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Abstract

The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spi-

nal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the

bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve

autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC)

to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control

of bladder function. In the present study we extended these findings by examining the use

of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which

more closely models human urinary deficits following spinal cord injury. Cystometry analy-

sis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF

+ChABC reduced bladder weight, improved bladder and external urethral sphincter histol-

ogy, and significantly enhanced LUT function, resulting in more efficient voiding. Treated

mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of

serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal

spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results

suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat

model and may be used to further investigate genetic contributions to regeneration failure.

Introduction

Axonal regeneration following spinal cord injury (SCI) in the adult is limited and abortive.

Regeneration failure has been attributed to many factors including myelin inhibition [1], extra-

cellular matrix-associated inhibitors [2], a decrease of intrinsic growth-promoting gene expres-

sion [3,4], secondary injury cascades involving the immune response [5], and lack of trophic
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support [6]. Targeting a single factor can increase axonal sparing, regeneration, and/or sprout-

ing [7] into or around the lesion site, but the extent of growth is modest. Instead, an approach

combining several targets can act synergistically to promote robust regeneration [8–10]. For

example, using peripheral nerve autografts (PNGs) to bridge a complete spinal cord lesion in

combination with acidic fibroblast growth factor (aFGF) and chondroitinase ABC (ChABC)

leads to long-distance axonal regeneration and restores supraspinal control of bladder function

in a complete transection rat SCI. Removing even one factor from this approach diminishes

recovery and axonal regeneration [8]. While most complex combinatorial approaches have

been conducted in rats, mice can offer greater insight into genetic contributions to SCI failure

[3,4,11]. Mouse studies often target a single gene or a related family of genes and have shown

great promise in promoting regeneration but, thus far, have resulted in only minimal recovery

[12,13].

A robust and evolutionally conserved mechanism of SCI therapy should effectively treat

injuries in any mammal, even when the pathology and recovery can be vastly different from

species to species. Closely related organisms such as the rat and mouse can differ drastically in

response to SCI. In rats, a fluid-filled cystic cavity forms at the site of injury, while the injured

mouse spinal cord becomes filled with fibrous connective tissue and a dense distribution of col-

lagen scarring [14,15]. The inflammatory response is distinct between the two species, leading

to different cell populations in and around the lesion [16]. Physiological recovery differences

after severe SCI also exist. Partial recovery of the lower urinary tract (LUT) is spontaneous in

the rat [17–19], while mice never regain the ability to urinate after severe SCI [15]. Under nor-

mal physiological conditions, external urethral sphincter (EUS) muscle recruitment differs

between rats and mice. In rats, EUS pumping activity causes high frequency oscillations in

bladder pressure, and is necessary for voiding, however, EUS bursting coupled with high fre-

quency bladder pressure oscillations are not observed in the mouse during a void. Instead, the

mouse EUS displays silent periods or periods of low EUS activity that lack bladder pressure

oscillations, similar to what is seen in humans [20]. Ideally, animal models should reproduce

all the facets of the human condition, but it is inconceivable that any single animal model will

recapitulate every aspect of normal or SCI pathology. For these reasons, a mouse model of SCI

may better represent bladder dysfunction in the human condition, as the loss of LUT control is

a permanent ubiquitous consequence of SCI in humans and is a top priority of the SCI popula-

tion [21,22].

In this present study we used a well-documented SCI combinatorial repair strategy first

developed in a rat model and now adopted to a mouse model [8,23–25]. Specifically, we used

multiple PNGs covered by an aFGF-laden fibrin matrix plus ChABC and aFGF delivered to the

graft and graft/host interfaces to create an environment favorable for regeneration that, for the

first time in a complete transection mouse model, demonstrated improvements in LUT

function.

Materials and Methods

Animal groups

Thirty-seven adult female C57BL/6 mice (8 to 10 weeks old) were divided randomly into three

groups: (1) T8 spinal cord transection only (Tx-only; n = 15), (2) T8 spinal cord transection

with PNG+aFGF+ChABC treatment (PNG+aFGF+ChABC; n = 15), (3) naïve animal without

SCI (n = 7). Five mice were removed from the study (three from the PNG+aFGF+ChABC

group and two from the TX-only group) due to bladder infections and/or bladder stones and

were not included in any analyses.
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Mouse spinal cord surgery, multiple peripheral nerve segment
transplantation, and ChABC & aFGF injection

All sterile surgical procedures were carried out in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

The protocol was approved by the Case Western Reserve University animal resource center

and institutional care and use committee. Surgery was performed under 2% isoflurane mixed

with oxygen anesthesia, and all efforts were made to minimize suffering. Mice were supported

on a heating pad controlled by a rectal thermometer maintained within 1.5°C of normal tem-

perature. In all SCI groups, the thoracic spinal cord was exposed via T8 laminectomy. In the

TX-only group the spinal cord was transected by two parallel transverse cuts, creating a 0.5

mm gap when the tissue was removed. The PNG+aFGF+ChABC group underwent a spinal

cord transection as described above and 2 μl (1 μl at each cord stump adjacent to the lesion) of

1:1 ChABC (1U/ml) & aFGF (1 g) mixture was injected into the spinal cord via a Nanoject II

(Drummond Scientific Company). The intercostal nerves were removed, soaked in ChABC

(1U/ml) for 30 min, and an autograft was constructed from 9–15 intercostal nerve segments

spanning the lesion, as described previously in rat [24]. The graft was supported using an

aFGF/ChABC/fibrin glue. 4–0 monofilament sutures were used to close the skin and muscula-

ture. Bladders were manually expressed twice per day until the end of the study.

Urodynamics/cystometrogram and electromyography recordings

Mice at 18 weeks post-SCI were anesthetized with 1.5% isoflurane mixed with oxygen. A poly-

ethylene-50 catheter was carefully inserted through the urethra into the bladder for the delivery

of saline and bladder pressure monitoring. Teflon-insulated silver wire electrodes (0.003”

diameter, 2 mm exposed tip; A-M Systems) were inserted percutaneously via the vagina on

both sides of the urethra to monitor EUS electromyography (EMG) activity. The mice were

placed in a restraining apparatus and allowed to recover from anesthesia. Bladders were emp-

tied prior to the start of saline infusion. Continuous cystometrograms (CMGs) were collected

using constant infusion (1.5 ml/hr) of room temperature saline (Aladdin-1000 single syringe

infusion pump; World Precision Instruments) through the catheter and into the bladder to

elicit repetitive voids, which allowed collection of data for a large number of voiding cycles.

The electrodes were connected to a preamplifier (HZP; Grass-Technologies), which was con-

nected to an amplifier (QP511, Grass-Technologies) with high- and low-pass frequency filters

at 30 Hz and 3 kHz and a recording system (Power 1401, Spike2; Cambridge Electronic

Design) at a sample frequency of 10kHz. The bladder pressure was recorded via the same cath-

eter used for saline infusion, using a pressure transducer (P11T, Grass-Technologies) con-

nected to the recording system at a sample frequency of 2kHz.

Urodynamic quantification

Mice began infusion of saline with an empty bladder. The time point where the first void

occurred was used to calculate the bladder volume at first void (time x rate of infusion). Con-

tinuous saline infusion elicited repetitive voiding. The bladder contraction interval was deter-

mined by measuring the average time between bladder contractions. The change in pressure

during void was measured as the bladder pressure at the peak of a void minus the pressure

immediately prior to the void. The pressure difference from baseline to post-void was mea-

sured as the lowest pressure recorded after the first void minus the pressure at the start of saline

infusion. Following the last void the catheter was removed and residual bladder saline was

expressed to measure residual volume.
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Bladder weight and morphology

Animals were perfused transcardially with 4% paraformaldehyde (PFA) in 0.01 M PBS, pH 7.4.

The bladders of all animals were collected and the wet weights were recorded. Bladders were

further fixed with 4% PFA for 1 day and then transferred to 30% sucrose, sectioned transversely

(8 μm) at the level of mid-bladder with a cryostat, and stained with Masson’s trichrome for

additional morphological analysis under a light microscope.

Spinal cord histology

Following perfusion, spinal cords from all animals were collected and immersed in a 30%

sucrose solution. Sagittal sections (30 m thick for immune staining, 10 μm thick for Masson’s

trichrome staining) of the spinal cord were cut using a cryostat and collected for immunostain-

ing or Masson’s trichrome staining. For immunostaining, sections were blocked in 3% normal

horse serum with 0.25% Triton X-100 in PBS for 1 hour. After blocking, sections were exposed

to anti-tyrosine hydroxylase (TH) polyclonal antibody (1:1000 dilution, Protos Biotechnology)

or anti-serotonin (5-HT) polyclonal antibody (1:1500 dilution; DiaSorin, Stillwater, MN,

USA), and anti-glial fibrillary acidic protein (GFAP) for astrocytes (1:500 dilution; DakoCyto-

mation, Carpinteria, CA, USA) and incubated overnight at room temperature. After 3 rinses in

PBS, sections were incubated with species-appropriate secondary antisera conjugated with

Alexa Fluor 594 or Alexa Fluor 488 (Invitrogen/Molecular Probes) for 90 min, washed, and

coverslipped with Vectashield (Vector Laboratories Inc., Burlingame, CA, USA). All sections

were examined under a microscope with fluorescent light and the distribution of TH and 5-HT

fibers was analyzed in multiple parallel sections using a camera lucida method. Further images

were collected using a Carl Zeiss LSM 510META confocal microscope. Masson’s trichrome

staining of the spinal cord was conducted in the same manner as the bladder. For collagen

quantification, sections were imaged under a light microscope. For each animal, the area

500μm rostral and 500μm caudal from the lesion epicenter were quantified and averaged over

5 serial sections to obtain a single measurement per animal of the collagen area squared.

Statistical analyses

All data are reported as mean ± standard error of the mean. All data sets except for collagen

quantification were analyzed using Unpaired Student's T tests comparing TX-only to PNG

+aFGF+ChABC groups. Collagen quantification was analyzed using Two-way ANOVA. Sig-

nificance was determined at p< 0.05. Naïve animals are included for comparison only and

were not included in the statistics since they did not receive an injury. 5-HT and TH correla-

tion to bladder recovery was determined using Pearson product-moment correlation coeffi-

cient. All behavior tests and data analysis were done in a blinded fashion during this entire

study.

Results

PNG + aFGF + ChABC improved and EUS EMG activity in spinal cord-
transected mice

Measurements of bladder contractions and EUS activity were used to investigate the quality of

bladder function at 18 weeks after SCI. Recordings were performed on awake and restrained

animals. Movement artifacts in naïve recordings were evident and frequent (Naïve, Fig 1A) but

could easily be separated from relevant events. Minimal movement artifacts were seen in spina-

lized mice. Thirteen animals in the Tx–only group, twelve in the PNG+aFGF+ChABC group,

and seven in the naïve group were used in this investigation.
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During continuous infusion CMG, the naïve group displayed low-amplitude tonic

EUS-EMG activity between voids (Naïve, Fig 1A and 1B). At the onset of a bladder contraction,

the EUS-EMG activity increased in amplitude and persisted as the pressure rose, falling at the

peak of the contraction coinciding with a void (Naïve, Fig 1B). In transected mice, the coordi-

nation between rising bladder pressure and EUS activity was lost and the EUS fired tonically

throughout the bladder contraction (TX-only, Fig 1A and 1B), resulting in severe detrusor

sphincter dyssynergia. Animals receiving PNG+aFGF+ChABC showed an increase in

EUS-EMG activity in response to rising bladder pressure and an improvement in bladder and

EUS coordination, similar to what was seen in the naïve group (PNG+aFGF+ChABC, Fig 1A

and 1B).

In the naïve group, bladder contractions were associated with voiding events. The few blad-

der contractions outside of voiding events were associated with movement within the restrainer

(Naïve Fig 1A). At eight weeks post-SCI, there was no difference in CMG-EUS EMG data

between the TX-only and PNG+aFGF+ChABC groups (data not shown). However, at 18

weeks post-SCI, the TX-only group had many non-voiding contractions, and in many record-

ings voiding and non-voiding contractions could not be distinguished. These contractions

were typically very small and close together (TX-only Fig 1A). In contrast, bladder contractions

in the PNG+aFGF+ChABC group at 18 weeks post-SCI were often associated with a voiding

Fig 1. PNG+aFGF+ChABC treatment improves urodynamics after complete SCI. (A) Representative voiding cycles of bladder pressure (top panel) and
EUS EMG activity (bottom panel) were recorded from each group 18 weeks post-complete spinal cord transection. Kicking artifacts in naïve bladder tracings
are denoted by &. (B) The box area in (A) indicates the magnification of bladder pressure and EUS EMG activity. Quantification of CMG results shows that
PNG+aFGF+ChABC-treated animals (C) increased the time between bladder contractions, (D) had stronger bladder contractions during voids, (E) had a
smaller residual volume after a void, (F) that pressure following a void was closer to baseline pressure, (G) voided at smaller bladder volumes, and (H) had a
smaller bladder weight when compared to TX-only. *p<0.05, **p<0.01, ***p < .001.

doi:10.1371/journal.pone.0139335.g001
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event, although they still showed signs of a hyperactive bladder (PNG+aFGF+ChABC, Fig 1A).

The time between bladder contractions increased in the PNG+aFGF+ChABC group

(48.07 ± 10.32 seconds) compared to the TX-only group (26.54 ± 2.33, p< 0.05, Fig 1C), sug-

gesting that the treatment alleviated symptoms of bladder hyperactivity.

Bladder contractions resulting in a void occurred at similar pressures between the spinal

cord-injured groups (TX-only = 11.56 ± 1.16 mmHg; PNG+aFGF+ChABC = 9.80 ± 0.72,

p = 0.109 mmHg) but the pressure generated by the PNG+aFGF+ChABC group was signifi-

cantly larger (9.14 ± 1.40 mmHg) than in TX-only (5.29 ± 0.72 mmHg, p< 0.01, Fig 1D). The

pressure following a void also returned closer to the baseline in the combinatorial group (PNG

+aFGF+ChABC = 3.66 ± 0.54 mmHg above baseline, TX-only = 6.17 ± 1.17 mmHg above

baseline, p< 0.05, Fig 1E), resulting in more efficient voiding and a smaller residual volume

(PNG+aFGF+ChABC = 0.28 ± 0.06 ml; TX-only = 0.54 ± 0.12 ml, p< 0.05, Fig 1F). The CMG

analysis also showed that the first void of the PNG+aFGF+ChABC group occurred at a smaller

volume (0.16 ± 0.02 ml) compared to TX-only (0.33 ± 0.08 ml, p< 0.05, Fig 1G). Together, the

CMG data indicate that mice treated with a combination of PNG+aFGF+ChABC show signifi-

cant improvements in bladder voiding and a reduction in bladder hyperreflexia.

PNG+aFGF+ChABC treatment improved LUT morphology

We next examined the anatomical changes that may underlie the improvements seen in LUT

physiology. Comparing gross observations of the bladder 18 weeks after SCI, mice in the PNG

+aFGF+ChABC group had smaller bladders that weighed significantly less than those in the

TX-only group (Figs 1H,2B and 2C), although both injury groups had larger and heavier blad-

ders than naïve mice (Figs 1H and 2A). Masson's trichrome stain of the bladder revealed pre-

served architecture and less bladder distension with greater organization of the muscle and

lamina propria in PNG+aFGF+ChABC animals compared to the TX-only group (Fig 2D–2I).

EUS muscle fibers of the PNG+aFGF+ChABC group were long and continuous (Fig 2L),

similar to the naïve group (Fig 2J), while the TX-only group had a greater occurrence of con-

nective tissue between short and discontinuous muscle fibers (Fig 2K). The denervation of

motor neurons controlling EUS causes tonic activity of EUS after complete SCI. The constant

tonic activity of EUS and severe detrusor sphincter dyssynergia may contribute to the muscle

loss and degradation. These results suggest preservation of muscle and architecture in the LUT

with PNG+aFGF+ChABC treatment.

PNG+aFGF+ChABC treatment reduces collagen scarring

We next examined the lesion of the TX-only and PNG+aFGF+ChABC for differences in gross

anatomy and scarring. In the TX-only group, the rostral and caudal stumps of the lesioned cord

were connected by thin, translucent tissue containing a dense collagen matrix (Fig 3A and 3B).

The distribution of collagen dense deposits can be observed in the lesion gap, in the periphery

around the cord, and inside the spinal cord tissue from both rostral and caudal end. In contrast,

the lesioned cord of animals receiving PNG+aFGF+ChABC treatment were thick and opaque

with dense peripheral nerve grafts bridging the rostral and caudal stumps completely filling the

lesion, giving an appearing of a continuous interface across the lesion (Fig 3A). The collagen

matrix of PNG+aFGF+ChABC treated animals was less dense and covered significantly less

area than that of the TX-only treatment (Fig 3B and 3C). To compare the mouse response to

injury to that of the rat, we collected available complete spinal cord transection tissue in our lab-

oratory and stained for collagen. The rat lesion had very little collagen scarring compared to the

mouse, illustrating the difference in scar composition between the two species (S1 Fig). These
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results suggest that PNG+aFGF+ChABC treatment can significantly reduce collagen scarring in

the mouse, which can facilitate axonal regeneration by decreasing the physical scar barrier.

Regeneration of 5-HT and TH fibers crossing the PNG into the caudal
spinal cord

Given the voiding improvements in mice receiving PNG+aFGF+ChABC treatment and a

reduction in collagen scarring, we next examined whether axonal regrowth extended beyond

the caudal PNG-spinal cord interface. Regeneration into the bridge and well beyond the tran-

section site in the rat model has been more extensively studied and has been found to be critical

in the recovery of urinary function. In the mouse, immunostained 5-HT and TH axons were

traced via camera lucida projections of consecutive serial parasagittal sections for the TX-only

(Fig 4A and 4C) and PNG+aFGF+ChABC (Fig 4E and 4G) groups. 5-HT- and TH-positive

Fig 2. PNG+aFGF+ChABC treatment improves bladder and EUSmorphology. (A-C) Gross observation of the bladder at 18 weeks after SCI in naïve (A),
TX-only (B), and PNG+aFGF+ChABC animals (C). (D-F) Photomicrographs of transverse bladder sections stained with Masson’s trichrome from naïve (D),
TX-only (E), and PNG+aFGF+ChABC animals (F). Scale bar, 500μm. (G-I) Higher magnification of photomicrographs from boxed area (D-F) shows details of
the bladder structure. Note that PNG+aFGF+ChABC animals showed improved bladder morphology. Sale bar, 250μm. (J-L) Photomicrographs of transverse
EUS sections stained with Masson’s trichrome from naïve(J), TX-only (K), and PNG+aFGF+ChABC animals (L). The TX-only animals show swelling as well
as short and discontinuous muscle fibers (arrow), while the PNG+aFGF+ChABC animals show continuous and long muscle fibers (arrow), similar in
morphology to naïve animals (arrow). Scale bar, 500μm.

doi:10.1371/journal.pone.0139335.g002
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fibers were identified only in the rostral penumbra of the lesion in the TX-only group. They

did not penetrate deeply within the lesion nor did they ever regenerate beyond the lesion (Fig

4A–4D). In the PNG+aFGF+ChABC group, both 5-HT- (Fig 4E and 4F) and TH-positive

fibers (Fig 4G and 4H) were visualized crossing the rostral spinal cord-PNG interface (Fig 4F’

and 4H’) to enter the PNG (Fig 4F”and 4H”). Importantly, some fibers continued into the dis-

tal caudal spinal cord (Fig 4F”and 4H”‘) beyond the caudal PNG-spinal cord interface. Quanti-

tative analyses of fibers in the distal spinal cord confirmed the presence of regenerated 5-HT

(Fig 4I) and TH (Fig 4J) fibers beyond the PNG.

Since both 5-HT and TH tracts mediate LUT recovery in the rat, we sought to correlate

bladder recovery with regeneration in the mouse model. At the individual animal level, 5-HT

regeneration was significantly correlated with an improvement of CMG parameters including

the decreasing of pressure difference from the baseline to post void, the increasing of bladder

contraction interval, and the decreasing of residual volume (Fig 5A–5D). No such correlation

was found with TH regeneration, however, the baseline pressure following a void showed a

non-significant trend (Fig 5E–5H). These results suggest 5-HT regeneration may be more

important than TH regeneration for bladder recovery in a mouse model of SCI.

Discussion

Overview of results

The results of our investigation demonstrate the feasibility of employing the PNG+aFGF

+ChABC combinatorial repair strategy in mice. These results corroborate our previous work

[8] demonstrating that the triple combination treatment leads to improvements in voiding pat-

terns, diminished detrusor sphincter dyssynergia, enhanced voiding efficiency, and improved

bladder and EUS morphology. We also demonstrated a reduction in collagen scarring and

regeneration of 5-HT and TH neurons through the peripheral nerve graft into the caudal cord.

Our results suggest that 5-HT regeneration is more important for LUT recovery in the mouse

than TH regeneration. In the rat, 5-HT innervation of the dorsal lateral nucleus of the

Fig 3. PNG+aFGF+ChABC decreases collagen scaring in the lesion. (A) Gross observation of the spinal cord at 18 weeks after SCI in TX-only and PNG
+aFGF+ChABC animals. White arrow marks the lesion. (B) Representative photomicrographs of the spinal cord lesion stained with Masson’s trichrome from
TX-only and PNG+aFGF+ChABCmice 18 weeks post injury. The morphology of the PNG can be visualized in the PNG+aFGF+ChABC treated animals.
Arrow marks the PNG and area of expanded view. Scale bar, 200μm. Rostral is to the left, and caudal to the right. Collagen is stained blue. (C) Collagen scar
area (μm2). The PNG+aFGF+ChABC group shows a significant reduction of collagen scarring compared to the TX-only group. Five serial sections per animal
were quantified, n = 5 animals per group. ****p<0.0001.

doi:10.1371/journal.pone.0139335.g003
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Fig 4. PNG+aFGF+ChABC treatment induces 5-HT and TH regeneration 18 weeks post-complete spinal cord transection. TX-Only: (A) Camera
lucida tracing of 5-HT immunoreactive fibers in a TX-only animal. (B) 5-HT and GFAP immunostaining of the boxed area in (A), scale bar, 50 μm. (C) Camera
lucida tracing of TH-immunoreactive fibers in a TX-only animal. (D) TH and GFAP immunostaining of the boxed area in (C). Scale bar, 50 μm. PNG+aFGF
+ChABC: (E) Camera lucida tracing of 5-HT-immunoreactive fibers in PNG+aFGF+ChABC. (F) 5-HT and GFAP immunostaining of boxed areas in (E): (F’)
Rostral spinal cord-PNG interface; (F”) within the PNG; (F”‘) caudal spinal cord. Scale bar, 50 μm. (G) Camera lucida tracing of TH-immunoreactive fibers in a
PNG+aFGF+ChABC-treated animal. (H) TH and GFAP immunostaining of boxed areas in (G): (H’) Rostral spinal cord-PNG interface; (H”) within the PNG;
(H”‘) caudal spinal cord. Scale bar, 50 μm. (I) Quantification of 5-HT-immunoreactive fibers found in caudal spinal cord, n = 7. (J) Quantification of TH-
immunoreactive fibers found in caudal spinal cord, n = 7. Only animals whose spinal cord was processed and cut sagittally were included in the analysis.

doi:10.1371/journal.pone.0139335.g004
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lumbosacral spinal cord is required for the induction of EUS bursting activity during a void,

and regeneration of the 5-HT tract is required for meaningful LUT recovery [26]. Conversely,

silent periods or low EUS activity periods are important for efficient voiding in the mouse, and

serotonin’s contribution to LUT recovery in a mouse model of SCI is not well understood.

Nonetheless 5-HT regeneration is most likely needed for recovery in both models. The pres-

ence of 5-HT fibers distal to the lesion may also contribute to the preservation of the EUS mus-

cle integrity by increasing the excitability of and synaptic input to motor neurons [27], as we

have previously reported that PNGs enhance 5-HT regeneration and preservation of muscle

mass and the myosin heavy chain phenotype following complete spinal cord injury [28]. Our

previous rat study showed that TH regeneration is also required for efficient voiding, however,

we found only trending correlation of TH regeneration and LUT function in a single parameter

in the mouse model of SCI. Further, it is possible that chondroitinase and aFGF could be suffi-

cient without the need of a graft to realize benefit by facilitating remodeling of intact spinal cir-

cuits. While the regeneration of 5-HT and TH fibers or other descending systems (not

identified in the current study) likely contributes to bladder functional recovery, the precise

role of frank regeneration in improved LUT behavior in the mouse remains to be determined

by further investigation.

Although improvements in LUT recovery and axonal regeneration were evident with our tri-

ple combination therapy, the mouse model did not show the same strong nerve regeneration

effects in both the 5-HT and TH systems as our previous rat study, in terms of either amount

and distance [8]. This could be due to a variety of factors. First, the interface between the PNG

and host tissues in the present study was not as striking as in our previous study in rats [8]. Sec-

ond, mice, like humans, never develop a spinal reflex of urination after injury, while rats do.

Sporadic recovery in the rat may prime the bladder circuitry such that with axonal regeneration,

Fig 5. 5-HT regeneration correlates to LUT function recovery. Pearson correlation coefficient (r value) comparing bladder recovery to the number of
regenerating (A-D) 5-HT and (E-H) TH fibers found in the caudal cord 200μm or 500μm from the PNG-cord interface. The number of regenerated 5-HT fibers
below the lesion site shows a significant correlation with the improvement of CMG parameters. There is no significant correlation between regeneration of the
TH fibers and CMG parameter analysis. Only animals whose spinal cord was processed and cut sagittally were included in the analysis. n = 7.

doi:10.1371/journal.pone.0139335.g005
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greater recovery is possible. Third, the pathology of the mouse SCI may perturb axonal regener-

ation. A mouse spinal cord lesion fills up with a dense fibrous connective tissue [15] rich in col-

lagen which can act as a physical barrier to regeneration, while the transected rat spinal cord

exhibited little collagen scarring. Lastly, due to the small size of the mouse, there are technical

difficulties associated with placing a compressive S-shaped mono-filament surgical steel wire to

stabilize the vertebral column in a dorsiflexed position, as we were able to do in the rat study. In

rats, failure to stabilize the cord resulted in hindered regeneration [29]. Although it is likely the

regenerating 5-HT and TH neurons failed to reinnervate their original target, there is consider-

able evidence that relay circuits can confer functional benefits distant from regenerating or

injury induced sprouting tracts. For example, in the transected cord of the zebra fish, 5-HT and

TH axons regenerate but fail to directly reinnervate their original motor neuron targets, how-

ever full recovery of swimming capability is achieved [30]. Similar observations have been made

in the cortical spinal tract of primates, which normally have monosynaptic innervation onto

motor neurons. Following transection of the corticomotoneuronal pathway, a disynaptic net-

work forms restoring partial motor recovery [31].

PNGs create a favorable regenerative environment

The concept of engrafting tissue or cells into an SCI lesion site to create a permissive environ-

ment for axonal regeneration has been proposed for almost a century [32]. Many different

types of tissues or cells have been used, with varying levels of success, including Schwann cells

[33], olfactory ensheathing cells [34,35], bone marrow-derived mononuclear cells [36], astro-

cytes [37,38], and various types of stem or progenitor cells [39–42]. To date, the application of

the autologous peripheral nerve graft has been successfully used in animal studies [23,24,43–

47] and even in human patients with SCI [48,49]. A PNG bridge provides a permissive, direc-

tional substrate to encourage and guide long-distance regeneration, and resident Schwann cells

provide trophic support and can remyelinate the axons. Axonal growth into and along the

PNG is robust, but most axons fail to exit the distal end of the graft. Expectedly, in studies

using only a PNG, there is no behavioral improvement. In a primate model of SCI, transplanta-

tion of PNGs led to similar levels of axonal regeneration into the graft as seen in rodent studies

[46]. Although no improvements in behavior were observed, this study demonstrated the

capacity for primate CNS axons to grow into a PNG. These studies demonstrate a reproducible

technique to regenerate axons past a lesion site. The challenges that lay ahead are to promote

the re-entry of axons at the distal end of the graft back into the spinal cord.

aFGF contributions to regeneration

Addition of growth factors to the PNG/cord interface, namely aFGF, can help bring about

meaningful, physiologically-relevant regeneration [23,24,50]. aFGF can act through various

mechanisms to enhance regeneration, as it interacts with many different FGF receptors and

cells [51]. Several studies have identified FGF’s role in the reduction of collagen related scar for-

mation and in down regulation of collagen gene expression in fibroblast [52–54]. Our study

showed that PNG+aFGF+ChABC treatment reduced the collagen deposit which may be attrib-

uted to the effect of FGF application. It has been shown frequently that aFGF reduces axonal

dieback and promotes regeneration thorough a graft [23,24,50,55]. Failure to include aFGF in a

PNG or Schwann cell graft significantly diminishes the number of regenerating axons found

within the graft [8,56]. aFGF may also be acting to decrease astrocyte activation [57] and to

promote astrocyte migration and morphogenesis [8,58], encouraging better integration

between the PNG and spinal cord. However, the aligned bipolar morphology of astrocytes

between PNG and host tissues in this mouse model was not as obvious as in our previous rat
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study [8]. This can be attributed to more fibrotic scarring at the interface. Other trophic factors

such as GDNF [59] can also be considered to further improve the interface.

CSPGs impair axonal regeneration

Amajor impedance to regenerating axons following SCI is the upregulation of inhibitory

CSPGs in the extracellular matrix. Digestion of CSPG side chains with the bacterial enzyme

ChABC enhances axonal regeneration and sprouting in a variety of injury models [37,47,60,61].

The digestion of CSPGs also promotes the migration and integration of Schwann cells from the

PNG into the host spinal cord [62] and aligns astrocytes towards the injury site [63]. Addition-

ally, CSPG degradation of the perineuronal net distal to the graft could promote remodeling of

spared pathways and integration of regenerating fibers into spared circuits [64]. Chondroitinase

may also be modulating macrophage activation towards a more permissive phenotype [65],

which has been shown to enhance axonal elongation in a CSPG-rich environment [66]. Failure

to use chondroitinase in a PNG repair model of SCI results in very few axons leaving the graft/

chord interface and causes diminished recovery [8,60].

Conclusions

The current study suggests that peripheral nerve autografts supplemented with aFGF and

chondroitinase support meaningful recovery of the lower urinary tract. This combinatorial

therapy has shown efficacy in a number of different animal models and provides support for

the need to target multiple modalities in the treatment of severe spinal cord injury.

Supporting Information

S1 Fig. A comparison of collagen distribution in mouse and rat after complete spinal cord

transection. Representative photomicrographs of the spinal cord lesion stained with Masson’s

trichrome from the transected mouse cord at 18 weeks post injury or the transected rat cord at

16 weeks post injury. Scale bar, 200μm for the mouse, 1mm for the rat. Left is rostral and right

is caudal.
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