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Background: During the past 20 years, significant advances in patient care have resulted in individuals with spinal cord injury (SCI)
living longer than before. As lifespan increases, cardiovascular complications are emerging as the leading cause of mortality in this
population, and individuals with SCI develop cardiovascular disease at younger ages than their able-bodied counterparts. To address
this increasing clinical challenge, several recent studies investigated the central cardiovascular adaptations that occur following SCI.
However, a somewhat less recognized component of cardiovascular dysfunction in this population is the peripheral vascular
adaptations that also occur as a result of SCI.
Study design: Literature review.
Objective: To present a comprehensive overview of changes in arterial structure and function, which occur after SCI.
Setting: Canada.
Methods: A systematic literature review was conducted to extract studies that incorporated measures of arterial structure or function
after SCI in animals or humans.
Results: Individuals with SCI exhibit vascular dysfunction below the lesion that is characterized by a reduction in conduit artery
diameter and blood flow, increased shear rate and leg vascular resistance, and adrenoceptor hyper-responsiveness. There is also recent
alarming evidence for central arterial stiffening in individuals with SCI.
Conclusion: Although physical deconditioning is the primary candidate responsible for the maladaptive remodeling of the peripheral
vasculature after SCI, there is emerging evidence that blood pressure oscillations, such as those occurring in the large majority of
individuals with SCI, also exacerbates vascular dysfunction in this population.
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INTRODUCTION

A spinal cord injury (SCI) is among the most devastating and
debilitating conditions an individual can sustain. The most recent
estimates of SCI incidence in the United States vary from 25 to 59
new cases per million inhabitants per year, with an average of 40 per
million.1 In addition to severe motor and sensory dysfunction, SCI
also disrupts autonomic pathways2 and consequently perturbs
cardiovascular homeostasis. Cardiovascular complications in the
early stages of high SCI can be life-threatening, and include
profound hypotension, bradyarrhythmias and cardiac arrest.3 There
is also alarming recent evidence demonstrating an increased risk of
ischemic stroke after SCI.4 Although some of these complications can
improve in the weeks following SCI, cardiovascular control rarely
returns to pre-injury baseline.
Individuals with SCI are at increased risk for cardiovascular disease

(CVD) compared with their able-bodied (AB) counterparts;5

however, the factors that contribute to the elevated risk in this
population are not well understood. CVD risk prediction is typically
based on factors such as sex, age, diabetes, blood lipid profile, elevated
systolic blood pressure and smoking status.6 These ‘traditional’ risk

factors, however, do not fully explain the increased CVD risk in
individuals with SCI.7 For instance, people with high-thoracic/cervical
SCI exhibit autonomic disturbances that result in a low resting
arterial blood pressure8—something that is usually considered
cardioprotective—yet they exhibit a greater prevalence of CVD than
the AB population. Thus, other factors must at least partly be
responsible for the elevated CVD risk in the SCI population, and
recent evidence suggests that there is a need for more specific
recommendations for the management of CVD in the SCI popula-
tion.9 In the AB population, studies that have investigated the
reduction in CVD risk with exercise have reported that only 40–
60% of the risk reduction is explained by improvements in traditional
CVD risk factors.10 It has been postulated that exercise-induced
improvements in endothelial function may be responsible for this
‘risk factor gap’.11,12 To our knowledge, dysfunction of the peripheral
vasculature as a contributor to CVD in the SCI population has not
been investigated. Indeed, most studies describing cardiovascular
changes after SCI have focused on central cardiovascular
adaptations.13–15 This is somewhat surprising: as we will describe in
this review, SCI induces vascular deconditioning below the level of
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injury and disrupts supraspinal control of the spinal sympathetic
circuits that ultimately innervate the adventitial-media layer of blood
vessels, both of which lead to a multitude of vascular abnormalities
that may contribute to elevated CVD risk.16 It is highly likely,
therefore, that adaptations in the peripheral vasculature after SCI
are of equal, if not greater, clinical importance than the well-
recognized central cardiovascular adaptations that occur in this
population. Accordingly, the aim of this review is threefold: (1) to
provide an overview of the autonomic nervous system and blood
vessel structure and function; (2) to describe changes thereof
following SCI; and (3) to discuss the effects that loss of sympathetic
neural control and physical deconditioning has on the peripheral
vasculature in the SCI population.

METHODS

A systematic review of the literature to extract studies that incorpo-
rated measures of arterial structure or function after SCI in animals or
humans was conducted using the following online databases: MED-
LINE, EMBASE and SPORTDiscus. Population search terms included:
spinal cord injury, paraplegia, tetraplegia and quadriplegia. Vascular
keywords included: arterial, vasculature, peripheral, cardiovascular,
sympathetic, parasympathetic, vascular stiffness, vascular compliance,
adrenoceptor, hyper-responsiveness, shear stress, shear rate, hyperten-
sion, blood pressure, autonomic dysreflexia (AD), endothelial, leg
blood flow, femoral and carotid. Exercise keywords included: func-
tional electrical stimulation (FES), cycling, treadmill, wheelchair,
body-weight-supported treadmill training, passive and resistance.
Abstracts were reviewed to identify relevant studies, and where the
relevant information was not available in the abstract, the Methods
section was also reviewed. All studies published in English that
incorporated measures of arterial structure or function at rest or in
response to an intervention in humans or animals with SCI were
included. A total of 36 studies were included in the review. For the
purpose of this review, we use the term ‘peripheral’ to denote blood
vessels outside of the central nervous system (brain and spinal cord).

ORGANIZATION OF THE AUTONOMIC NERVOUS SYSTEM

The autonomic nervous system is divided into two primary compo-
nents: sympathetic and parasympathetic. The sympathetic nervous
system (SNS) is considered ‘excitatory’, whereas the parasympathetic
nervous system (PNS) is ‘suppressive’; collectively, these systems
provide balanced autonomic control. Both divisions of the autonomic
nervous system innervate the majority of visceral organs, including
the heart.2 Exceptions to this rule are the majority of blood vessels,
which receive only sympathetic innervations, and the cavernous tissue
of the penis and clitoris, which receive only parasympathetic
innervations. However, there is also evidence that the cerebral and
pulmonary blood vessels also have parasympathetic innervations.17

Finally, peptidergic, purinergic and nitrigic sensory fibers also
innervate all blood vessels and cavernous tissues. Despite functional
differences, the organization of the SNS and parasympathetic nervous
system share some similarities. For example, both divisions of the
autonomic nervous system have two neuronal populations. The first
neuronal population is the preganglionic neurons, whose cell body is
in the gray matter of the brain or spinal cord. Sympathetic and
parasympathetic preganglionic neurons are cholinergic and release the
neurotransmitter acetylcholine. Preganglionic nerves travel in
the anterior roots of the spinal cord or cranial nerves and synapse
on the second population of neurons, the postganglionic neurons,
which are located in the autonomic ganglia of the peripheral nervous

system.18 The axons of the postganglionic neurons then synapse with
the target organs.
Preganglionic neurons of the SNS originate in the spinal gray

matter in the thoracic (T1–T12) and upper lumbar segments of the
spine (L1–L2). Axons of the sympathetic preganglionic neurons exit
through the anterior roots of the spinal cord and synapse onto
postganglionic sympathetic neurons in the sympathetic chain ganglia
and prevertebral ganglia. Sympathetic postganglionic fibers are longer
than those of the cholinergic nervous system and are mostly
adrenergic, releasing the neurotransmitter norepinephrine (NE); an
exception is the sympathetic fibers innervating sweat glands and
piloerector muscles, which release acetylcholine. The segmental
sympathetic innervations that are particularly important for under-
standing cardiovascular control in individuals with SCI are the
sympathetic innervation of the heart at T1–T4, the blood vessels of
the upper limbs at T1–T4 and the blood vessels of the splanchnic bed
and lower limbs at T6–L2 (Figure 1).
Preganglionic neurons of the parasympathetic nervous system

originate within four cranial nerves (CN III, VII, IX and X) of the
brainstem and within the sacral spinal segments (S2–S4).2,19 In
contrast to the SNS, there is no parasympathetic innervation of the
peripheral vasculature. The heart and pulmonary tree, however, are
under parasympathetic control through the vagus nerve (CN X), a
cranial nerve that exits the brainstem and synapses with the sinoatrial
node and the nerve cells in the enteric nervous system; hence, the
upper portion of the gastrointestinal tract also receives
parasympathetic innervation.19

CARDIOVASCULAR CONTROL AFTER SCI

Following SCI there is loss or decrease of the central sympathetic tone
(neurogenic—originates from supraspinal neuronal centers).
Although peripheral tone (myogenic—originates from smooth mus-
cle of the blood vessels) is preserved, it is inadequate at maintaining
arterial blood pressure following high thoracic or cervical SCI.
Consequently, the acute period after SCI is characterized by profound
hypotension, and pharmacological intervention via vasopressive
therapy may be required to maintain arterial blood pressure during
this period.20,21 Of particular importance in the development of
hypotension is the loss of sympathetic tonic activity to a significant
portion of the peripheral blood vessels below the lesion; hence, those
with the highest (cervical) injuries exhibit the most severe
hypotension.8 In addition to resting hypotension, most individuals
with high SCI experience orthostatic hypotension when transferring
from a supine to a seated position.22–26 In the AB population, it is
well known that on assumption of the upright posture, there is a
baroreflex-mediated peripheral vasoconstriction via an increased
sympathetic outflow to maintain blood pressure and cerebral
perfusion.27,28 It is, therefore, likely that both sympathetic
hypoactivity and altered baroreceptor sensitivity are the primary
causes of orthostatic hypotension following cervical SCI.29,30

However, a lack of skeletal muscle pump,31 cardiovascular
deconditioning32 and/or altered salt and water balance33 have also
been hypothesized to contribute to hypotension.
Initially, in the acute period of SCI both individuals with tetraplegia

and paraplegia present with significant orthostatic hypotension.34

With time post injury, however, it has been demonstrated that
individuals with thoracic SCI exhibit an increase in leg vascular
resistance during head-up tilt that is consistent with that in the AB
population.35–37 The increase in leg vascular resistance was attributed
to a local myogenic response triggered by changes in vascular pressure
changes during head-up tilt.35 It should be noted, however, that those
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studies35–37 were all delimited to paraplegics with injuries between T4
and L1, some of whom would be expected to retain partial-to-full
supraspinal sympathetic control of the critical splanchnic bed, which
may explain the reduced severity of orthostatic hypotension in those
studies. It is highly likely that paraplegics with an injury at or above
T6, who exhibit no remaining supraspinal sympathetic control of the
splanchnic bed, would exhibit marked orthostatic hypotension;
however, this postulate remains to be tested. Finally, it is also

important to note that none of the studies, which investigated
severity of orthostatic hypotension, confirmed autonomic
completeness of injury. We have previously shown autonomic
completeness of injury to be one of the most important
determinants of cardiovascular function.38

Further to persistent hypotension, patients with SCI above T6
regularly experience life-threatening episodic bouts of extreme hyper-
tension (up to a systolic blood pressure of 300mmHg) that is
accompanied by pronounced bradycardia, a disorder known as AD.39

During AD, both noxious and non-noxious stimuli below the lesion,
such as bowel or bladder distension, could cause exaggerated
activation of the spinal circuits caudal to the injury that project to
the sympathetic pre-ganglionic neurons. In turn, this usually triggers
a sympathetically mediated peripheral vasoconstriction in the gut,
muscle and skin vascular beds, causing extreme systemic
hypertension.25,40 Finally, a parasympathetic-induced bradycardia
could be present during episodes of AD as a baroreflex-mediated
response to the hypertension.25 Episodes of AD are commonly
accompanied by pounding headaches and upper-body flushing,
while below the lesion there is pale and cold skin due to significant
vasoconstriction. If left untreated, AD can cause serious
complications, including intracranial hemorrhage, myocardial
infarction, retinal detachments, seizures and even death.41–44

Although there is still no consensus on the exact pathophysiology
explaining AD, it is generally accepted that loss of supraspinal input
to the spinal sympathetic circuits, reduced overall sympathetic
activity, disruption of spinal reflexes and plastic changes in the
spinal cord and peripheral autonomic circuits all contribute to the
development of AD.2 In addition to the debilitating consequences of
AD noted above, it is also possible that such repetitive and significant
blood pressure elevations could induce a shear injury to the blood
vessel endothelium, predisposing these individuals to cardiovascular
complications in the future.45

BLOOD VESSEL STRUCTURE AND CONTROL

As blood transcends from the heart to the tissue, it moves from large
elastic arteries, through muscular arteries and arterioles into thin-
walled capillaries, where nutrient and gas exchange occurs. The
arteries and arterioles are composed of three main layers, tunica
intima, tunica media and tunica adventitia (Figure 2). The tunica
intima consists of a single layer of endothelial cells, which are
conjoined to the arterial wall by a narrow layer of connective tissue;
the tunica media is formed of bundles of smooth muscle cells
intermingled with elastic fibers, and the tunica adventitia is formed
of irregularly shaped collagen fibers. Although arteries and arterioles
have the same global structure, each type of vessel has a specific
structure that reflects the primary function of the vessel. For example,
large conduit arteries have a thicker media (more smooth muscle
cells), while in the tunica adventitia, there is increased collagen and
elastin; these structural adaptations enable conduit vessels to produce
the Windkessel effect of maintaining constant pressure despite the
pulsatile blood flow. On the other hand, arterioles provide the major
site of resistance to blood flow and are thus composed of a just a few
layers of smooth muscle in the vessel wall. It is the arterioles that are
also responsible for slowing blood flow to ensure adequate time for
gas and nutrient exchange within the capillaries; consequently, the
arterioles form the primary site for vascular resistance and are,
therefore, of primary importance in the regulation of blood pressure.
All arterioles exhibit a state of partial constriction at rest that is

termed myogenic tone. The degree of myogenic tone is determined by
both intrinsic and extrinsic factors. Intrinsic factors include:

Figure 1 Autonomic control of the cardiovascular system. Parasympathetic

pre-ganglionic fibers exit the brainstem via the vagus nerve and synapse

with post-ganglionic parasympathetic neurons in the cardiac ganglia. The

majority of sympathetic pre-ganglionic neurons are located within the lateral

horn of spinal segments T1–L2. Axons of these neurons exit the spinal cord
via the ventral root and synapse with post-ganglionic neurons located in the

paravertebral ganglia. The post-ganglionic fibers then synapse directly with

smooth muscle in the heart and blood vessels. Figure adapted with

permission from Krassioukov.2
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endothelial factors, local chemical substances and hormones, meta-
bolic by-products or hypoxia, and the myogenic response triggered by
changes in intravascular pressure (Figure 2). Although the specific
molecules involved in the myogenic response of arterioles is still far
from understood, it is generally accepted that the smooth muscle
membrane potential depolarizes to increase Ca2þ influx and triggers
interaction of actin and myosin through changes in their relative
regulatory enzymes.46,47 Further to intrinsic factors, there are also
extrinsic neural and hormonal factors that affect arteriolar diameter,
of which the SNS is the most important in the peripheral circulation.
Sympathetic nerve fibers innervate all arteriolar smooth muscles, and
NE released from such nerve endings acts via a-adrenoceptors
to cause vasoconstriction. Other hormones that are primarily
responsible for extrinsically influencing arteriolar diameter are nitric
oxide, endothelin, vasopressin and angiotensin. The structure and
control of blood vessels is summarized in Figure 2.

CONDUIT ARTERIAL FUNCTION AFTER SCI

Structural adaptations
It is well known that the vasculature responds to acute and chronic
stimuli. Acute alterations are mediated primarily by changes in
sympathetic activity to the smooth muscle, whereas chronic changes
are mediated primarily by changes in blood flow and pressure, which
alters shear stress and consequently the number of smooth muscle
cells in vessel walls.48 Remodeling of peripheral arteries in paralyzed
limbs occurs soon after SCI; within weeks there is a significant
reduction in systemic blood volume49 and a consequent inward
remodeling of the arterial wall,50 such that the diameter of the

common femoral artery is 30–50% smaller51–54 and resting blood
flow in the leg is 30–40% lower than in AB individuals.54,55

Compared with the inactive lower limbs, the active upper limb
vasculature is relatively well preserved. For example, the diameters of
the common carotid artery51,53 and brachial artery50 are similar
between SCI and AB. Thus, it appears the structural adaptations
below the injury are primarily an adaptation to the reduced metabolic
demands of the lower limb vasculature. Indeed, in the only study to
account for the reduced metabolic demand by correcting common
femoral artery diameter for leg muscle volume, it was reported that
femoral artery diameter and peak femoral blood flow after leg
occlusion were not different between SCI and AB participants.56

Further to the adaptations that occur in the first 6 weeks after
injury, there is evidence to suggest that chronic stiffening of the
arterial system also occurs after SCI.57,58 This is particularly worrying
given that arterial stiffening is a significant independent risk factor for
the development of CVD in the AB population.59

Functional adaptations
Shear stress. Shear stress is described as the frictional force of blood
against the endothelium, and is equal to the local blood viscosity
multiplied by local wall shear rate (which is calculated by dividing the
velocity of blood flow by lumen radius). Shear stress is considered to
be a key regulator of endothelial function, which in turn is
independently linked to CVD.60 Arteries respond to chronic
changes in blood flow by altering their internal diameter such that
changes in shear stress are minimized. However, shear stress and shear
rate in the common femoral artery in individuals with SCI are

Figure 2 (Top panel) Schematic detailing the control and structure of an arteriole: (þ ) vasoconstriction; (�) vasodilatation. (Bottom panel) Hematoxylin-

and eosin-stained cryostat section taken from the primary branch of the superior mesenteric artery. Thickness of the smooth muscle and fibrous collagenous

tissue is denoted within parantheses.
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50–100% greater than in AB individuals.51,53,54 The almost doubled
shear rate appears to be a consequence of the inactivity rather than
loss of supraspinal sympathetic control, as both tetraplegics
(decreased sympathetic tone to a nearly all of the vasculature) and
low paraplegics (decreased sympathetic tone to approximately half of
the vasculature) demonstrate similar increases in shear stress
compared with AB controls.51 It should be noted that shear stress is
inversely proportional to arterial diameter cubed at constant flow and
viscosity. Thus, it has been postulated that inactivity increases shear
rate via a reduction in femoral diameter and a consequent increase in
velocity.61

Endothelial function. The vascular endothelium is a single layer of
cells that maintains anticoagulation properties, inhibits smooth
muscle proliferation, modulates vascular permeability and enables
fine control of the vascular diameter. The most commonly used
method to assess endothelial function in humans is flow-mediated
dilatation (FMD), which measures the ability of the blood vessels to
accommodate increases in flow by altering their internal diameter,
and is dependent on nitric oxide (NO) release by endothelial cells.62

Several studies document a direct independent relationship between
the risk for cardiovascular events and the degree of brachial FMD in
non-SCI individuals,63–65 whereby the degree of cardiovascular risk is
increased as the degree of brachial FMD is reduced.
In individuals with SCI, FMD has been examined in the superficial

femoral artery (SFA),62,66,67 the posterior tibial artery,68 brachial
artery67 and the radial artery.68 In the SFA, individuals with SCI
exhibit an increased absolute FMD compared with AB individuals;69

however, this difference is no longer present when the degree of FMD
is corrected for area under the shear rate curve, from the time of
occluding cuff deflation to that of peak diameter attainment.62 Such
correction for the eliciting shear stress stimulus on the endothelial cell
membrane is considered critical, especially in cases where arteries are
compared with different baseline diameters (for example, SCI vs
control).61 In the only study to investigate brachial artery FMD, it was
reported that absolute brachial artery FMD is not different between
SCI and AB individuals, whereas brachial artery FMD expressed
relative to the shear rate stimulus (in this case the change in shear rate
ratio from rest to peak hyperemic response) was reduced in SCI
compared with AB.67

Enhanced or preserved FMD below the lesion and a reduction in
FMD above the lesion appears counterintuitive given the known
positive relationship between the degree of physical activity and FMD
in AB.70–72 Such differences in FMD above and below the lesion may
be attributed to the structural adaptations that occur following SCI.
Indeed, there is an inverse relationship between vessel size and the
relative FMD.73,74 Thus a smaller deconditioned SFA may be expected
to exhibit enhanced FMD, whereas an enlarged brachial artery may be
expected to exhibit a reduced FMD. Unfortunately, the only study
directly to test this postulate by examining differences in FMD above
and below the lesion in similar-sized arteries reported that SCI
individuals exhibit a similar reduction in FMD above and below the
injury, suggesting that differences in baseline diameter do not fully
explain the differences in FMD.68 However, because of technical
difficulties with the measurement of hyperemic blood flow velocity in
the lower limb, this study was limited by the non-correction of FMD
for shear rate in the lower limbs. Thus, future studies are required to
confirm whether changes in baseline diameter explain the preserved
or enhanced FMD below the lesion in SCI. Alternative explanations
for an enhanced FMD below the lesion may be explained by chronic
elevations in shear stress and a subsequent heightened sensitivity of

NO/augmented expression of nitric oxide synthase in vascular smooth
muscle,75 although this appears unlikely since intra-arterial infusions
of sodium nitroprusside (an NO donor) results in a similar degree of
SFA vasodilatation in SCI and AB individuals.66 Taken together, these
findings suggest that FMD is enhanced or at least preserved below the
lesion after SCI. Unfortunately, changes in arterial structure and shear
stress complicate and hinder our quest to attribute such changes to a
particular mechanism. To date, the literature has also assumed that
FMD responses should be interpreted in the same way in SCI
individuals as it is in AB. Indeed, no study has examined the
relationship between the degree of FMD and risk for CVD in the
SCI population, and no study has validated the use of FMD as an
indicator of endothelial function in deconditioned limbs. Until such
studies are carried out, the functional importance of the FMD
findings remains to be determined.

RESISTANCE ARTERIES

Structural adaptations
There is very little data regarding remodeling of the resistance arteries
following SCI, which is surprising given that the resistance vessels are
crucial to blood pressure regulation. Furthermore, individuals with
SCI experience dramatic alterations in blood pressure control; thus,
one may hypothesize that the degree of vascular remodeling may be
exacerbated in such resistance vessels. Structural adaptations in
resistance vessels are most commonly assessed by measuring the
maximal hyperemic responses to limb ischemia.76–78 This technique,
which has been common place since the late 1950s, is based on the
assumption that peak-reactive hyperemia in response to ischemia is
limited by maximal cross-sectional area of the resistance vessel. More
recently, there is evidence to suggest that that hyperemic blood flow
responses in such vessels hold true prognostic value for predicting
future cardiovascular events.79,80 In the only study to investigate
resistance artery remodeling in SCI, individuals with chronic SCI
exhibited a 40–60% reduction in SFA-reactive hyperemia compared
with AB individuals.67 This far exceeds values that occur in healthy
AB individuals who undergo acute81 or chronic82 bed rest.
Remodeling of resistance arteries appears to be at least partly
attributable to general muscle atrophy, as lower-limb-reactive
hyperemia corrected per unit muscle volume is similar between SCI
and AB.56

Functional adaptations
Physiologically, it is reasonable to assume that loss of supraspinal
sympathetic control will induce maximal dilatation in the peripheral
arteries and a consequent reduction in peripheral vascular resistance.
The most accessible peripheral arteries to study in humans are the
arteries of extremities. Although a reduction in leg vascular resistance
in individuals with SCI has been reported in one study,83 the majority
of studies report the opposite, that is, leg vascular resistance,
measured during supine rest, is increased following SCI.35,84–86 The
mechanism(s) responsible for the increased leg vascular resistance do
not appear to be related to loss of centrally mediated sympathetic
tonic control, as graded infusions of phentalomine (competitive
antagonist of a-adrenoceptors) during b-adrenoceptor blockade
induced a similar degree of upper-leg vasodilation in SCI compared
with AB, indicating that a-adrenergic tone is relatively well preserved
in the legs of individuals with SCI.84 Instead, increased vascular
resistance may be accounted for by alterations in vasoconstrictor
pathways. For example, sympathetic hypoactivity following high
thoracic or cervical SCI causes a reduction in circulating levels of
epinephrine and NE,87 which may be compensated for by
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hypersensitivy to vasoconstrictor substances. Indeed, tetraplegics
have an enhanced pressor response to intravenous NE infusions88–90

and to phenylephrine (PE), an NE mimetic that is more specific
to a-adrenoceptors.88 Although such hypersensitivity may be
explained partly by an impairment of the arterial baroreflex,88 it
still remains unclear in humans whether the enhanced pressor
response actually results from post-synaptic hypersensitivity, as
impaired re-uptake of NE may also account for such a response.
There is also growing evidence that other vasoconstrictor pathways,
such as angiotensin II88,91 and endothelin I,85 may also contribute
to the increased vascular resistance in the lower limbs of individuals
with SCI.
Animal studies investigating hypersensitivity of a-adrenoceptors

after SCI have reported contrasting results. In second-order mesen-
teric (resistance) arteries of SCI rats, studies investigating a-adreno-
ceptor hypersensitivity via direct in vitro arterial preparations have
reported an enhanced pressor response to PE compared with sham-
injured controls.92 In the tail artery, a-adrenoceptor hypersensitivity
appears to be present in the acute (2 weeks), but not chronic
(8 weeks) phase post injury.93 The mechanism underlying this potential
hypersensitivity of the a-adrenoceptors appears to be of peripheral
rather than central origin, as rats that have undergone sympathetic
decentralization exhibit a similar a-adrenoceptor hypersensitivity (that
is, transient, but not chronic) as SCI rats.94 The peripheral mechanism
responsible for the enhanced pressor response does not appear to be
endothelial dysfunction, as acetylcholine (endothelium-dependent)-
induced vasorelaxation is normal following T3 SCI in rodents.16

Instead, others have suggested that impaired neuronal re-uptake of
NE and PE,92,95 and/or increased reactivity of the vascular smooth
muscle93 may be responsible for the enhanced pressor response to PE.
However, it is also likely that other explanations for such
hypersensitivity must exist as PE is metabolized in the liver by phase
I and phase II enzyme systems (mainly monoamine oxidase) and is,
therefore, not a substrate for neuronal re-uptake.
The functional consequences of any potential adrenoceptor

hypersensitivity are also still not clear, and there appears to be
disconnects between the animal and human literature. In humans,
there is a growing body of evidence that suggests that peripheral
adrenoceptor hypersensitivity may be partly responsible for the
development of AD in individuals with SCI.89 For instance, it has
been shown that individuals with high SCI exhibit a marked blood
pressure response to bladder distension compared with individuals
with low SCI or AB.96 The pressor response to bladder distension was
not associated with increased plasma NE, renin, aldosterone,
vasopressin or arginine, suggesting such a response was due to
adrenoceptor hypersensitivity. The same research group also studied
the effect of prazosin (a selective a-adrenoceptor antagonist) in
individuals with high SCI who experienced AD on a daily basis.97

They reported a reduction in the frequency and severity of AD in
those treated with prazosin, further implicating the role of
adrenoceptor hyper-responsiveness in the development of AD.
However, in animals with high thoracic SCI, it appears that a-
adrenoceptor hypersensitivity and enhanced severity of AD are not
mutually exclusive. On the contrary, it has been reported that daily
induction of a 30min bout of AD via colorectal distension caused a-
adrenoceptor hypersensitivity, but this was accompanied by a less
severe pressor response to a single bout of colorectal distension (that
is, reduced severity of AD).16 Thus, future studies are required to
determine whether a-adrenoceptor hypersensitivity occurs after SCI
and the potential effect of such hypersensitivity on the cardiovascular
system.

Microvascular changes after SCI
Compared with conduit artery function, remarkably little is known
about the microcirculation after SCI. Using a local heating protocol to
examine NO-mediated vasodilation of the skin, it has been reported
that cutaneous vascular conductance (CVC) below the injury is either
impaired98,99 or preserved.100 There is also evidence that CVC is
reduced in the arms of paraplegic individuals.99 Interestingly, the
altered CVC in SCI does not seem to be a consequence of inactivity as
an 8-week FES cycling intervention did not alter CVC in either the
arms or the legs.99 The lack of change in CVC with exercise is
probably due to the small active muscle mass involved in FES cycling,
which would be expected to impart little change in core body
temperature and skin temperature. Furthermore, an increase in core
body temperature in SCI is also associated with smaller changes in
skin blood flow compared with uninjured individuals.101 Hence, it is
unlikely that FES cycling provided a sufficient change in skin blood
flow to cause any chronic changes in CVC. The lack of exercise-
induced change in the microcirculation is in contrast to conduit
arteries, which respond positively to exercise (see ‘Deconditioning-
induced alterations in blood vessels’ below). Thus, it appears that
vascular changes with exercise in SCI are not consistent among all
vascular beds.

ABNORMAL BLOOD PRESSURE AND STRUCTURAL

ALTERATIONS IN THE VASCULATURE

Data from AB hypertensive patients provide clear insight into changes
within the small blood vessels that result from chronic elevations of
arterial blood pressure.102–104 It is now widely accepted that chronic
constriction of the blood vessels, particularly at the level of the
resistance vessels, results in locally damaging increases in blood flow
velocity and turbulence that can increase shear stress, damage the
endothelium and produce maladaptive remodeling of the
vasculature.105–107 Indeed, Rizzoni et al.108 reported that such
structural alterations in the small arteries represent the most potent
predictor for CVD in the hypertensive population. Less is known
about the effects of intermittent or episodic hypertension per se. It is
the arterioles that provide the major site of resistance to blood flow in
the circulation, and any repeated constriction at this level may cause a
sustained hypertension and a chronic fixed pattern of narrowing in
these arterioles.109 In this regard, rodent studies have revealed that
repeated episodes of blood vessel constriction stimulates arteriolar
smooth muscle cell proliferation and hypertrophy, as well as
connective tissue formation, eventually leading to increased
arteriolar wall thickness,110,111 which is characteristic of the fixed
hypertensive state.104,112

In the only study to examine the effect of episodic hypertension
per se on vascular endothelial function in SCI, it was reported that 2
weeks of repetitively induced AD in rodents with T3 SCI exacerbates
injury-induced hypersensitivity to PE in superior mesenteric arteries
(Figure 3), but does not appear to alter endothelial function.16 That
study, however, only assessed hypersensitivity following a relatively
short time span of induced AD; thus, the long-term effects of such
blood pressure oscillations in SCI remain unknown. There are several
lines of evidence from other pathological states that suggest chronic
blood pressure oscillations damage the vascular endothelium. For
example, animal models reveal that experimental alterations in
arterial hemodynamics can produce endothelial damage.113

Furthermore, numerous studies have demonstrated that
preeclampsia, an intermittent hypertensive state that occurs for a
short period of time in 4–5% of human pregnancies, is associated
with both early and late vascular dysfunction.114,115 Specifically,
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endothelial function estimated by FMD is chronically impaired in
preeclampsic vs non-preeclampsic females,116 and the vascular
smooth muscle of females with preeclampsia exhibits
hypersensitivity to vasopressors such as angiotensin.117 Such
similarities between preeclampsia and SCI suggest that blood
pressure oscillations may contribute to vascular dysfunction.
However, to date this intriguing hypothesis is yet to be tested in
humans with SCI and there is a lack of animal data demonstrating
how spontaneously occurring AD, which is known to occur multiple
times per day in animal models of SCI,118 affects the vasculature.

DECONDITIONING-INDUCED ALTERATIONS IN VASCULATURE

A likely contributor to the vascular dysfunction exhibited by
individuals with SCI is inactivity. A number of studies have
investigated the effect of inactivity on arterial dynamics in AB
individuals, and these have been reviewed elsewhere.119,120 Briefly,
using horizontal bed rest as a model for inactivity, it has been
reported that vessel diameter and blood flow are reduced, endothelial
function is impaired and shear stress and peripheral resistance are
increased.82 It has also been shown that the structural alterations
resulting from inactivity can be ameliorated with regular physical
activity,70 and that such changes occur within days or weeks of the
onset of exercise.71,72

To understand how inactivity affects arterial dynamics in SCI,
numerous studies have investigated arterial structure and function in
response to a variety of exercise training interventions, of which
hybrid exercise and FES cycle exercise have received the most
attention. These studies have been reviewed previously121 and will
not be discussed further; however, a brief summary of these studies is
warranted. Hybrid exercise, which incorporates upper body arm-
crank exercise with lower body FES, improves femoral artery function
via increases in basal arterial blood flow,122,123 peak blood flow,123

diameter,122 and FMD.122 Similarly, FES cycling alone has been
demonstrated to increase femoral artery blood flow,52,86,124 improve
compliance in small arteries125 and femoral arteries,69 normalize
femoral artery endothelial function,69 reduce leg vascular resistance86

and improve the femoral hyperemic blood flow response.52

Unfortunately, many of those studies are limited by a small number
of subjects and the lack of an appropriate control group (that is,
lesion-matched SCI control group who do not undertake the exercise
intervention). Despite these shortcomings, the dependency of any
changes in arterial dynamics on exercise has been demonstrated by
Thijjsen et al.,122 who showed that the improvements in vascular
function following FES cycle training returned to baseline values
within 1–6 weeks of exercise cessation (Figure 4).
Improved vascular function in response to exercise is consistent

with a number of other populations who exhibit an increased CVD
risk.61 In these populations, it appears likely that the exercise-induced
improvement in vascular function is due to an increased shear stress
and enhanced NO bioactivity.126 To our knowledge, no study has
investigated whether similar mechanisms underlie the exercise-
induced improvement in vascular function in people with SCI.
Interestingly, data from other populations at risk of CVD has
demonstrated that exercise-induced improvements in vascular
function may be dose-dependent and represent a balance between
oxidative stress and NO bioavailability. For instance, high-intensity
exercise, which is associated with increased oxidative stress, may
negate the potential increase in NO bioavailability that is observed
with moderate-intensity exercise.127 Given individuals with SCI
exhibit an increased oxidative stress128,129 and systemic
inflammation,130 it is highly likely that any improvements in
vascular function in SCI will be heavily dose-dependent. Thus,
future studies should attempt to elucidate the mechanistic basis for
vascular changes after SCI and the optimum type and dose of exercise
required to elicit improvements in vascular function.

Figure 3 Repetitive colorectal distension (CRD) during recovery from SCI

potentiated PE-induced vasoconstriction. (Left panel) PE concentration–

response curves for mesenteric arteries from SCI-only controls (SCI, n¼5)

and those from animals that underwent repetitive colorectal distension (SCI-

CRD, n¼5) revealed that arteries from SCI-CRD animals exhibited larger

responses to PE. (Right panel) Maximum vasoconstriction (in response to

10�5 M PE; Emax) was greater in arteries from SCI-CRD animals. Values are

mean±s.e.m. *Po0.05. Figure adapted with permission from Alan et al.16

Figure 4 Changes in femoral artery function in response to training and detraining. (Left panel) Peak obstructive-reactive hyperemia (PORH) increased after

2 weeks of training, remained elevated at 6 weeks and was reduced to pre-exercise values within 1 week of exercise cessation. *Significant post hoc

compared to week 6. (Right panel) Femoral artery diameter increased after 2 weeks of training, remained elevated at 6 weeks and was reduced to pre-

exercise values within 6 weeks of exercise cessation. *Significant post hoc compared to week 0; wsignificant post hoc compared to week 6. Figure adapted

with permission from Thijssen et al.122
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To our knowledge, only two studies have investigated the effect of
exercise on cardiovascular function in animals with SCI. Collins
et al.131 reported that acute (1 bout) treadmill exercise reduced the
severity of AD induced via colorectal distension. Although those
authors attributed this reduction in AD severity to an exercise-
induced reduction in a-adrenoceptor hypersensitivity, no measures of
hypersensitivity were included in their experimental design; hence, the
mechanistic basis for the acute reduction in AD severity could not be
determined. In the only study to investigate the long-term effects of
exercise training on cardiovascular function, Laird et al.132 reported
that 6 weeks (10min per day, 5� a week) of treadmill training
exacerbated the severity of AD, enhanced the renal pressor response to
PE and increased calcitonin gene-related peptide immunoreactivity in
lamina III/IV of the lumbar spinal cord, the latter of which suggests
sprouting of small diameter spinal afferents that may contribute to the
heightened AD severity. Exacerbation of AD and heightened vascular
dysfunction after long-term exercise training in a rodent model of SCI
appears to be at odds with the known beneficial effects of exercise on
cardiovascular function in humans with SCI (see above). However, as
only one study has investigated the vascular responses to long-term
exercise training in rodents with SCI, future studies are urgently
required to further our understanding of the potential effects of
exercise in this population.

CONCLUSIONS

Individuals with SCI exhibit vascular dysfunction below the lesion
that is characterized by a reduction in conduit artery diameter and
blood flow, increased shear rate and leg vascular resistance, and
adrenoceptor hyper-responsiveness. Although the mechanisms under-
lying vascular dysfunction following SCI remain to be elucidated,
there is emerging evidence that blood pressure oscillations, such as
those occurring in the large majority of individuals with SCI, could
potentially exacerbate vascular dysfunction. Further to changes in the
peripheral conduit and resistance vasculature, there is alarming
evidence for central arterial stiffening in individuals with SCI. Such
stiffening is likely to contribute to the early onset of CVD, which is
currently the number one cause of mortality in the SCI population.
Fortunately, it is likely that exercise provides a means by which
vascular dysfunction can be ameliorated; however, the mechanistic
basis by which exercise improves vascular function remains to be
determined. Nevertheless, the evidence in human studies to date
suggests that individuals with SCI should be encouraged to undertake
regular exercise to reduce the secondary cardiovascular complications
associated with SCI.
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