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PERIPHERAL SPLITTINGS OF GROUPS

B. H. BOWDITCH

Abstract. We define the notion of a “peripheral splitting” of a group. This
is essentially a representation of the group as the fundamental group of a bi-
partite graph of groups, where all the vertex groups of one colour are held
fixed—the “peripheral subgroups”. We develop the theory of such splittings
and prove an accessibility result. The theory mainly applies to relatively hy-
perbolic groups with connected boundary, where the peripheral subgroups are
precisely the maximal parabolic subgroups. We show that if such a group ad-
mits a non-trivial peripheral splitting, then its boundary has a global cut point.
Moreover, the non-peripheral vertex groups of such a splitting are themselves
relatively hyperbolic. These results, together with results from elsewhere, show
that under modest constraints on the peripheral subgroups, the boundary of
a relatively hyperbolic group is locally connected if it is connected. In retro-
spect, one further deduces that the set of global cut points in such a boundary
has a simplicial treelike structure.

0. Introduction

In this paper, we study particular kinds of splittings of groups, which we shall
term peripheral splittings. The theory can be developed in a general context, and fits
into a broad scheme of studying various properties of groups (in this case splittings)
relative to preferred classes of subgroups. However, the main applications we have
in mind here are to relatively hyperbolic groups, where the preferred subgroups
are the maximal parabolic subgroups. A peripheral splitting of such a group is
reflected in the topology of its boundary; in particular, the existence of global cut
points. It is well established that global cut points play an important role in the
connectedness properties of boundaries (cf. [BeM]). In particular, the results we
give here are central to the main result of [Bo6], namely that the boundary of a
relatively hyperbolic group is locally connected if it is connected—given some mild
constraints on the class of parabolic subgroups (see Theorem 1.5).

Suppose that Γ is a group with a preferred set, G, of subgroups, which we
call peripheral subgroups. Formally, a peripheral splitting of Γ can be defined as a
presentation of Γ as a finite bipartite graph of groups, where the vertex groups of one
colour (i.e. in one of the sets in the partition of vertices) are precisely the peripheral
subgroups. They can also be thought of in terms of splittings of the group over
subgroups of the peripheral subgroups, relative to peripheral subgroups. However,
we shall see that this latter formulation is less natural for our purposes. One of
the main results of this paper will be an accessibility result for such splittings; see
Theorem 6.1.
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4058 B. H. BOWDITCH

In order to tie these results in naturally with the theory of relatively hyperbolic
groups, we shall take a similar approach to that described in [Bo5]. In that paper
it was suggested that a natural way to view properties of a group, Γ, “relative to”
a preferred class of subgroups, G, is to consider actions of Γ on a set, V , for which
the point stabilisers are precisely the elements of G. The geometry of such actions
can be analysed by extending the action to a connected graph with vertex set V
and with finite quotient, thereby generalising the notion of a Cayley graph in the
non-relative case. These ideas are outlined in Section 4. The notion of a relatively
hyperbolic group has a clean formulation in these terms, and we describe here how
to view relative splittings of Γ in similar fashion.

I am endebted to the referee for many helpful comments, in particular, for a
simplification of the proof of Theorem 6.1, and some corrections to Section 7.

1. Summary of results and applications

We summarise the main results of this paper as they apply to relatively hyper-
bolic groups, and some of their consequences concerning connectedness of bound-
aries.

Let Γ be a group. By a splitting of Γ, over a given class of subgroups, we mean
a presentation of Γ as a finite graph of groups, where each edge group belongs to
this class. Such a splitting is said to be relative to another class, G, of subgroups if
each element of G is conjugate into one of the vertex groups. We usually take G to
be invariant under conjugacy, and refer to elements of G as peripheral subgroups.
A splitting is said to be trivial if it is relative to {Γ}, i.e. at least one of the vertex
groups is equal to Γ. A peripheral splitting is a representation of Γ as a finite
bipartite graph of groups, where G consists precisely of the (conjugacy classes of)
vertex groups of one colour. (It will be convenient to rule out the possibility of a
non-peripheral vertex group of degree 1 being contained in the adjacent peripheral
group—although this restriction need not concern us for the moment.) We say that
one peripheral splitting is a refinement of another if there is a colour-preserving
folding of the first splitting onto the second. (For a more precise definition, see
Section 2.) Obviously, any peripheral splitting is relative to G and over subgroups
of elements of G. There is also a somewhat weaker converse to this statement; see
Section 5.

Suppose now that Γ is hyperbolic relative to G. We write ∂Γ for its boundary.
The peripheral subgroups in this case are precisely the maximal parabolic groups.
We begin by recalling the following result from [Bo5]:

Proposition 1.1. The boundary, ∂Γ, is disconnected if and only if Γ splits non-
trivially over a finite group relative to G. Moreover, each vertex group in any such
splitting is hyperbolic relative to the elements of G that it contains.

(Note that the kind of splitting referred to in Proposition 1.1 will not, in general,
be a peripheral splitting of Γ.)

There is also an accessibility result for splittings of this type [Bo5], which leads
us naturally to restrict to the case of connected boundaries. Peripheral splittings
represent the next simplest means of cutting up a relatively hyperbolic group. In
particular, we shall show:

Theorem 1.2. Suppose that ∂Γ is connected. If Γ admits a non-trivial peripheral
splitting, then ∂Γ contains a global cut point.
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We note that Γ admits a non-trivial peripheral splitting if and only if Γ splits
non-trivially relative to G over a parabolic subgroup (i.e. an infinite subgroup of an
element of G). The fixed point of this parabolic subgroup will give us the global
cut point.

There is a kind of converse to Theorem 1.2. Under certain constraints on the
peripheral subgroups (as in Theorem 1.5), one can show that every global cut point
is a parabolic fixed point, though this result is much deeper (see [Bo4]). This is
another essential ingredient in the proof of local connectedness (see Theorem 1.5).

A component of a peripheral splitting is a non-peripheral vertex group. We show:

Theorem 1.3. Suppose Γ is a relatively hyperbolic group (not necessarily with con-
nected boundary). Suppose that H is a component of some peripheral splitting of
Γ. Then, H is hyperbolic relative to the set of infinite groups of the form H ∩ G,
where G ranges over the peripheral subgroups of Γ. Moreover, if ∂Γ is connected,
then the boundary of any such component, H, is connected. In this case, if G is a
peripheral subgroup, then G ∩H is infinite if and only if G is adjacent to H in the
Bass-Serre tree corresponding to the splitting.

In fact, we shall see in Sections 7 and 8 how the boundary of ∂Γ can be recovered
by piecing together the boundaries of components in a treelike manner. As a con-
sequence, we deduce that if the boundary of each component is (locally) connected,
then the boundary of Γ is (connected).

The main specific result of this paper is the following accessibility result:

Theorem 1.4. Suppose that Γ is relatively hyperbolic with connected boundary.
Then Γ admits a (possibly trivial) peripheral splitting which is maximal in the sense
that it is not a refinement of any other peripheral splitting.

As a consequence, the boundaries of the components of such a maximal splitting
do not contain any global cut point.

Now, in [Bo6], it is shown that if the boundary of a relatively hyperbolic group is
connected and contains no global cut point, then it is locally connected (generalising
the argument given in [BeM]). Gathering all these facts together as outlined in
Section 9, we deduce [Bo6]:

Theorem 1.5. Suppose that Γ is relatively hyperbolic, and that each peripheral
subgroup is finitely presented, one- or two-ended, and contains no infinite torsion
subgroup. If ∂Γ is connected, then it is locally connected.

The local connectedness has many potential consequences. To begin with, one
can go on to recover the maximal peripheral splitting (as in Theorem 1.4) from
the topology of ∂Γ (Theorem 9.2). Beyond this, one might hope to obtain the JSJ
splitting from studying local cut points as in the non-relative case [Bo2]. In [Gu],
Guralnik has already begun an analysis of the local cut point structure under the
assumption of local connectedness.

Theorems 1.2, 1.3 and 1.4, will all be proven in this paper, although we shall
formulate them in terms of actions on sets, as mentioned in the introduction. This
will be readily translated back into the more familiar language of group splittings
used above (see Section 4 and [Bo5]).
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2. Examples

In this section, we describe a few examples peripheral splittings to illustrate the
results of this paper. Typical examples of relatively hyperbolic groups are geomet-
rically finite groups acting on pinched Hadamard manifolds (see [Bo1]). In this
case, the boundary can be naturally identified with the limit set [Bo5]. Moreover
the peripheral subgroups are all finitely generated virtually nilpotent, and hence, in
particular, either one-ended or two-ended. If the manifold is a hyperbolic n-space,
we refer to such groups as “kleinian groups”. In this case, the peripheral subgroups
are virtually abelian.

Suppose S is a closed orientable surface of genus at least 2. Consider a fuch-
sian representation of π1(S) into the isometry group of hyperbolic 3-space. The
limit set is a round circle, and the quotient of each complementary disc gives us
a Riemann surface structure on S. There is a well developed deformation theory
for 3-dimensional kleinian groups which tells us, in particular, that we can deform
this group by varying these two complex structures. Suppose that C is an essential
simple closed curve on S. We hold one of the Riemann surface structures on S
fixed, and in the other, we shrink C to a point. In the limit, we arrive at a ge-
ometrically finite representation of π1(S), where C corresponds to the conjugacy
class of an (infinite cyclic) peripheral subgroup. The limit set can be described
topologically as the quotient of the original circular limit set after identifying the
pair of endpoints in every lift of C. It thus consists of a union of circles joined to-
gether in a treelike fashion, and compactified by adjoining the set of ideal points of
this tree (cf. Section 7). Each parabolic point is a global cut point which connects
two such circles. The stabiliser of each circle is a representation of a punctured
surface group (namely the fundamental group of a component of S \C), which one
can arrange to be fuchsian by choosing a suitable deformation. The tree described
above is the Bass-Serre tree of a peripheral splitting of π1(S), and the punctured
surface subgroups are the components of the splitting.

One can arrive at the same example by starting with fuchsian representations of
punctured surfaces, and gluing them together along parabolic subgroups. Applying
a combination theorem, we can ensure that the result will be discrete and geometri-
cally finite. Indeed, one can do the same thing one dimension higher, starting with
finite covolume 3-dimensional kleinian groups, in place of fuchsian groups. In this
way we construct a 4-dimensional geometrically finite kleinian group which admits
a splitting over rank-2 abelian peripheral subgroups. The limit set will be a com-
pactified tree of 2-spheres. In fact, one can perform this construction by taking an
amalgamated free product of an arbitrary finite number, n, of copies of a finite co-
volume kleinian group amalgamated over a common maximal parabolic subgroup.
In this case, there will be n-spheres meeting at each of the corresponding parabolic
points.

For another example, start with a fuchsian representation, G, of a punctured
surface group in hyperbolic 3-space. Let g be the generator of a parabolic subgroup
of G, and let h be another parabolic isometry with the same fixed point. We
choose h so that the parabolic group 〈g, h〉 corresponds to a rectangular torus. By
taking this torus sufficiently elongated in the h-direction, we can arrange that the
group 〈G, h〉 will be discrete and geometrically finite. We again have a peripheral
subgroup which is rank-2 free abelian, although this time Γ splits over an infinite
cyclic subgroup of this group. The components of the peripheral splitting will be
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the conjugates of G. The limit set is a compactified tree of circles, with infinitely
many circles meeting at each parabolic point.

Returning to the first example, suppose we choose another essential curve, C′,
on S. By collapsing C and C′ in the two different Riemann surfaces, we again get a
geometrically finite representation of π1(S). If C and C′ are disjoint, then this ex-
ample is similar to the first. However, if C and C′ intersect each other non-trivially,
the resulting group will have as a limit set a kind of circle packing, where the par-
abolic points will be local but not global cut points. Abstractly, the group splits
over each (conjugacy class of) peripheral subgroup, but not both simultaneously.
Moreover, such splittings will not be relative to the class of peripheral subgroups.
This group does not admit any non-trivial peripheral splitting.

Examples of the type described suggest various conjectures one might make
regarding the role of local and global cut points in splittings of relatively hyperbolic
groups. These might be amenable to analysis once one assumes local connectedness
(cf. [Gu]). However, since one of our main objectives is to prove local connectedness,
we cannot take that as an assumption in this paper.

3. Pretrees

In this section, we shall consider discrete pretree structures on a set V , and
we give an alternative formulation of this in terms of “arboreal structures”. Such
a structure will serve as a formal definition of a “peripheral splitting” when we
introduce group actions.

Let V be a set. Suppose T ⊆ V ×V ×V . We view T as a ternary relation on V
and write xyz to mean that (x, y, z) ∈ T . Given x, y ∈ V , we write (x, y) = {z ∈
V | xzy} and [x, y] = (x, y) ∪ {x, y}. We refer to [x, y] as a closed interval. The
following notion was defined in [Bo3]:

Definition. (V, T ) is a pretree if it satisfies the following axioms for all x, y, z ∈ T :
(T0): [x, x] = {x},
(T1): [x, y] = [y, x],
(T2): If y ∈ (x, z), then z /∈ (x, y),
(T3): [x, y] ⊆ [x, z] ∪ [z, y].

The intuitive interpretation of xyz is that y “lies strictly between” x and z.
The axioms express the idea that this betweenness relation has a treelike structure.
The axioms of a pretree have been explored previously. They can be found (under
different names) in [W] and [AN].

We note that any interval [x, y] is totally ordered by the relation ≤ defined by
a ≤ b if a ∈ [x, b]. A median of x, y, z ∈ V is a point of [x, y] ∩ [y, z] ∩ [z, x]. If it
exists, a median is unique.

Definition. A discrete pretree is one for which [x, y] is finite for all x, y ∈ V .
A median pretree is one for which a median exists for any three points of V .

Median pretrees, under a variety of names, have been studied for some time
(see for example [Sh]). Discrete median pretrees are even more familiar, as they
are precisely the pretrees that arise as vertex sets of simplicial trees. In fact, if
V is a discrete median pretree, then V has the structure of a Z-tree, where the
Z-distance between x and y is defined as card([x, y]) − 1. Thus, Z-trees, discrete
median pretrees, and (vertex sets of) simplicial trees, are all reformulations of the
same underlying structure.
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Suppose V is a pretree. A subset, F ⊆ V is null and full if there are no relations
of the form xzy for any x, y ∈ F and z ∈ V . It is a star if it is a maximal subset
with this property. In other words, F ⊆ V is a star if and only if it has the property
that, if z ∈ V , then z /∈ F if and only if there exist x, y ∈ F with xyz. Given a
pretree, T , we write R(T ) for the set of stars in V .

Now, suppose R is any set of subsets of a set V . We construct a bipartite graph,
T (R), with vertex set V tR, by deeming x ∈ V to be adjacent to R ∈ R if x ∈ R.
Clearly, the degree of R in T (R) is equal to card(R).

Definition. We say that R is an arboreal structure on V if every element of R has
cardinality at least 2, and T (R) is a simplicial tree.

Note that it follows that
⋃
R = V , and that the intersection of two distinct

elements of R is either empty or a singleton. Also, the clause that every element
of R must contain at least two points ensures that every terminal vertex of T (R)
lies in V .

We also see that V ∪R is a discrete median pretree, and so this induces a discrete
pretree structure on V , which we denote by T (R).

Conversely, if T is a discrete pretree structure on V , then it’s not hard to verify
that R(T ) is an arboreal set. (This is a special case of the completion process of
general pretrees discussed in [Bo3]. A variation of this can also be found in [AN].)
Indeed, we see that T (R(T )) = T . Moreover, if R is any arboreal structure, then
R(T (R)) = R (using the fact that all terminal elements of T (R) lie in V ). We
conclude:

Lemma 3.1. Given a set V , there is a natural bijective correspondence between
discrete pretree structures on V and arboreal structures on V .

From now on, we will pass freely between these two concepts.
Given pretree structures T and T ′ on V , we say that T ′ is a refinement of T , or

that T is subordinate to T ′ if T ⊆ T ′. We note:

Lemma 3.2. If T , T ′ are pretree structures on V which admit a common refine-
ment, then T ∪ T ′ is a pretree structure. Moreover, if T and T ′ are discrete, then
so is T ∪ T ′.
Proof. Directly from the axioms. The existence of a common refinement is needed
for axiom (T2).

This can be reinterpreted in terms of arboreal structures. Suppose R and R′
are arboreal structures on V . We write R ≤ R′ to mean that for all R ∈ R′, there
is some S ∈ R such that R ⊆ S. This is equivalent to the refinement relation
on pretrees, i.e. R ≤ R′ if and only if T (R) ⊆ T (R′). The “only if” statement
is immediate. The “if” statement follows from the descriptions of R and R′ as
the maximal full and null subsets with respect to the pretree relations, T (R) and
T (R′) respectively. Note that if R′ is a strict refinement of R, then we can find
some R ∈ R′ which contains at least two elements ofR. Thus there exist x, y, z ∈ R
so that the relation yxz holds in T (R′). In fact, we can make a stronger statement:

Lemma 3.3. Suppose that R is an arboreal structure, and that T ′ is a pretree
structure on V (not necessarily discrete) such that T (R) ⊆ T ′. Suppose that
x, y, z ∈ V and that the relation yxz holds in T ′ but not in T (R). Then there
is some R ∈ R containing x, and b, c ∈ R such that the relation bxc holds in T ′.
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Proof. Let b ∈ V be the point adjacent to x in the interval [x, y] in T (R). Thus b
also lies in the interval [x, y] in T ′. Since yxz holds in T ′, we deduce that bxz holds
in T ′. However, bxz cannot hold in T (R), otherwise we could deduce the relation
yxz.

Now let c be the point adjacent to x in the interval [x, z] in T (R). By the same
argument (with b replacing z and c replacing b), we deduce that bxc holds in T ′
but not in T (R). Now, {b, x, c} is null and full in T (R) and hence lies in some
R ∈ R.

Given two arboreal structures, R and R′, we write R ∨ R′ = {R ∩ R′ | R ∈
R, R′ ∈ R′}\ ({{x} | x ∈ V }∪{∅}). If R and R′ admit a common refinement, then
R∨R′ is arboreal, and T (R ∨R′) = T (R) ∪ T (R′).

Familiar examples of arboreal structures arise in elementary graph theory. Sup-
pose that K is a connected graph with vertex set V . A block is a maximal 2-vertex-
connected subgraph of K (where we view a single edge as 2-vertex-connected). By
a block set, we mean the set of vertices in some block. Let B(K) be the set of block
sets of K. An elementary result of graph theory tells us that B(K) is an arboreal
structure on V . The corresponding discrete pretree relation on V is the obvious
one—xyz holds if y separates x from z in K.

More generally, suppose K is a connected graph. Given a subset A ⊆ V , we
write K(A) for the full subgraph of K on vertex set A. Suppose R is an arboreal
structure on V . We say that K respects R if K is a union of the subgraphs K(R)
as R ranges over R. This is equivalent to saying that B(K) is a refinement of R.

Lemma 3.4. Suppose that K is a graph with vertex set V , which respects an ar-
boreal structure, R. Then K is connected if and only of K(R) is connected for all
R ∈ R.

Proof. SupposeK(R) is connected for eachR. Given x, y ∈ V , let x = x0, x1, . . ., xn
= y be the pretree interval [x, y] in the natural order, in the corresponding pretree
structure. Now, for each i, there is some R ∈ R such that xi, xi+1 ∈ R. We connect
xi to xi+1 by a path in K(R). Concatenating these paths gives us a path from x
to y in K.

Conversely, suppose K is connected. Suppose x, y ∈ R ∈ R. Let x = x0, x1, . . . ,
xn = y be a path connecting x to y in K. Let x = y0, y1, . . . , ym = y be the
sequence obtained by deleting those xi which do not lie in R. Now, if yi and yi+1

are not consecutive in the sequence (xi)i, then it is easily verified that yi = yi+1.
Thus, for all i, we see that yi and yi+1 are either equal or adjacent in K(R). We
have thus connected x to y by a path in K(R). (An alternative argument can be
given along the lines of Lemma 5.3.)

We end this section with an observation about constructing simplicial trees
needed in Section 5.

Suppose T is a simplicial tree with vertex set V (T ). Let A be a set of subtrees
of T with the property that each edge of T lies in a unique element of A. We
construct a bipartite graph, S(A), with vertex set V (T )tA, where we deem x ∈ V
to be adjacent to τ ∈ A if x ∈ τ . We note:

Lemma 3.5. S(A) is simplicial tree.
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Proof. It is clear that S(A) is connected. Suppose that x1τ1x2τ2 . . . xnτn is a circuit
in S(A), where xi ∈ V and τi ∈ A. Let αi be the arc in τi connecting xi to xi+1

(taking subscripts mod n). We see that α1 ∪ α2 ∪ · · · ∪ αn is a circuit in T .

4. Peripheral splittings

We now introduce group actions into the picture. We use the terminology of
group actions on sets, as described in more detail in [Bo5].

Let Γ be a group. A Γ-set is a set, V , together with a Γ-action on V . We refer to
the points of V as vertices. We say that V is cofinite if V/Γ is finite. If x ∈ V , we
write Γ(x) for its stabiliser. If x, y ∈ V with x 6= y, we refer to the group Γ(x)∩Γ(y)
as a pair stabiliser. By a (Γ, V )-graph, K, we mean a connected Γ-invariant graph
with vertex set V , and with finitely many Γ-orbits of edges. We do not allow loops
or multiple edges (unlike a graph of groups). We write E(K) for the edge set of K.
We say that V is connected (or 0-connected) if it admits a (Γ, V )-graph. Clearly, a
connected Γ-set is cofinite. We say that a Γ-set is doubly connected if it admits a
2-vertex-connected (Γ, V )-graph.

The following is easily verified [Bo5].

Lemma 4.1. Suppose that V is a cofinite Γ-set, and that W ⊆ V is a Γ-invariant
subset. If W is connected and non-empty, then V is connected. Conversely, if V is
connected, and W contains every point of V with an infinite stabiliser, then W is
connected.

We remark that Γ may itself be viewed as a Γ-set under left multiplication. In
this case, Γ is 0-connected if and only if it is finitely generated. (In Section 4, we
define a notion of 1-connectedness which corresponds to finite presentability.) In
this set-up, a (Γ, V )-graph plays the role of a Cayley graph. Another example of a
Γ-set, more directly relevant to the ideas of this paper, is obtained by considering
the action of Γ by conjugation on some preferred set of subgroups of Γ. (Such
subgroups are termed “peripheral” in [Bo5], in reference to their appearance as
maximal parabolic subgroups of relatively hyperbolic groups. This accounts for
some of the terminology of this section.)

We return to general setting of a Γ-set V .

Definition. A peripheral splitting of V is a Γ-invariant arboreal structure on V .

As discussed in Section 1, this is essentially the same as a Γ-invariant discrete
pretree structure on V . We can adopt the terminology of “refinements” in reference
to peripheral splittings.

Suppose that R is a peripheral splitting of V . We can view R, itself, as a Γ-set.
We say that R is cofinite if R/Γ is finite. If R ∈ R we write Γ(R) for the (setwise)
stabiliser of R. Thus, R is a Γ(R)-set. As such, we refer to it as a component of
the peripheral splitting.

Lemma 4.2. Suppose that R is a cofinite peripheral splitting of a Γ-set, V . If each
component of R is connected, then V is connected.

Proof. Given R ∈ R, we can find a (Γ(R), R)-graph, K(R). We choose these graphs
equivariantly with respect to the action of Γ. Let K be the graph with vertex set
V and edge set E(K) =

⋃
R∈RE(K(R)). We see easily, using Lemma 3.4, that K

is a (Γ, V )-graph.
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In fact, the construction of Lemma 4.2 gives us a (Γ, V )-graph which respects
the splitting (in the sense defined in Section 3).

We have the following converse of Lemma 4.2:

Lemma 4.3. Suppose that V is a connected Γ-set, and R is a peripheral splitting
of V . Then R is cofinite, and each component of R is connected.

Proof. Let K be a (Γ, V )-graph. Suppose e ∈ E(K). Let x, y ∈ V be the endpoints
of e, and let [x, y] be the closed pretree interval in the discrete pretree structure
on V associated with R. Now, [x, y] is finite, and has a natural linear order x =
x0, x1, . . . , xn = y (so that xixjxk holds whenever i < j < k). Note that for
each i, xi and xi+1 lie in some component of R. Let E(e) be the set of edges
{x0x1, x1x2, . . . , xn−1xn}. We now let L be the graph with vertex set V and
edge set E(L) =

⋃
e∈E(K)E(e). Clearly, L is a (Γ, V )-graph which respects the

peripheral splitting, R. By Lemma 3.4, L(R) is connected for all R ∈ R. It is
easily checked that E(L(R))/Γ(R) is finite. Thus, L(R) is a (Γ(R), R)-graph, so R
is connected as claimed.

Now, no two distinct subgraphs L(R) can share an edge. Since E(L)/Γ is finite,
we deduce that R/Γ is finite.

Recall that T (R) is a bipartite simplicial tree, with vertex set V t R. We may
form the quotient graph T (R)/Γ. We note:

Lemma 4.4. If R is a peripheral splitting of a connected Γ-set, V , then T (R)/Γ
is finite.

Proof. We just need to show that E(T (R))/Γ is finite. Let K be a (Γ, V )-graph
respecting the splitting. Now, if x ∈ R ∈ R, we can find an edge, e ∈ K(R), with
endpoint at x (since K(R) is connected). If we view it as a directed edge, then
it determines the pair (x,R) uniquely. Since there are only finitely many directed
edges of K up to the action of Γ, there are only finitely many such pairs, and hence
finitely many edges of T (R) up to the action of Γ.

Recall that a Γ-set, V , is “doubly connected” if it admits a 2-vertex-connected
(Γ, V )-graph.

Definition. A peripheral splitting of a connected Γ-set is full if every component
is doubly connected.

Thus, R is a full peripheral splitting if and only if V admits a (Γ, V )-graph, K,
such that R = B(K), where B(K) is the set of block sets of K. We note:

Lemma 4.5. Any peripheral splitting of a connected Γ-set admits a full refinement.

Proof. Let R be a peripheral splitting of V . By the construction of Lemma 4.2,
there is a (Γ, V )-graph, K, which respects R. Now, B(K) is a refinement of R.

We say that a peripheral splitting is maximal if it admits no strict refinement
(as a peripheral splitting). An immediate consequence of Lemma 4.5 is that any
maximal peripheral splitting is full.

By the minimal splitting of a Γ-set, V , we mean the splitting {V }. (In other
words, it is minimal with respect to refinement, and has minimal complexity. The
term “trivial” has traditionally had a broader meaning in the terminology of group
splittings, as we discuss shortly.) We note:
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Lemma 4.6. Each component of a maximal peripheral splitting admits no non-
trivial peripheral splitting.

Proof. Suppose R is a peripheral splitting of a Γ-set, V . Suppose R ∈ R, and that
S is a non-trivial peripheral splitting of R as a Γ(R)-set. If γ ∈ Γ, we write γS =
{γS | S ∈ S}. Thus, γS is a peripheral splitting of the Γ(γR)-set γR. Also, if
γ ∈ Γ(R), then γS = S. We now construct a peripheral splitting, R′, of V , by
replacing each {γR} ⊆ R by γS. In other words, R′ = R ∪ {γS | γ ∈ Γ, S ∈
S} \ {γR | γ ∈ Γ}. It is easily verified that T (R′) is a tree, so that R′ is indeed
a peripheral splitting of V . It is clearly a strict refinement of R, so R cannot be
maximal.

In more familiar terms, a peripheral splitting of V can be viewed as a presentation
of Γ as the fundamental group of a finite bipartite graph of groups, where all the
vertex groups of one colour are determined—as the conjugacy representatives of the
vertex stabilisers of V . More precisely, the graph arises as the quotient T (R)/Γ, as
described by Lemma 4.4. This has vertex set (V/Γ) t (R/Γ). The vertex groups
are thus (the conjugacy classes of) groups of the form Γ(x) and Γ(R) for x ∈ V
and R ∈ R. The vertex groups corresponding to the elements of V are called
peripheral. Note that we must rule out the possibility of a non-peripheral vertex
group of degree 1 being equal to the adjacent edge group. Such a group would
correspond to an element of R which is terminal in the tree, T (R), and hence a
singleton—a situation we have explicitly ruled out.

Suppose that R′ is a refinement of R. We get a natural map, f , from R′ to R,
so that R ⊆ f(R) for all R ∈ R′. Defining f to be the identity on V , we get a
Γ-equivariant map from T (R′) to T (R) which sends edges to edges. Thus, f is a
“folding” of the tree T (R) (see, for example, [Du4]). This descends to a folding on
the level of graphs of groups. In other words, we see that passing to a refinement can
be interpreted as an unfolding. Of course, these are a particular kind of unfoldings,
in that, one set of vertex groups are held fixed. We shall consider sequences of such
unfoldings in Section 6.

The minimal peripheral splitting {V } is obviously the unique splitting which
does not refine any other, hence the terminology. If V is a singleton, then the
corresponding graph of groups is also a singleton with no edges. Otherwise, the
corresponding graph of groups consists of one “central” vertex group equal to Γ
which is connected to a finite number of peripheral groups, each by a single edge
group equal to the peripheral group. Following the (somewhat unfortunate) termi-
nology of group splittings, we shall say that a peripheral splitting, R, is trivial if
some element of V or of R is preserved by Γ. This is more general than minimal.
However, if a trivial splitting fails to be minimal, then some point stabiliser of V
must be contained in another point stabiliser—a situation one can rule out in many
cases.

5. Relative splittings

In this section, we describe how peripheral splittings are related to other kinds of
relative splittings. A general reference on group splittings is [DiD]. The terminology
we use here is described in Section 1.

Suppose Γ is a group, and G a conjugacy invariant collection of subgroups of Γ,
consisting of finitely many conjugacy classes. We shall suppose that each element
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of G is equal to its normaliser in Γ, and that no element of G is a subgroup of a
different element of G. Now Γ acts on G by conjugacy. Thought of as a Γ-set in
this way, we shall denote G by V . In other words, the map [x 7→ Γ(x)] gives us the
identification of V with G. Note that under the conditions we have imposed, the
notions of minimal and trivial splittings coincide.

Proposition 5.1. The Γ-set, V , admits a non-trivial peripheral splitting if and
only if Γ splits non-trivially relative to G over a subgroup of an element of G.

Proof. A peripheral splitting of V corresponds to a presentation of Γ as a bipartite
graph of groups in the manner described in Section 3. Such a splitting clearly has
the required properties.

For the converse, we can suppose that the graph of groups has just one edge,
i.e. is either an amalgamated free product or an HNN extension. The two cases
are similar, so for simplicity of exposition, we will assume the former. Thus, Γ
can be expressed as an amalgamated free product of subgroups K and K ′ over
H . By assumption, H is a subgroup of some G ∈ G which we can, in turn, take
to be a subgroup of K. We now represent K (trivially) as a graph of groups,
consisting of a central vertex with group K, and additional vertices corresponding
to those (conjugacy classes of) peripheral subgroups which lie in K. Each of these
additional vertices is joined to the central vertex by an edge whose edge group
equals the peripheral subgroup. (If it happens that K = G, then we just leave it
alone.) We perform the same construction for K ′. We now construct a bipartite
graph of groups by connecting the vertex corresponding to G in the first graph
(representing K) to the central vertex of the second graph (representing K ′) by an
edge with group H . This gives rise to a proper peripheral splitting of V .

We note that the construction of the first paragraph is canonical, whereas, that
of the second paragraph is somewhat artificial; for example, the edge group H
might be a subgroup of more than one peripheral subgroup. This is one reason for
preferring the former formulation.

In the case of relatively hyperbolic groups, for example, one has further con-
straints on the set, G. We shall say that G is a peripheral structure on Γ if (as
before) it consists of finitely many conjugacy classes and each element of G is equal
to its normaliser, and if, in addition, every element of G is infinite, and each pair
of distinct elements of G intersect in a finite group.

We remark that if G is a peripheral structure, and if G does not split over any
finite subgroup relative to G, then the correspondence between peripheral splittings
and of relative splitting of Γ over subgroups of peripheral subgroups can be made
more canonical. Note that any edge group in a splitting of the latter type must be
infinite, and hence contained in a unique peripheral subgroup. Now the construction
of the second paragraph of Proposition 5.1 can be applied to any graph of groups
of this type, and in this case does not involve any arbitrary choices.

We shall say that a group is one-ended if it does not split non-trivially over any
finite subgroup. In view of Stallings’s Theorem, this coincides with the usual notion
for finitely generated groups.

Proposition 5.2. Suppose that Γ is a group, and G is a peripheral structure with
every peripheral subgroup one-ended. If Γ splits over a subgroup of a peripheral
subgroup, then it splits relative to G over a subgroup of a peripheral subgroup.
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Proof. Let T be a simplicial tree with a minimal action of Γ, with no edge inversions
and with one orbit of edges, such that some (hence every) edge stabiliser of T is
a subgroup of some element of G. Let e ∈ E(T ), and let H = Γ(e) be the edge
stabiliser. Thus, H ≤ G for some G ∈ G.

Suppose G′ ∈ G is not a conjugate of G. We claim that G′ fixes a vertex of
T . To see this, note that every edge stabiliser of T is a conjugate of H and hence
contained in a conjugate of G. It must therefore meet G′ in a finite group. Since G′,
by hypothesis, does not split over a finite group, its action on T must be “trivial”
in the sense that it must fix a vertex.

Now, if G fixes a vertex of T , we are done. If not, let τ be the (unique) minimal
G-invariant subtree of T . Suppose that e ∈ E(gτ) for some g ∈ Γ. Now Γ(g−1e) =
g−1Hg. Since g−1e ∈ E(τ) and G is one-ended, we see that G ∩ g−1Hg is infinite.
Since H ≤ G, we get that G∩ g−1Gg is infinite. Thus, G = g−1Gg, so g ∈ G (since
G is assumed to be equal to its normaliser). In particular, we see that gτ = τ . Now,
since τ is non-trivial, we can certainly find some g ∈ Γ so that g−1e ∈ E(τ), so we
conclude that e ∈ E(gτ). We also note that if h ∈ Γ with hτ = τ , then he ∈ E(τ),
and so h ∈ G. This shows that G is precisely the setwise stabiliser of τ .

Now, let A be the set of Γ-images of τ . The argument of the last paragraph
shows that each edge of T is contained in a unique element of A. Thus, A satisfies
the hypotheses of Lemma 3.5, so we get a minimal action of Γ on the bipartite
simplicial tree S(A). Now, each element of G fixes a vertex of S(A). In fact, since
G is precisely a vertex stabiliser, we see that Γ splits over a subgroup of G. Also,
since τ is non-trivial, the corresponding vertex in S(A) is incident to infinitely many
edges, so the splitting is non-trivial.

The constraint on peripheral subgroups in Proposition 5.2 is fairly natural in
the context of geometrically finite groups acting on pinched Hadamard manifolds,
where all the peripheral subgroups are finitely generated and one- or two-ended.
With a bit more work, one can adapt the argument of Proposition 5.2 to deal with
the case where all the peripheral subgroups are one-ended, except for at most one
conjugacy class of two-ended subgroups. However, in general, the result fails if we
allow more than one conjugacy class of two-ended peripheral subgroups, as the final
example in Section 2 shows. Indeed the existence of examples of this type causes
some amount of complication in the subject (cf. [Bo4]).

The relative splittings we have described in this section have been of a particular
type. However, it is possible to describe all relative splittings in this language.
Suppose Γ is a group and V is a cofinite Γ-set. Suppose that Γ splits relative to
{Γ(x) | x ∈ V }. This gives rise to an action of Γ on a simplicial tree, T , such that,
for each x ∈ V , Γ(x) fixes a vertex of T . We therefore get a Γ-equivariant map from
V to V (T ) (though this map need not be canonical without further hypotheses).
Let S be the set of non-empty preimages of vertices of T under this map. Thus,
S is a Γ-invariant partition of V . Moreover, it carries the structure of a discrete
pretree, arising from its embedding in T . In other words, viewed as a Γ-set, S
admits a peripheral splitting. One can easily invert the above process (though
without further hypotheses, one need not in general recover the original splitting).
We therefore see that one can view relative splittings of Γ in terms of peripheral
splittings of invariant partitions of V . Thus, the machinery developed here can
be applied more generally. As an example, we note that it is possible to reprove
Proposition 1.1 by adapting the arguments of Theorems 1.2 and 1.3, though we
shall not describe this here.
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It is worth remarking that a splitting of this type can often be recognised geo-
metrically. We say that a connected graph, K, is one-ended if, when we remove any
finite set of edges, precisely one of the complementary components is unbounded.
(Here we can equivalently interpret “unbounded” to mean with respect to either
the intrinsic path-metric, or the metric on K.)

Definition. We say that a connected Γ-set with finite pair stabilisers is one-ended
if every (Γ, V )-graph is one-ended.

It is not hard to see that it is sufficient that one (Γ, V )-graph be one-ended. In
fact, the following is a consequence of the main result of [Du1]:

Theorem 5.3. Suppose V is a connected Γ-set with finite pair stabilisers. Then,
Γ is one-ended if and only if Γ does not split non-trivially over any finite subgroup
relative to {Γ(x) | x ∈ V }.

In the case of relatively hyperbolic groups, one can give a simpler proof using
the arguments of [Du2]; see [Bo5].

6. Accessibility

In this section, we prove an accessibility result for peripheral splittings of groups.
We give a condition which ensures that a sequence of increasingly refined peripheral
splittings must stabilise. This can also be interpreted in terms of unfolding bipartite
graphs of groups. It fits into a general class of questions which ask: when do chains
of unfoldings have upper bounds. There are a number of results of this type in the
literature, although the version we need here does not seem to follow directly from
these. It does, however, yield to methods of the type introduced in [Du2].

Let V be a connected Γ-set. In this section, it will be convenient to think of a
peripheral splitting of V as a discrete Γ-invariant pretree structure, T ⊆ V ×V ×V
on V . Thus T ′ is a “refinement” of T if T ⊆ T ′.

Suppose we have an infinite sequence of increasingly refined peripheral splittings
of V , say, T1 ⊆ T2 ⊆ T3 ⊆ · · · . Their union, T∞ =

⋃∞
n=1 Tn, is a Γ-invariant pretree

structure on V , although a priori there is no reason to suppose it will be discrete.
We say that (Tn)n∈N stabilises if Tn = T∞ for all sufficiently large n.

It seems to be natural to ask when such a sequence must stabilise, or when
the limit T∞ must be discrete, or indeed whether every refinement of a particular
splitting must be discrete. A large class of examples of finitely generated groups
acting on non-discrete protrees and hence also pretrees are described in [Du3]. Here
we shall confine ourselves to proving a positive result, namely Theorem 6.1.

As mentioned earlier, we can interpret refinement in terms of unfolding. As dis-
cussed in Section 3, if n ≥ m, then there is a Γ-invariant folding map, f : Tn −→ Tm,
where Ti is the bipartite simplicial tree associated to Ti. This descends to a folding
of graphs of groups, f : Tn/Γ −→ Tm/Γ. In this folding, the groups associated to
V/Γ are held fixed. We remark that one can give a simple argument, via Grushko’s
Theorem, to bound the complexity of the graphs Tn/Γ, under the assumption that
Γ is finitely generated. In this case, it follows that the combinatorial types of the
graphs Tn/Γ must stabilise. However, there are folding moves which do not alter
the combinatorial type of the underlying graph (see [Du2], [BeF]), so this is not
sufficient for our purposes.

To state the main result, we need another definition. Recall that the notion of
“connectedness” (or “0-connectedness”) is analogous to finite generation for groups.
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Figure 1.

We want another notion which is analogous to finite presentability. By a 2-complex
we mean a 2-dimensional simplicial complex. It is 1-connected if it is connected and
simply connected.

Definition. We say that a Γ-set, V , is 1-connected if it can be represented as the
vertex set of a 1-connected 2-complex, Σ, such that Σ/Γ is finite.

By saying that Σ/Γ is finite, we mean that there are finitely many orbits of
edges and 2-simplices. To get a well-defined quotient it may be necessary to pass to
the first barycentric subdivision, Σ′. We can think of Σ′/Γ as an orbihedron with
fundamental group Γ, as discussed in [H].

Note that the 1-skeleton, K, of Σ is a (Γ, V )-graph (so that 1-connected implies
0-connected).

We shall only be concerned here with 1-connected Γ-sets which have finite pair
stabilisers. (In the case of relatively hyperbolic groups, Σ will be locally finite away
from V , though we need not assume that here.)

Suppose that V is connected with finite pair stabilisers. Recall that V is one-
ended if and only if Γ does not split non-trivially over any finite group relative to
{Γ(x) | x ∈ V } (see Theorem 5.3).

We aim to prove:

Theorem 6.1. Suppose V is a 1-connected Γ-set with finite pair stabilisers, and
that V is one-ended. Then any sequence of increasingly refined peripheral splittings
of V must stabilise.

The argument will be in terms of tracks on our 2-complex, Σ. A “track” is a
connected component of a pattern. A “pattern” is a closed subset of a 2-complex
which meets every 1-simplex in a finite set of points, and meets every 2-simplex in
one of a number of specific combinatorial possibilities; see Figure 1.

This is slightly more general than a “pattern” as defined in [Du2]. Specifically,
we are allowing for a track to pass through vertices of Σ and for it to branch into
the interior of a 2-simplex. Thus, a component of an intersection of a pattern with
a 2-simplex might be a vertex of the simplex, an interval connecting interior points
of two distinct edges of the simplex, an interval connecting a vertex of the simplex
to an interior point on the opposite edge, or a tripod which meets each edge in a
single interior point. Note that a track is an embedded graph. We can give a more
formal presentation of this in terms of pretrees.

Suppose V satisfies the hypotheses of Theorem 6.1. We fix a 1-connected 2-
complex, as given by the definition. Let K be the 1-skeleton of Σ. We write C(Σ)
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for the set of 2-simplices of Σ. Thus, E(Σ)/Γ and C(Σ)/Γ are both finite. Given
σ ∈ C(Σ), we write E(σ) ⊆ E(Σ) for the set of edges of σ.

Suppose that T ⊆ V ×V ×V is a Γ-invariant pretree relation on V . Suppose that
the action of Γ on T is non-nesting, i.e., no element of Γ sends any closed interval
of T into a proper subset of itself. (This is automatically true for any Γ-invariant
discrete pretee or any increasing union of such.)

Given any edge, e ∈ E(Σ) with endpoints x, y ∈ V , we choose an order-preserving
embedding of the pretree interval [x, y] in e, sending x to x and y to y. We write
Π(e) ⊆ e for the image of this embedding, and πe : Π(e) −→ [x, y] for its identifica-
tion with [x, y]. Using the non-nesting assumption, we can perform this construction
Γ-equivariantly for all e ∈ E(Σ). Let Π =

⋃
e∈E(Σ) Π(e), and let π : Π −→ V be

the union of all the maps πe. Note that V ⊆ Π, and that π restricts to the identity
on V .

Now suppose that σ ∈ C(Σ). We define a relation, ∼σ, on Π as follows. Given
x, y ∈ Π, we write x ∼σ y to mean that either x = y or that there exist e, e′ ∈ E(σ)
such that x ∈ Π(e), y ∈ Π(e′) and π(x) = π(y). Let ∼σ be the equivalence
relation generated by the union of the relations ∼σ as σ ranges over C(Σ). We
write Φ = Π/∼. Note that π induces a natural map from Φ to V , which we also
denote by π. The inclusion of V in Π, induces an inclusion, j : V ↪→ Φ, such that
π ◦ j is the identity.

In the case where T is discrete, we can interpret all this in terms of patterns
on Σ. Suppose σ ∈ C(Σ). Let E(σ) = {e1, e2, e3} and ni = card(Π(ei)). Now
the numbers n1, n2 and n3 are all at least 2, and satisfy strict triangle inequalities
(ni < nj+nk for i, j, k distinct). They thus determine precisely one of the diagrams
described by Figure 1, i.e., a 1-dimensional subset of σ determined up to isotopy
relative to Π. The union of Π, together with these subsets, as σ ranges over C(Σ),
gives us a pattern on Σ. A track is a connected component of this pattern. We see
that if x, y ∈ Π, then x ∼ y if and only if they lie in the same track. We can thus
identify Φ = Π/∼ with the set of tracks on Σ.

We note that the pattern descends to a pattern on the orbihedron Σ′/Γ, where
Σ′ is the first barycentric subdivision of Σ.

We also remark that, since Σ is simply connected, the set of tracks on Σ separate
Σ in a treelike fashion. In particular, they induce a discrete pretree relation on Φ.
The pretree relation thus induced on V under the embedding j : V ↪→ Φ is precisely
T .

We now return to our objective of proving Theorem 6.1.
Suppose T1 ⊆ T2 ⊆ T3 ⊆ · · · is an increasing sequence of peripheral splittings

of V . Let T∞ =
⋃
Tn. Suppose σ ∈ C(Σ) has vertices x, y, z ∈ V . Now the

points x, y, z may or may not have a median in the pretree structure T∞. Let
C0(Σ) ⊆ C(Σ) be the set of 2-simplices σ so that such a median exists. Now if
σ ∈ C0(Σ), this median exists in the structure Tn for all sufficiently large n. Thus
(since C(Σ)/Γ is finite) we can suppose that it exists for all n.

Now, given n ∈ N ∪ {∞} and σ ∈ C(Σ), we write ∼σ,n for the relation ∼σ
defined in terms of the pretree structure Tn. We write ∼n for the equivalence
relation generated by the ∼σ,n. We shall denote the pretree interval between a and
b in Tn by [a, b]n. We write Φn = Πn/∼n for the spaces constructed earlier.

Lemma 6.2. Suppose x, y ∈ Π∞ with x ∼∞ y. If x ∈ Πn for n ∈ N, then y ∈ Πn

and x ∼n y.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4072 B. H. BOWDITCH

Proof. It is sufficient to verify that if σ ∈ C(Σ) and x, y ∈ Π∞ with x ∼σ,∞ y, then
y ∈ Πn and x ∼σ,n y. Let the vertices of σ be a, b, c, so that E(σ) = {ab, bc, ca}.
Without loss of generality, we can suppose that x ∈ ab and y ∈ ac. Thus, π(x) ∈
[a, b]n ⊆ [a, c]n ∪ [b, c]n. It follows that there is some z ∈ Πn(ac)∪Πn(bc) such that
x ∼σ,n z. If x is the median of {a, b, c} in T∞, then by hypothesis, it is the median
{a, b, c} in Tn. Thus, y ∈ Πn and x ∼σ,n y. Otherwise, we must have y = z and
again the result follows.

We can thus identify each pattern, Φn, as a subset of Φ∞. In other words, we
have an increasing sequence, Φ1 ⊆ Φ2 ⊆ Φ3 ⊆ · · · of patterns on Σ. There is a
natural Γ-equivariant map, π : Φ −→ V . If t ∈ Φ∞, we write Γ(t) for the stabliser
of t (in other words, the setwise stabiliser of t, thought of as a track on Σ). Clearly
Γ(t) ⊆ Γ(πt).

Let Σ′ be the first barycentric subdivision of Σ. We can view Σ′/Γ as a finite
orbihedron. If t ∈ Φ∞, then t projects to a 1-complex, s(t), embedded in Σ′/Γ. We
can assume that s(t) meets each simplex of Σ′ in one of the combinatorial pictures
described earlier, except that we need to allow for the possibility of edges of Σ′ to
be included in s(t). However, this possibility can only arise for finitely many t.

Suppose that the sequence (Φn)n does not stabilise. We can then find a sequence,
(ti)i∈N of distinct tracks in Φ∞, which project to disjoint 1-complexes, si = s(ti),
in Σ′/Γ. Since Σ′/Γ is a finite complex, we can assume that no si contains an edge
of Σ′/Γ, so that each si is a track in the sense described earlier (Figure 1). In fact,
we can eliminate pictures (2) and (3) (where si passes through a vertex, or branches
into the interior of a 2-simplex). We are thus left with picture (1), so that si is a
track in the traditional sense [Du2].

We now apply the standard Kneser-Dunwoody argument. Recall that a band
in a simplicial 2-complex is a “thickened-up track”, or more precisely, a compact
connected subset disjoint from the vertex set which meets each 1-simplex in a
disjoint union of intervals, and each 2-simplex in a disjoint union of rectangles,
each such rectangle having two opposite sides in different faces of the 2-simplex.
A band is twisted if its boundary is connected. Two disjoint tracks are parallel if
their union is the boundary of an (untwisted) band. If we have a finite number, n,
of disjoint tracks embedded in a finite 2-complex, then all but a bounded number
of complementary components must be bands. Moreover, for homological reasons,
there is also a bound on the number of disjoint twisted bands we can embed. Thus,
if n is sufficiently large, the set of tracks must contain a parallel pair.

In our set-up, it follows that we can find i 6= j, with si t sj the boundary of
a band A ⊆ Σ′/Γ. We now lift A to a connected subset B ⊆ K ′ ∼= K. We can
suppose that ∂B = ti t tj . Now, Γ(ti) = Γ(tj) is the setwise stabiliser of B, which
we denote by Γ(B). Thus, Γ(B) ⊆ Γ(πti) ∩ Γ(πtj). But now, ti and tj both meet
some edge of K. From the construction of π, it follows that πti 6= πtj . Since we are
assuming that V has finite pair stabilisers, it follows that Γ(B) is finite, and that
B is compact. Now the set of edges of K meeting B is finite and separates Σ into
two unbounded components, contradicting one-endedness.

This proves Theorem 6.1.
In fact, we can see immediately that Γ splits relative to {Γ(x) | x ∈ V } without

using Theorem 5.3. If we collapse each Γ-image of B to an interval, and each
connected component of Σ \ (

⋃
ΓB) to a point, then we arrive at a non-trivial

Γ-action on a simplicial tree with finite edge stabilisers. Each element x ∈ V lies
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inside some complementary component, and hence fixes the corresponding vertex
of the tree.

As a corollary to Theorem 6.1, we note:

Proposition 6.3. Suppose that V is a non-multiended 1-connected Γ-set with fi-
nite pair stabilisers. Suppose that T is a Γ-equivariant pretree structure on V .
Then, the set of peripheral splittings of V subordinate to T is either empty or has
a unique maximal element.

Proof. This follows from Theorem 6.1, on noting that if T1 and T2 are peripheral
splittings subordinate to T , then so is T1 ∪ T2.

This raises a number of questions. For example, is T necessarily discrete, and
hence equal to the maximal peripheral splitting? Also, under the hypotheses of
Theorem 6.1, does there necessarily exist a pretree, T , which is a refinement of every
peripheral splitting (so that there exists a unique maximal peripheral splitting)?
We shall see that this is the case if we add the hypothesis that V is a hyperbolic Γ-
set. However, the argument in this case has some topological input, and so cannot
immediately be reinterpreted in combinatorial terms.

7. Trees of metric spaces

In this section, we consider decompositions of continua into subcontinua glued
together in treelike fashion. Such a situation may arise as the boundary of a Γ-
set admitting a peripheral splitting. One of the main objectives (Proposition 7.4)
will be to show that if each of the subcontinua (corresponding to the components
of the peripheral splitting) is locally connected, then the whole space is locally
connected. Since much of the proof is routine continuum topology, we shall motivate
the argument by explaining how we expect the boundary to look with reference to
particular examples, and we shall leave the details of the general argument to the
reader.

Although it is not an essential part of the logic of the argument, a useful idea
to keep in mind is the following decomposition of continua analogous to the block
decomposition of graphs. It is essentially the simplicial case of the construction of
Swenson [Swe].

Let M be a compact metric space. We can give M the structure of a pretree by
writing yxz if y and z lie in different quasicomponents of M \ {x}. (In other words,
if we can write M \ {x} = OtU , where O and U are open subsets of M containing
y and z respectively.) We shall refer to the closure in M of a quasicomponent of
M \ {x} as a branch of M rooted at x. More generally, a closed (connected) subset
of M is branchlike if its boundary is a singleton. Any intersection of branchlike
sets is connected.. Indeed such an intersection meets any subcontinuum of M in a
connected set [Bo3].

Now, suppose V ⊆ M is (for the moment) any subset. Given x, y ∈ M , write
x ∼ y to mean that there does not exist z ∈ V with xzy. We write [x] = {z ∈M |
z ∼ x}. Thus [x] is a subcontinuum of M (being an intersection of branches). If
x /∈ V , we refer to [x] as a block. Two distinct blocks intersect, if at all, in a single
point of V . Note that if x, y ∈ V with x ∼ y, then [x]∩ [y] is a subcontinuum of M
containing both x and y. Thus, if V is countable (or if every point of V is a global
cut point of M [Swe]), then [x] ∩ [y] must contain an element z /∈ V . Thus, x and
y lie in a common block, namely [z].
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Now, V inherits a pretree structure from M . Let us suppose that this pretree
structure is discrete. We construct a bipartite graph with vertex set V tW , where
W is the set of blocks of T , by deeming x ∈ V to be adjacent to P ∈ W if x ∈ P .

From the discussion of the previous paragraph, it is easy to see that T is a tree.
Moreover, the pretree structure induced on V from T agrees with the structure
induced from M .

We now add the assumption that for any block, P , and for any ε > 0, there
are only finitely many branches rooted in P (i.e. rooted at a point of P but not
containing P ) with diameter greater than ε. (This is necessarily the case for locally
connected continua, for example, and in the constructions that follow later.) In
this situation, any union of branches rooted at the same point is branchlike.

Associated to T is its ideal boundary, ∂T (i.e. the set of cofinality classes of rays
in T ). An element x ∈ ∂T determines a subcontinuum of M (not meeting V ) as an
intersection of branches in the obvious way. At this point, we need to add another
assumption (again valid in the cases of interest), namely that each subset of this
type is a singleton. In this way, we get an identification of ∂T with a subset of M .
We refer to such points as ideal points of M (relative to V ).

Suppose S is a subtree of T , so that ∂S ⊆ ∂T . We can associate to S a subset
Φ(S) ⊆ M , namely the union of all blocks and ideal points associated to S. Thus,
Φ(S) is a subcontinuum of M (being an intersection of branchlike sets). Note that
if S is a branch of T rooted at x ∈ V , then Φ(S) is a branch of M rooted at x, and
conversely.

As an example, consider an amalgamated free product, Γ, of 3 copies of a fi-
nite covolume kleinian group, G, amalgamated over a common maximal parabolic
subgroup, H (as discussed in Section 2). Suppose we take a maximal peripheral
splitting of Γ, where the graph of groups is a tripod with central vertex group H
and terminal vertex groups G. In this case, the boundaries of the components are
precisely the blocks of ∂Γ. However, we shall need to consider more general situ-
ations. For example, we can also write Γ as an amalgamated free product of two
relatively hyperbolic groups, namely Γ ∼= G∗H (G∗HG). In this case, the boundary
of the component G ∗H G is the closure of a union of blocks as defined above. In
what follows, this is an example of a “generalised block”.

To derive the main results of this section, we need to apply the above construction
in reverse. Suppose we are given a compact metrisable space, M , and a bipartite
simplicial tree, T , with vertex set V (T ) tW (T ). To each element x ∈ V (T ) ∪ ∂T
we associate a point p(x) ∈M , and to each x ∈W (T ), we associate a closed subset
P (x) ⊆ M . We refer to a subset of the form P (x) as a generalised block, and
to elements of p(∂T ) as generalised ideal points. If S ⊆ T is a subtree, we write
Φ(S) = p(V (S) ∪ ∂S) ∪

⋃
x∈W (S) P (x). If S is a branch of T rooted at x ∈ V , we

refer to Φ(S) as a generalised branch of M rooted at p(x).
We also need the following hypotheses. First, we assume that the map p :

V (T )∪∂T −→M is injective, and that no generalised block contains any generalised
ideal points. We assume that two distinct generalised blocks meet, if at all, in an
element of p(V (T )), and that x ∈ V (T ) is adjacent to y ∈ W (T ) if and only if
p(x) ∈ P (y). We assume that M = Φ(T ). Finally, we assume that if P is any
generalised block, then the diameters of the generalised branches emerging from P
(i.e. rooted in P but not containing P ) must tend to 0 (i.e. for any ε > 0, only
finitely many have diameter greater than ε).
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We begin with a few preliminary observations. First, note that if F ⊆ P is
any closed subset, then the union of F and the union of any subset of generalised
branches emerging from F must be closed. We also note any generalised ideal point
has a neighbourhood base consisting of generalised branches of M . In particular,
the complement of the set of ideal points is dense in M . Finally, note that if S ⊆ T
is any subtree, then Φ(S) is closed.

An easy consequence of these observations is:

Proposition 7.1. M is connected if and only if every generalised block of M is
connected.

We assume henceforth that M is connected.
The same argument applied to any subtree, S, of T , shows that Φ(S) is con-

nected. In particular, any generalised branch of M is connected.
Now V (T ) inherits a pretree structure, TM , from its embedding p : V (T ) ↪→M .

It also inherits a pretree structure, TT , from its embedding in T .
From the earlier observations it is easily verified that:

Proposition 7.2. TM is a refinement of TT .

Suppose that P is a generalised block of M . Now P has a pretree structure as
a subpretree of M , as well as an intrinsic pretree structure as a continuum. It is
easily checked that these structures agree:

Proposition 7.3. If P is a generalised block of M , then P with its intrinsic pretree
structure is a subpretree of M .

In particular, we see that any global cut point of P is also a global cut point of
M .

Finally, we want to consider local connectedness. This is usually defined by
demanding that every point has a base of open connected neighbourhoods. In fact,
it is sufficient that every point has a base of connected neighbourhoods (see [K]).

Proposition 7.4. M is locally connected if and only if every generalised block of
M is locally connected.

Proof. First suppose that M is locally connected. Let P be a generalised block of
M . If F is any subcontinuum of M , the F ∩ P is connected. (This can be seen
directly, or using the fact that P is an intersection of branchlike sets.) Thus, if
x ∈ P and F is a connected neighbourhood of x in M , then F ∩ P is a connected
neighbourhood of x in P .

Conversely, suppose that every block of M is locally connected. We shall ex-
plicitly construct a base of connected neighbourhoods for each point a ∈ M . We
distinguish three cases, namely a ∈ p(∂T ), a ∈M \ p(V (T )∪∂T ) and a ∈ p(V (T )).

If a ∈ p(∂T ), then we have already observed that a has a neighbourhood base
consisting of generalised branches of M . Moreover, such branches are necessarily
connected.

We can thus assume that a /∈ p(∂T ), so that a lies in some generalised block, P ,
of M . Suppose first that a /∈ p(V (T )). Given ε > 0, we want to find a connected
neighbourhood of a contained in N(a, ε).

Let B be the set of generalised branches of M emerging from P (so that M =
P ∪

⋃
B). Let B0 ⊆ B be the (finite) subset of such branches of diameter at least

ε/2. Let δ = 1
2 min({d(a,B) | B ∈ B0} ∪ {ε}) > 0. Now, let F ⊆ P be a closed
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connected neighbourhood of a in P contained in N(a, δ). If B ∈ B is a generalised
branch rooted in F , then d(a,B) ≤ ε/2 and diam(B) ≤ ε/2. Thus, B ⊆ N(a, ε).
Let F ′ be the union of F and the union of all such branches. It follows that F ′ is
connected and contained in N(a, ε). Now let G be the closure of P \ F , and let G′

be the union of G and the union of all elements of B rooted in G. We see that G′ is
closed, that a /∈ G′, and that M = F ′ ∪ G′. It follows that F ′ is a neighbourhood
of a in M .

Finally, we consider the case where a ∈ p(V (T )). Suppose ε > 0. Let C be the
set of generalised branches of M rooted at a, and let C0 be the (finite) set of such
branches of diameter at least ε. For each C ∈ C0, we use the same argument as in
the previous paragraph to construct a neighbourhood, A(C), of a in C contained
in N(a, ε). We see that

⋃
C∈C0 A(C)∪

⋃
(C \ C0) is a connected neighbourhood of a

in M contained in N(a, ε).

8. Hyperbolicity

In this section, we consider peripheral splittings of relatively hyperbolic groups,
or more precisely, hyperbolic Γ-sets. We begin by recalling some definitions from
[Bo5].

Let K be a connected graph. We can view K as a path-metric space by assigning
each edge a length 1. We say that K is hyperbolic if it is (Gromov) hyperbolic with
this metric [Gr]. We say that K is fine if, given any n ∈ N and any edge, e, of
K, there are finitely many circuits of length n containing the edge e. It is a simple
exercise to verify that a connected graph is fine if and only if each of its blocks is
fine. Likewise, a connected graph is hyperbolic if and only if its blocks are uniformly
hyperbolic.

Suppose V is a connected Γ-set with finite pair stabilisers. One can show that
if one (Γ, V )-graph is fine, then they all are. Since all (Γ, V )-graphs are quasi-
isometric, the same goes for hyperbolicity. This leads naturally to:

Definition. A Γ-set, V , is hyperbolic if it has finite pair stabilisers and admits a
2-vertex-connected (Γ, V )-graph which is fine and hyperbolic.

The constraint that the (Γ, V )-graph be 2-vertex-connected is essentially equiv-
alent to demanding that the vertex stabilisers are all finitely generated. Also, given
the finiteness condition, having finite pair stabilisers is equivalent to having finite
edge stabilisers.

It was shown in [Bo5] that if V is a cofinite Γ-set, and W ⊆ V is a non-empty
Γ-invariant subset such that each point of V \W has finite stabiliser, then V is
hyperbolic as a Γ-set if and only if W is. This fact will be used in the proof of
Proposition 8.7. Thus, for most purposes one can reduce either to the case where
all vertex stabilisers are finite (the standard case of word hyperbolic groups) or
to the case where all vertex stablisers are infinite. The last hypothesis leads to
simplifications in certain cases, although we shall not explicitly assume it for the
moment.

Recall that a peripheral splitting, R, of V is “full” if and only if V admits a
(Γ, V )-graph, K, with the property that R is precisely the set of block sets of K.

An immediate consequence of the preceding observations is:
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Proposition 8.1. Suppose V is a cofinite Γ-set with finitely generated vertex sta-
bilisers. Suppose R is a full peripheral splitting of V . Then, V is a hyperbolic Γ-set
if and only if R is a hyperbolic Γ(R)-set for all R ∈ R.

To relate this to boundaries of Γ-sets, we need the following equivalent, more
geometric, formulation of hyperbolicity [Bo5]:

Proposition 8.2. A Γ-set, V , is hyperbolic if and only if we can represent V as
the vertex set, V = V (Σ), of a Γ-invariant simplicial 2-complex, such that Γ acts
on Σ with finite quotient and finite edge-stabilisers, and such that Σ is simplicially
hyperbolic and has no global cut vertices.

Here “simplicially hyperbolic” means that every cycle, β, in the 1-skeleton of Σ,
bounds a simplicial disc where the number of 2-simplices is bounded by a linear
function of the length of β. In particular, Σ is simply connected, so V is 1-connected
as defined in Section 6. As observed in [Bo5], Σ can be assumed to contain any
given Γ-invariant 2-complex with finite quotient.

We may construct, from Σ, a geometric 2-complex, X(Σ), by giving each 2-
simplex the structure of an ideal triangle in such a way that the union of two
adjacent triangles is isometric to an ideal hyperbolic square. We thus obtain a
complete locally compact Γ-invariant path-metric on X(Σ) ∼= X \ V . In [Bo5], it
was shown that X(Σ) is hyperbolic in the usual Gromov sense. We write ∂V =
∂X(Σ) for the ideal boundary of X(Σ). This is well-defined up to Γ-equivariant
homeomorphism, independently of Σ. Thus, ∂V is compact metrisable, with V
naturally embedded in ∂V . The isolated points of ∂V are precisely the points of
V which have finite stabiliser. The group Γ acts on ∂V as a geometrically finite
convergence group (see [T]). (We note that this construction makes sense if Σ has
a global cut vertex, except that in this case we end up with a disjoint union of
hyperbolic spaces.)

More generally, suppose that (X, ρ) is a proper (i.e. complete locally compact)
hyperbolic space. Suppose that Γ acts isometrically on X , and that there is a
Γ-invariant embedding of V in ∂X . An invariant system of horoballs, (B(x))x∈V ,
consists of a choice of closed horoballs, B(x), about x ∈ V ⊆ ∂X for each x ∈ V
such that B(γx) = γB(x) for all γ ∈ Γ. It is r-separated if ρ(B(x), B(y)) ≥ r
whenever x 6= y. If it is r-separated for some r > 0, then the action of Γ is
geometrically finite if and only if (X \

⋃
x∈V intB(x))/Γ is compact. Moreover, ∂X

is Γ-equivariantly homeomorphic to ∂V . For further elaboration, see [Bo5], [T].
Note that V (thought of as a subset of ∂X) is precisely the set of parabolic points
for the action of Γ on ∂X .

We now want to interpret these constructions in the case where the hyperbolic
Γ-set, V , admits a full peripheral splitting, R. For each R ∈ R, let Σ(R) be
a 2-complex as given by Proposition 8.2, using the fact that R is a hyperbolic
Γ(R)-set (Proposition 8.1). We choose these complexes Γ-equivariantly to give us
a Γ-equivariant complex Σ0, with vertex set V , and with finite quotient. We can
now embed Σ0 as a subcomplex of another 2-complex, Σ, with the properties given
by Proposition 8.2. Let X(Σ) be the hyperbolic complex constructed from Σ, and
let X(Σ0) be the subcomplex corresponding to Σ0. Thus, X(Σ0) is a disjoint union
of subcomplexes X(Σ(R)) as R varies over R.

Given t ≥ 0, we shall construct a Γ-invariant subset, Y (t), of X(Σ), with
X(Σ0) ⊆ Y (t) ⊆ X(Σ) as follows.
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Suppose x ∈ V and σ is a 2-simplex of Σ, with x as a vertex. Let s(σ, x, t) ⊆ σ be
the “spike” in σ consisting of the intersection of σ (thought of as an ideal triangle
in the hyperbolic plane) with a horoball (in the classical hyperbolic sense) about x
which is at a distance t+1 from the centre of the triangle. Let B(x, t) be the union
of all the spikes s(σ, x, t) as σ ranges over the set of 2-simplices of Σ with vertex x.
Now let Y (t) = X(Σ0) ∪

⋃
x∈V B(x, t). Thus Y (t) is closed in X(Σ), and complete

and locally compact in the induced path-metric.
Now, a simple variation on the argument of [Bo5] (used in proving that X(Σ) is

hyperbolic) shows that the space Y (t) is a proper hyperbolic space, with V naturally
embedded as a dense subset of ∂Y (t). Moreover, the collection (B(x, t))x∈V forms
a (2t)-separated invariant system of horoballs for this action. The quotient (Y (t) \⋃
x∈V intB(x, t))/Γ is compact, so the action of Γ on V is geometrically finite.

Also, the subcomplexes X(Σ(R)) are uniformly quasiconvex in Y (t). The constants
involved can all be fixed independently of t. Setting X = Y (t), X(R) = X(Σ(R))
and B(x) = B(x, t) we have shown:

Proposition 8.3. Suppose V is a hyperbolic Γ-set, and that R is a full peripheral
splitting of V . Suppose r > 0. Then, we can find a proper hyperbolic space, X,
with a properly discontinuous isometric action of Γ and a Γ-equivariant embedding
of V in ∂X, such that the action is geometrically finite. Moreover, for each R ∈ R,
we can find a closed Γ(R)-invariant subset, X(R), of X, which is quasiconvex and
intrinsically hyperbolic. (In fact, we can assume that the induced metric on X(R)
is already a path metric.) The collection {X(R) | R ∈ R} is locally finite in X.
Moreover, X(γR) = γX(R) for all γ ∈ Γ, and X(R) ∩ X(R′) = ∅ if R 6= R′.
We can also find an r-separated invariant system of horoballs, (B(x))x∈V , for X,
such that X =

⋃
R∈RX(R) ∪

⋃
x∈V B(x). Moreover, if x ∈ V and R ∈ R, then

X(R)∩B(x) 6= ∅ if and only if x ∈ R. If x ∈ R ∈ R, then X(R)∩B(x) is a horoball
about x in X(R). (In fact, we can also assume that the metric on each B(x) induced
from X is already a path metric.) Finally, all the constants (of hyperbolicity and
quasiconvexity) involved can be fixed independently of r.

We note that if x, y ∈ V , then any path in X connecting B(x) to B(y) must
meet B(z) for all z in the pretree interval [x, y] ⊆ V .

Suppose that R ∈ R. We have R ⊆ V ⊆ ∂V . We write P (R) for the closure
of R in ∂V . Thus, P (R) may be identified with ∂X(R). We know that R is a
hyperbolic Γ(R)-set by Proposition 8.1. We claim that we can identify ∂R with
P (R). In the explicit construction of X as a 2-complex we gave earlier, this is
clear from the definitions. It also follows directly in the general set-up described by
Proposition 8.3. For this, it’s sufficient to see that the action of Γ(R) on X(R) is
geometrically finite. To this end, we note that (X \

⋃
x∈V intB(x))/Γ is compact.

Moreover, it can be expressed as a finite disjoint union of sets of the form (X(R) \⋃
R∈R intB(x))/Γ(R) as R ranges over a Γ-transversal of R. In particular, we see

that each of these subsets is compact. Since X(R)∩B(x) is a horoball in X(R) for
all x ∈ R, it follows that the action of Γ(R) on X(R) is geometrically finite. By the
results of [Bo5], it now follows that ∂X(R) is Γ(R)-equivariantly homeomorphic to
∂R.

Now let T = T (R) be the bipartite tree with vertex set V tR associated to R,
as defined in Section 1. We define a map p : V t ∂T −→ ∂V as follows. If x ∈ V ,
set p(x) = x. If x ∈ ∂T , let β be a ray tending to x, and let (xn)n be the sequence
of vertices of V in β. We claim that (xn)n is convergent in ∂V . To see this, fix
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any basepoint, a ∈ B(x0), and let αn be a shortest path from a to B(xn). Now
the geodesics αn must subconverge on some geodesic ray, α. We see that α must
intersect B(xn) for all n. If follows easily that xn must converge to the ideal point
of α, proving the claim. Now this limit is clearly independent of the choice of α,
and we denote it by p(x).

We need to verify that the maps p and P defined above satisfy the hypotheses of
a generalised block decomposition given in Section 7. Here, the generalised blocks
are sets of the form P (R) ≡ ∂X(R) for R ∈ R. The facts that p is injective and
that no block meets p(∂T ) are easy consequences of the definitions. Also, note that
any geodesic ray that does not remain within a bounded distance of any X(R) must
pass through an infinite sequence of horoballs corresponding to a ray in T . From
this it follows that ∂V = Φ(T ). Now, if R,R′ ∈ R are disjoint, then X(R) and
X(R′) are a distance at least r apart. Since r can be chosen large in relation to the
constants of hyperbolicity and quasiconvexity, it follows that P (R) ∩ P (R′) = ∅.
On the other hand, if R ∩ R′ = {x}, then if a ∈ X(R) and b ∈ X(R′), then the
distance from a or b to B(x) is less than the distance between them. Again choosing
r appropriately, we see that P (R) ∩ P (R′) = {x}.

Suppose that S ⊆ T is a subtree. Let X(S) =
⋃
x∈V∩S B(x) ∪

⋃
R∈R(S)X(R).

From the manner in which the setsX(R) and B(x) are connected, it is easily verified
that X(S) is a uniformly quasiconvex subset of X , and that ∂(X(S)) ∼= Φ(S). It re-
mains to verify that given R ∈ R, there are only finitely many generalised branches
rooted in R with diameter greater than any positive constant. Suppose, to the con-
trary, that Sn is a sequence of distinct branches rooted at xn ∈ R with diam(Φ(Sn))
bounded below. We can assume that the points xn are either all distinct or else
constant. In the former case, we see that the sets X(Sn) are disjoint, locally finite
and uniformly quasiconvex, giving the contradiction that diam(∂X(Sn)) → 0. We
can thus assume that xn = x is constant. In this case, let Rn ∈ R be the vertex of
Sn adjacent to x. The sets Rn are thus distinct. On passing to a subsequence, we
can find yn ∈ Φ(Sn) with yn → y 6= x. Let αn and α be geodesics in X connecting
x to yn and y respectively. We can assume that αn converges to α. Let zn (respec-
tively z) be the point where αn (respectively α) leaves the horoball B(x). From the
combinatorial structure of X , we see that zn ∈ X(Rn). But zn → z, contradicting
the local finiteness of the collection of spaces X(Rn).

Proposition 8.4. Suppose V is a hyperbolic Γ-set and that R is a peripheral split-
ting of V . Then ∂V is connected if and only if ∂R is connected for all R ∈ R.
Moreover, in this case, the pretree structure on V induced by the continuum ∂V is
a refinement of the pretree structure on V associated to R.

Proof. The first statement follows from Proposition 7.1, and the second from Propo-
sition 7.2 on noting that the pretree structure associated to R agrees with that
induced from the tree T (R).

The next proposition follows from Proposition 7.4 in the same way Proposition
8.4 followed from Proposition 7.1:

Proposition 8.5. Suppose that V is a hyperbolic Γ-set and that R is a peripheral
splitting of V . Then ∂V is a Peano continuum, if and only if ∂R is a Peano
continuum for each R ∈ R.

Now Theorems 1.2 and 1.3 are essentially reformulations of Propositions 8.1 and
8.4 in the language of relatively hyperbolic groups. Suppose that Γ is a group and
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that G is a peripheral structure on Γ, as defined in Section 4. We identify G with
a Γ-set, V , obtained by taking the action of Γ on G by conjugation. Thus, G is
precisely the set of point stabilisers of V . We say that Γ is hyperbolic relative to G
if V is hyperbolic as a Γ-set. We can assume that G 6= ∅, otherise the subject is
vacuous. Since every element of G is, by assumption, infinite, we can identify ∂V
with the boundary, ∂Γ, of Γ. More generally, if V is any hyperbolic Γ-set, then Γ
will be hyperbolic relative to the infinite point stabilisers of V . In this case, ∂Γ is
equal to ∂V minus the set of isolated points.

Suppose that R is a peripheral splitting of V , and that R ∈ R. Then H = Γ(R)
is a component of Γ, as we defined in Section 1. Suppose the stabiliser, H(x) =
H ∩ Γ(x), of x in H is infinite. If g ∈ Γ normalises H(x), then H(gx) = H(x).
In particular, Γ(gx) ∩ Γ(x) ⊇ H(x) is infinite, and so gx = x. Thus, g normalises
Γ(x), so g ∈ Γ(x), and g ∈ H(x) = H ∩Γ(x). Thus, H(x) is equal to its normaliser.
We see that the set of infinite H(x) as x ranges over R is a peripheral structure on
H . Now, by Lemma 8.1, R is a hyperbolic H-set. Thus H is hyperbolic relative to
this peripheral structure.

Suppose now that ∂V = ∂Γ is connected. It follows by Proposition 8.4, that ∂R
is connected. In particular, ∂R has no isolated points. Thus every point stabiliser,
H(x) for x ∈ R is infinite. Thus, by definition, ∂H can be identified with ∂R.

Finally, note that if R is non-trivial, then the pretree structure induced on ∂Γ
arising from its topology is also non-trivial. In other words, ∂Γ has a global cut
point.

This proves Theorems 1.2 and 1.3.

9. Conclusion

In this section, we put together the results of previous sections to give us an
accessibility result for hyperbolic Γ-sets with connected boundaries (Theorem 9.1).
Reinterpreted in terms of a relatively hyperbolic group, this proves Theorem 1.4.
We explain how this relates the programme of proving local connectedness of such
boundaries (Theorem 1.5). In the non-relative case, local connectedness follows
from previous work (see [BeM], [Bo3], [Swa], [Bo4]). In the case of geometrically
finitely kleinian groups, the argument presented below can be simplified somewhat
(see [BoS]).

Suppose then, that Γ is a group, and that V is a hyperbolic Γ-set. Let’s suppose
that ∂V is connected, so that, by Proposition 1.1, V is one-ended. Since V is
hyperbolic, it is certainly 1-connected, and has finite pair stabilisers. Let T∂V
be the pretree structure on V induced from the topology of ∂V (see Section 7).
Suppose thatR is a peripheral splitting, and that T (R) is the corresponding pretree
structure on V . By Proposition 8.4, T (R) is subordinate to T∂V . It thus follows
from Proposition 6.3 that V admits a unique maximal peripheral splitting. We
have shown:

Theorem 9.1. Suppose that V is a hyperbolic Γ-set with connected boundary.
Then V admits a unique maximal peripheral splitting.

Let R0 be the maximal peripheral splitting of V . (Note that this splitting
might be trivial.) By Lemma 4.6, no component of R0 admits any non-trivial
peripheral splitting. We also note that by Proposition 8.4, every component of R0

has connected boundary.
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Note that the pretree structure T (R0) is subordinate to T∂V . At the moment,
there is no reason to suppose that these are equal, or even that T∂V is discrete.
Things become clearer once we know that ∂V is locally connected, as we shall
explain later. First, we explain the connection with the proof of local connectedness.

Suppose then that ∂V is hyperbolic with ∂V connected. The proof given in [Bo6]
uses the notion of a “separating horoball”. An example of a separating horoball
would be a horoball of the type B(x) in Proposition 8.3, where x ∈ V is a non-
terminal point of the peripheral splitting. We shall not give a formal definition
here since only the logic of the argument is relevant. It is sufficient to note that
the “centre” of a separating horoball is always a global cut point of ∂V .

We recall two facts from [Bo6]. First, we note that if V has no separating
horoball, then ∂V is locally connected (cf. [BeM]). Second, if ∂V has a separating
horoball centred on a point of V , then V admits a non-trivial peripheral splitting.
We also need a third fact, proven in [Bo4], which tells us that, under the same
hypotheses as Theorem 1.5, every global cut point of ∂V is centred on a point of
V (i.e. a parabolic point). This last fact is by far the most difficult part of the
argument, and calls for considerable input from elsewhere.

Suppose, for contradiction, that V satisfies the hypotheses of Theorem 1.5, but
that ∂V is not locally connected. Let R0 be the maximal peripheral splitting
given by Theorem 9.1. By Propositions 8.4 and 8.5, some component, R ∈ R0, is
such that ∂R is connected but not locally connected, hence R admits a separating
horoball. The centre, x, of this horoball is a global cut point of ∂R, and hence, by
Proposition 7.3, also a global cut point of ∂V . Thus, x ∈ V . Since R = V ∩∂R, we
see that x ∈ R. In other words, R has a separating horoball centred on a point of R,
and hence admits a non-trivial peripheral splitting. By Lemma 4.6, this contradicts
the maximality of R0, and hence proves Theorem 1.5. For more details, see [Bo6].

From hereon, life becomes much easier. The way is open to a more detailed
analysis of boundaries. To begin with, it was shown in [Bo6] that if the boundary
of a relatively hyperbolic group is connected and locally connected, then every
parabolic global cut point is the centre of a separating horoball, and hence gives
rise to a peripheral splitting. From this, we can deduce:

Theorem 9.2. Suppose V is a hyperbolic Γ-set such that ∂V is connected and
locally connected. Let T∂V be the pretree structure on V induced from the topology
of ∂V . Then, T∂V is precisely the maximal peripheral splitting of V .

Proof. Let T (R0) be the maximal peripheral splitting of V . By Proposition 8.4, T∂V
is a refinement of T (R0). Suppose, for contradiction, that it is a strict refinement.
By Lemma 3.3, there is some R ∈ R0 and points x, y, z ∈ R such that yxz holds in
T∂V .

Now by Propositions 8.4 and 8.5, ∂R is connected and locally connected. By
Proposition 7.3, the relation yxz holds in the pretree structure associated to ∂R.
Thus, x is a global cut point of ∂R. But now, by the observation above, R admits
a non-trivial peripheral splitting, contradicting Lemma 4.6.

In particular, it follows that T∂V is discrete.
If we assume that V satisfies the hypotheses of Theorem 1.5, then we know (by

the result of [Bo4]), that every global cut point of ∂V lies in V . Thus, the pretree
relation on the whole of ∂V is discrete. In other words, any two cut points of ∂V
can be separated by only finitely many other cut points.
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