log2(n+ 1))2.

We will need the following Chebyshev’s inequality later.

Lemma 4 Let X be a random variable with expected value µ and finite variance σ2. Then for any real

number k > 0,

Pr(|X − µ| ≥ kσ) ≤ 1/k2.

Lemma 5 Let N = 2vn with v ≥ 0 and gcd(n, 2) = 1. Let s = {si} be a sequence with least period N .

For any integer 0 < d < N satisfying gcd(d,N) > 1, if d < N/6, then the least period of {si + si+d} is

N with probability 1−
(

2+(log2(n+1))2

N/6−1

)2
.

Proof. Let f(x) be the minimal polynomial of s, and T be the least period of {si + si+d}. Similar

to the proof of Lemma 1, we have f(x)|(xT + 1)(xd + 1). Hence, l(s) = deg(f) ≤ T + d. Suppose that

T < N . Then T ≤ N/2 for N even, and T ≤ N/3 for N odd. It follows that l(s) ≤ 2N/3 for N even,

and l(s) ≤ N/2 for N odd.

Let EN be the expected value of the linear complexity of random binary sequences with period N .

For the case of N even, by Lemmas 4, 3, and 4, the probability that l(s) ≤ 2N/3 satisfies

Pr(l(s) ≤ 2N/3) ≤ Pr(|l(s)− EN | > N/6− 1) <

(
2 + (log2(n+ 1))2

N/6− 1

)2

.

For the case of N odd, by Lemmas 4, 3, and 4, the probability that l(s) ≤ N/2 satisfies

Pr(l(s) ≤ N/2) ≤ Pr(|l(s)− EN | > N/6− 1) <

(
2 + (log2(n+ 1))2

N/6− 1

)2

.

�

7



Remark 2 If N is large, then 1−
(

2+(log2(n+1))2

N/6−1

)2
is close to 1.

It is known that {ai}, {bi}, and {ci} are ultimately periodic. Let T1 be the least period of {ai}, T2
be the least period of {bi}, and T3 be the least period of {ci}. Let T 1

0 be the pre-period of {ai}, T 2
0 be

the pre-period of {bi}, and T 3
0 be the pre-period of {ci}.

Assumption 1. {ai}, {bi}, and {ci} are distributed uniformly in the set of binary sequences with

period T1, T2, and T3 respectively.

Theorem 5 With the notations as above, if min(T1, T2, T3) > 6 max(m,n, l), then T1 = T2 = T3 with

high probability under Assumption 1.

Proof. For any i ≥ T 3
0 , we have

ai+m + ai+T3+m = ai+d1 + ci + f1(ci+1, ci+2, ..., ci+l−1)

+ai+T3+d1
+ ci+T3

+ f1(ci+T3+1, ci+T3+2, ..., ci+T3+l−1)

= ai+d1 + ai+T3+d1 .

Hence, if the least period of {ai+m +ai+d1
} is equal to the least period of {ai}, then T1|T3. Similarly, if

the least period of {bi+n + bi+d2} is T2, then T2|T1, and if the least period of {ci+l + ci+d3} is T3, then

T3|T2. Hence, under these assumptions, T1 = T2 = T3.

By Lemmas 1, 5 and Assumption 1, with high probability, the least period of {ai+m + ai+d1
} is T1,

the least period of {bi+n + bi+d2} is T2, and the least period of {ci+l + ci+d3} is T3. Hence, with high

probability, we have T1 = T2 = T3. �

Theorem 6 With the notation as above, if T1 = T2 = T3, then T 1
0 = T 2

0 = T 3
0 = 0.

Proof. Let T = T1 = T2 = T3. Without loss of generality, we may assume that T 3
0 = max(T 1

0 , T
2
0 , T

3
0 ).

Suppose that T 3
0 > 0. Because aT 3

0−1+m = aT+T 3
0−1+m and d1 ≥ 1, we have

aT 3
0−1+d1

+ cT 3
0−1 + f1(cT 3

0
, cT 3

0 +1, ..., cT 3
0 +l−2)

= aT+T 3
0−1+d1

+ cT+T 3
0−1 + f1(cT+T 3

0
, cT+T 3

0 +1, ..., cT+T 3
0 +l−2)

= aT 3
0−1+d1

+ cT+T 3
0−1 + f1(cT 3

0
, cT 3

0 +1, ..., cT 3
0 +l−2).

Hence cT 3
0−1 = cT+T 3

0−1 which means that ci = ci+T for any i ≥ T 3
0 − 1. It is a contradiction. Hence

T 1
0 = T 2

0 = T 3
0 = 0. �
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Figure 3: Grain

5 Periods of Grain and Trivium

5.1 Grain

Both of the contents of the registers deployed in Grain contain 80 bits. The content of the LFSR is

denoted by si, si+1, ..., si+79, and the content of the NFSR is denoted by bi, bi+1, ..., bi+79. The feedback

polynomial for the LFSR is defined by

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80

which means that si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si for any i ≥ 0. The feedback

polynomial for the NFSR is given by

g(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80 +

+x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71 +

+x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71 +

+x28x35x43x47x52x59.

For any i ≥ 0, bi+80 is given by

bi+80 = si + bi + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 +

+bi+21 + bi+14 + bi+9 + bi+63bi+60 + bi+33bi+37 + bi+9bi+15 +

+bi+45bi+52bi+60 + bi+21bi+28bi+33 + bi+9bi+28bi+45bi+63 +

+bi+33bi+37bi+52bi+60 + bi+15bi+21bi+60bi+63 +

+bi+37bi+45bi+52bi+60bi+63 + bi+9bi+15bi+21bi+28bi+33 +

+bi+21bi+28bi+33bi+37bi+45bi+52.
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The filtering function is defined by

h(x0, x1, x2, x3, x4) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4.

Among the input of the filtering function, four bits are from the LFSR, and one bit is from the NFSR.

Finally, the keystream is given by

zi = bi+1 + bi+2 + bi+4 + bi+10 + bi+31 + bi+43 + bi+56 + h(si+3, si+25, si+46, si+64, bi+63).

By Theorems 1 and 2, we have the following results.

Corollary 1 If the initial state of the LFSR is nonzero, then the sequence {bi} generated by the NFSR

is periodic, and the period is a multiple of 280 − 1.

Corollary 2 The key stream generated by Grain is periodic.

The following conjecture seems not easy to prove because we only know the information about the

least period of {bi}.

Conjecture 1 The least period of the key stream generated by Grain is equal to the least period of {bi}.

5.2 Trivium

The contents of registers deployed in Trivium contain 93 bits, 84 bits, and 111 bits, respectively.

We denote the content of the first register by ai, ai+1, ..., ai+92, the content of the second register by

bi, bi+1, ..., bi+83, and the content of the third register by ci, ci+1, ..., bi+110. Let {zi} denote the key

stream generated by Trivium.

In each step of the key stream generation, 15 specific state bits are used to update 3 bits of the state

and to compute 1 bit of key stream zi. The output of Trivium is given by

zi = ai + ai+27 + bi + bi+15 + ci + ci+45, i = 0, 1, · · · .

The updating functions of three NFSRs are given as follows.

ai+93 = ai+24 + ci + ci+45 + ci+1ci+2, i ≥ 0

bi+84 = bi+6 + ai + ai+27 + ai+1ai+2, i ≥ 0

ci+111 = ci+24 + bi + bi+15 + bi+1bi+2, i ≥ 0

(1)

Using the notation in Section 3.2, the parameters of Trivium are given in the following table.

m = 93 n = 84 l = 111

d1 = 24 d2 = 6 d3 = 24

f1(x1, · · · , x92) = x45 + x1x2 f2(x1, · · · , x83) = x27 + x1x2 f3(x1, · · · , x110) = x15 + x1x2
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Let T1 be the minimal period of {ai}, T2 be the minimal period of {bi}, and T3 be the minimal

period of {ci}. By Theorems 5 and 6, we have the following results.

Corollary 3 With the notations as above,

T1 = T2 = T3

holds with high probability under Assumption 1.

Corollary 4 With the notations as above, the key stream generated by Trivium is periodic with high

probability.

6 Conclusion

NFSR sequences are more resistant to cryptanalytic attacks than LFSR sequences, but the construction

of NFSR sequences with guaranteed long periods is an open problem. We study two kinds of NFSRs

with time varying feedback functions, namely, Grain-like and Trivium-like structures. Some interesting

results regarding their periods are obtained. Hopefully, the study of general NFSRs may benefit from

such results.
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