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INTRODUCTION

Ciliates are important components of the aquatic
ecosystem and play a crucial role in the functioning of
microbial food webs (Finlay et al. 1979, 1988, Azam et
al. 1983, Pratt & Crains 1985, Sherr & Sherr 1987,
Caron & Goldmann 1990). Several ciliates inhabit envi-
ronments that are unfavorable to most metazoans and
some can tolerate what would be extreme environ-
mental conditions to macrofauna (Fenchel 1969, Pat-
terson et al. 1989). Furthermore, with their rapid
growth and delicate external membranes, ciliates may
react more quickly to environmental changes than
most other eukaryotic organisms and can thus serve as
bioindicators of water pollution (Cairns et al. 1972,

Dale 1991, Foissner et al. 1992, Pratt & Balczon 1992,
Al-Rashid & Sleigh 1995, Coppellotti 1998).

Glass slides may be used as artificial substrates that
allow microorganisms to form a periphyton or biofilm,
in which periphytic ciliates are usually in high abun-
dance and richness (Cairns & Yongue 1968, Foissner et
al. 1992). Compared with sampling periphytic ciliates
from natural substrates such as stones (Foissner et al.
1992) and macrophytes (Baldock et al. 1983), collection
using glass slides seems to be non-destructive, since
most species can be observed, enumerated and even
identified in vivo by observation of the whole slide
under an inverted or a stereomicroscope. In addition,
the species richness of ciliate communities colonizing
glass slides is almost as high as those on natural
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substrates exposed to the same environmental con-
ditions (Agamaliev 1974, Foissner et al. 1992). Differ-
ences between fauna have been detected using glass
slides in different conditions (Song & Chen 1999,
Strüder-Kypke 1999, Strüder-Kypke & Schönborn
1999, Primc-Habdija et al. 2001, Weitere et al. 2003).
Moreover, recent studies have demonstrated that
periphytic ciliates are strongly related to effluent
quality in wastewater treatment processes (Fried et al.
2000, Martín-Cereceda et al. 2001).

Biomonitoring using ciliated protozoa is widely
accepted and has many advantages: (1) they are easy
to sample compared with other biota such as fish;
(2) the generation times are short and they are pro-
tected from the environment by only a delicate mem-
brane, so the potential response time to pollution
events is fast; (3) periphytic species in particular are
relatively immobile, and therefore good for local stress
studies; (4) the increasing availability of easily used
taxonomic references, and (5) artificial substrates
allowing colonization can be standardized for temporal
and spatial comparisons (Mohr 1952, Lee 1986, Foiss-
ner 1987, Clarke & Warwick 1994). In the interest of
using periphytic ciliates as indicators and further
tracking the effects of pollution and recovery of the
biotic component, it is necessary to have an adequate
knowledge of the specific community structures, the
relationship with environmental conditions as well as
suitable indices. Such studies on marine environment,
however, have rarely been carried out (Persoone 1968,
Agamaliev 1974, Coppellotti & Matarazzo 2000).

Between October 2000 and September 2001, a 1 yr
baseline survey of periphytic ciliates colonizing glass
slides was carried out in a scallop-farming area of
Jiaozhou Bay, where the most severe form of pollution
is the overload of nutrients, especially inorganic nitro-
gen and phosphorus (Ma et al. 1997). The farming of
scallops was responsible for introducing great varia-

tions of environmental factors in the study area; thus, it
offered an interesting opportunity for a biota–environ-
ment analysis. The aims of this study were: (1) to
document the taxonomic composition and the temporal
pattern of periphytic ciliates colonizing glass slides in
the scallop-farming waters; (2) to monitor the pop-
ulation dynamics of the periphytic ciliate communities
and their responses to environmental factors and (3) to
explore the possibility of using periphytic ciliate com-
munity in assessment of marine water quality.

MATERIALS AND METHODS

Study site. Jiaozhou Bay is a semi-closed bay with an
area of about 400 km2 and on average a depth of 7 m.
The north of the bay receives inflows from several
small rivers and the south is connected with the Yellow
Sea. The sampling site was located at the centre of a
scallop-farming area (about 16 km2) with a depth of
10 m (Fig. 1).

Sampling. Twenty-two samples (referred to as Oct-I,
Oct-II, etc.) were collected during a 12 mo period from
October 2000 to September 2001. Glass slides (2.6 ×
7.6 cm) were clipped to a PVC frame, and were
immersed in the water at a depth of about 1 m below
the surface. The slides were exposed as back-to-back
pairs; thus, they could be split and observed directly
without cleaning. Slides were placed vertically in the
frames, each frame holding 20 sheets of slides. The
samples were collected every 15 d. In January and
April 2001 samples were lost; therefore, at these times
the sampling could only be performed irregularly.

According to Wilbert (1969), there are no significant
differences between ciliate communities colonizing
slides within the same frame. Thus, for every sampling
date 5 replicate slides were randomly selected and
then evaluated. The slides were transferred into jars

containing water from the sampling
site, stored in a cooling box and trans-
ported to the laboratory within 1 h for
identification and counting.

Water temperature (T), salinity (S),
pH, dissolved oxygen concentration
(DO) were recorded in situ with appro-
priate sensors (WTW) at the depth of
1 m; turbidity was measured by a
turbidimeter (Hach 2100P, Hach). One
l of seawater was collected for labora-
tory analysis of dissolved inorganic
nitrogen concentrations (DIN, sum of
NO3-N, NO2-N and NH3-N) and solu-
ble reactive phosphate (SRP) followed
standard methods (APHA 1989). A fur-
ther 500 ml water sample was filtered
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through Whatman 25 mm GF/F filters by gentle vac-
uum filtration; after the extraction of the filter paper in
90% acetone for 24 h at 4°C, the concentration of
chlorophyll a (chl a) in the supernatant was determined
using a spectrophotometer (UV-1601, Shimadzu)
(Talling & Driver 1961, Jeffrey & Humphrey 1975).

Identification and enumeration of ciliates. Species
were first examined at 45-fold magnification using a
stereomicroscope to observe the behavior and move-
ment of the cells. They were then transferred using a
micropipette to a clean glass slide and placed under a
microscope (BH-2 Olympus) at 100- to 1250-fold mag-
nification to reveal cell size and other morphological
characters in detail (Foissner et al. 1999). Usually over
30 individuals of each morphotype were picked out
with micropipette and then identified to species level
using protargol (Wilbert 1975) and Chatton-Lwoff sil-
ver nitrate method (Song & Wilbert 1995). Species
identifications were made following reference to keys
and guides such as Kahl (1931) and Carey (1992). The
taxonomic scheme is according to Corliss (1979).
Detailed morphological descriptions of most species
isolated during the study have been published else-
where (Gong et al. 2001, Hu et al. 2002, Hu et al. 2003,
Ji et al. 2003, Gong & Song 2004a,b, Hu et al. 2004, Lin
et al. 2004,). The designation of species as being ses-
sile, vagile or planktonic was made according to their
mobility and the ecological niches they occupy. This
approach has been used in previous studies including
those by Foissner et al. (1992, 1999) and Coppellotti &
Matarazzo (2000).

The enumeration and measurement of ciliates in
vivo was carried out under an inverted microscope as
soon as possible after sampling (generally within 1 to
2 h) in order to prevent significant changes in species
number and composition. Using bright field illumina-
tion, 5 fields of view per slide were randomly chosen
for counting. The ciliate concentrations were calcu-
lated from all 5 replicate slides to determine average
cell density (ind. cm–2).

Biovolume estimates based on 3-dimensional mea-
surements and approximations of shape to standard
geometrical configurations (Winberg 1971) were made
for most ciliate species fixed with 2% (v/v) formalin.
The volumes of individual ciliates were converted to
biomass using a conversion factor of 0.14 pg C µm–3

(Putt & Stoecker 1989).
Data analysis of samples. Species diversity (H’)

(Shannon & Weaver 1963), evenness (J ) (Pielou 1969)
and species richness (d) (Margalef 1968) of samples
(apart from samples Jan I to March II due to low num-
ber of species present) were calculated as follows:

where H’ = observed diversity index; Pi = proportion of
the total count arising from the ith species; S = total
number of species; J = H’/lnS and d = (S – 1)/lnN,
where N = total number of individuals.

The community structures of samples were analyzed
using the PRIMER package (Plymouth Routines in
Multivariate Ecological Research, Clark & Warwick
1994). A Bray-Curtis similarity coefficient matrix was
calculated on root transformed data and separate
clusters were identified by hierarchical clustering
(CLUSTER) and on multidimensional scaling plots
(MDS). Differences between species compositions
were tested by the PRIMER program ANOSIM.

The multivariate biota–environment (BIOENV) pro-
cedure (Clarke & Ainsworth 1993) was used to explore
the potential relationships between the abiotic features
of water and the similarity patterns among biological
samples. BIOENV functions within the PRIMER program
and allows either a full search of all abiotic variable
combinations or of specific subsets, e.g. all combinations
containing certain variables or containing a fixed num-
ber of variables. Chl a was omitted from the environ-
mental matrix due to its collinearity with temperature.
Data for NO3-N, NO2-N, NH3-N and SRP were nor-
malised by logarithmic transformation before analysis.

RESULTS

Environmental conditions

The results of the physico-chemical analyses of the
water samples are shown in Table 1. The water temper-
ature was significantly lower in winter (from January to
March); salinity showed little variation (around 30 psu)
throughout the year apart from a sharp decrease to
20 psu in late July; pH values ranged from 6.9 to 7.9;
turbidities were much lower in the period from April to
July, indicating much clearer waters with Sechii depths
of about 1.5 to 3.3 m; concentrations of dissolved oxygen
generally exceeded 7.0 mg l–1 except that 2 lower values
(3.8 and 4.3 mg l–1) were recorded in 2 samples in
August; concentrations of chl a were much higher in the
period from April to August (4.25 to 6.75 µg l–1) than that
of other periods (0.08 to 3.23 µg l–1). The average value of
DIN over the whole year was 0.335 mg l–1; NO3-N (mean
0.107 mg l–1) represented 68% of the DIN in winter
(mean 0.157 mg l–1), whereas NH3-N (mean 0.522 mg l–1)
became the main component (89%) of DIN (mean
0.584 mg l–1) in summer with extremely high concentra-
tions in July and early August. The concentration of SRP
ranged from 0.006 to 0.345 mg l–1 (mean 0.099 mg l–1)
and showed no clear trend throughout the year,
although there was a minor peak in early August that
coincided with one for NO2-N.
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Taxonomic composition and annual cycle 
of abundance and biomass

A total of 37 ciliate species representing 10 orders
and 30 genera were found during the 1 yr survey
(Table 2). Hypotrichida and Cyrtophorida were the 2
orders that represented most species, accounting for 36
and 23% respectively of the species recorded; each of
the other 8 orders had a comparatively low numbers of
species (Table 2, Fig. 2).

The temporal variation of abundance clearly exhib-
ited a bimodal distribution during the course of the
year, with 2 peaks, 1 in autumn and 1 in summer
(Fig. 3). The maximum cell densities were 1245.6 ind.
cm–2 (SD = 242.1) in November 2000 and 806.5 ind.
cm–2 in August 2001. The sessile suctorian Coryno-
phrya lyngbyi was responsible for the autumn peak
when it had an extremely high abundance (1173.2 ind.
cm–2, SD = 98.5). Two peritrichous species, Pseudo-
vorticella sinensis (437.5 ind. cm–2, SD = 117.8) and
Zoothamnium duplicatum (366.2 ind. cm–2, SD = 87.4)
gave rise to the summer peak. The sessile ciliates
accounted for 83% of the total abundance for the
whole year, while the vagile and planktonic ciliates
accounted for 16 and 1% respectively (Fig. 4).

Biomass variation did not follow the bimodal pattern
as abundance. A single peak for biomass (128 µg C
cm–2) occurred in November 2000, corresponding to

the abundance peak (Fig. 3). The peak abundance in
summer 2001 that was due to the 2 peritrich species
did not, however, result in a distinct peak for biomass.
This is mainly due to the smaller biovolume of
Pseudovorticella sinensis and Zoothamnium duplica-
tum relative to Corynophrya lyngbyi (50 to 70 vs. 110
to 130 µm in cell length). The sessile ciliates accounted
for 89% of the total biomass for the whole year, the
vagile and planktonic ciliates accounted for only 9 and
2%, respectively (Fig. 4).

The species number of ciliates in the samples varied
significantly with respect to seasons. The lowest spe-
cies numbers were observed in the winter months
(from January to March 2001), when there was usually
1 planktonic ciliate Uronema marinum; species num-
bers were relatively higher in spring, summer and late
autumn despite of minor fluctuations, with 2 peaks in
December 2000 (11 species) and July 2001 (14 species)
(Fig. 3). The variation in species numbers was mainly
due to the vagile ciliates, the cumulative total of which
accounted for 73% during the period of sampling
(Fig. 4).

There were 12 species the individual abundances of
which exceeded 30% of the total at some point during
the year. These were: Orthodonella hamatus, Holo-
sticha heterofoissneri, Hartmannula angustipilosa,
Trochilia sigmoides, Pseudokeronopsis qingdaoensis,
Acineta tuberosa, Amphileptus litonotiformis, Coryno-
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T S pH Tur NO2-N NH3-N NO3-N SRP DO Chl a
(°C) (psu) (NTU) (mg l–1) (mg l–1) (mg l–1) (mg l–1) (mg l–1) (µg l–1)

Oct-I 23.0 31.0 7.9 2.10 0.052 0.023 0.037 0.345 12.2 2.03
Oct-II 20.0 31.5 8.2 3.20 0.055 0.014 0.046 0.114 13.8 1.89
Nov-I 17.0 30.0 8.1 2.46 0.063 0.035 0.058 0.095 15.0 1.00
Nov-II 10.0 29.0 7.5 7.82 0.069 0.063 0.062 0.076 16.0 0.80
Dec-I 11.0 27.0 7.1 2.66 0.056 0.067 0.081 0.076 17.6 0.33
Dec-II 8.0 28.5 7.4 5.91 0.015 0.065 0.030 0.102 8.5 0.08
Jan 6.0 31.0 7.7 4.69 0.007 0.074 0.095 0.300 11.2 0.44
Feb-I 3.5 30.0 7.6 4.44 0.001 0.019 0.111 0.006 12.1 0.82
Feb-II 3.5 28.0 7.7 3.15 0.005 0.050 0.134 0.050 11.8 1.68
Mar-I 4.0 28.0 7.7 4.21 0.002 0.063 0.107 0.008 10.5 1.59
Mar-II 5.0 28.0 7.8 1.47 0.003 0.280 0.086 0.310 9.4 2.00
Apr 8.0 29.0 7.7 0.85 0.015 0.230 0.064 0.060 12.5 2.03
May-I 11.0 30.0 7.6 1.56 0.007 0.560 0.017 0.060 10.6 6.76
May-II 17.0 29.0 7.2 1.11 0.006 0.420 0.021 0.010 7.5 4.25
Jun-I 19.0 30.5 7.4 1.47 0.006 0.100 0.014 0.060 8.6 5.34
Jun-II 16.0 30.0 7.5 2.29 0.006 0.380 0.025 0.040 6.7 5.43
Jul-I 15.0 29.0 7.4 2.31 0.018 1.170 0.023 0.020 6.5 5.10
Jul-II 12.0 30.0 6.9 2.40 0.009 0.850 0.010 0.010 8.5 5.27
Aug-I 14.0 20.0 7.1 4.52 0.080 0.630 0.018 0.110 3.8 6.41
Aug-II 13.0 30.0 7.2 3.13 0.002 0.041 0.075 0.025 4.3 4.96
Sep-I 9.0 30.0 7.4 3.19 0.036 0.352 0.021 0.105 6.8 3.24
Sep-II 9.0 29.5 7.4 5.09 0.046 0.089 0.036 0.271 6.5 2.04

Table 1. Environmental factors of sampling water between October 2000 and September 2001. Chl a: chlorophyll a; DO: dissolved
oxygen concentration; NTU: nephelometric turbidity units; S: salinity; SRP: soluble reactive phosphate; T: temperature; 

Tur: turbidity 
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phrya lyngbyi, Pseudovorticella sinensis, Thigmo-
keronopsis rubra, Zoothamnium duplicatum and Z.
plumula. The first 5 species occurred in more than one
season while the last 7 species appeared in significant
numbers during only 1 season (Fig. 5).

Temporal patterns of community structure

Cluster analysis based on square root transformed
abundances resulted the 22 samples falling into 3
groups at a 12% similarity level (analysis of similarities
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Species Biohabit Body size Abundance

ORDER: Haptorida
Chaenea teres (Dujardin, 1841) P 100–400 × 12–40 +
Lacrymaria marinum Kahl, 1933 V 200–300 × 20–40 +

ORDER: Prostomatida
Holophrya oblonga Maupas, 1883 V 300–500 × 30–50 +
Placus salinus Dietz, 1964 V 40–45 × 20–40 +

ORDER: Pleurostomatida
Amphileptus litonotiformis Song, 1991 V 120–220 × 50–80 +
Litonotus paracygnus Song, 1994 V 150–250 × 30–60 +

ORDER: Cyrtophorida
Aegyriana oliva Deroux, 1974 V 80–100 × 60–70 +
Brooklynella sinensis Gong & Song, 2005 V 40–50 × 20–30 +
Chlamydonella pseudochilodon Deroux, 1976 V 30–75 × 20–50 +
Dysteria derouxi Gong & Song, 2004 V 100 × 40 +
Hartmannula angustipilosa, Deroux & Dragesco, 1968 V 40–80 × 20–50 +
Hartmannula derouxi Gong & Song, 2004 V 60–120 × 30–70 +
Hypocoma acinetarum, Collin, 1907 V 30–50 × 15–25 +
Trochilia sigmoides Dujardin, 1841 V 20–30 × 10–18 +
Trochilioides recta (Kahl, 1928) V 40–60 × 20–30 +

ORDER: Nassulida
Orthodonella gutta (Cohn, 1866) Kahl, 1931 V 140–200 × 60–100 ++

ORDER: Suctorida
Acineta tuberosa, Ehrenberg, 1834 Se 180–200 × 40–50 ++
Corynophrya lyngbyi (Ehrenberg, 1833) Se 110–130 × 80–90 ++++

ORDER: Peritrichida
Pseudovorticella sinensis Ji, Song & Al-Rasheid, 2003 Se 50–60 × 35–45 ++++
Zoothamnium duplicatum Kahl, 1933 Se 70 × 40 +++
Zoothamnium plumula, Kahl, 1933 Se 50–70 × 30–40 +++

ORDER: Scuticociliatida
Pleuronema coronatum Kent, 1881 P 50–70 × 30–40 +
Uronema marinum Dujardin, 1841 P 30–40 × 25–28 +

ORDER: Hypotrichida
Aspidisca leptaspis Fresenius, 1865 V 60–80 × 40–50 +
Aspidisca steini (Buddenbrock, 1920) V 20–35 × 15–27 +
Diophrys scutum (Dujardin, 1841) P 140–200 × 70–100 ++
Euplotes rariseta Curds et al. ,1974 V 30–40 × 20–25 +
Euplotes vannus, (Müller, 1786) V 90–140 × 60–80 +
Holosticha bradburyae Gong et al., 2001 V 150–320 × 25–75 +
Holosticha diademata, (Rees, 1883) Kahl, 1932 V 80–90 × 28–50 +
Holosticha heterofoissneri Hu & Song, 2001 V 115–135 × 32–45 +
Oxytricha enigmatica Dragesco & Dragesco-Kernéis, 1986 P 80–100 × 30–40 +
Oxytricha saltans (Cohn, 1866) Kahl, 1932 P 40–80 × 15–30 +
Parabirojimia similis Hu, Song & Warren, 2002 V 140–300 × 30–50 +
Pseudokeronopsis qingdaoensis Hu & Song, 2000 V 130–240 × 50–70 ++
Thigmokeronopsis rubra Hu, Warren & Song, 2004 V 140–200 × 40–50 ++

ORDER: Oligotrichida
Eutintinnus inquilinus (Müller, 1776) P 100–110 × 30–40 +
Strombidium sulcatum, Claparède & Lachmann, 1858 P 30–45 × 30–40 +

Table 2. List of the species of ciliates recorded in 22 samples, including biohabit (Se: sessile; V: vagile; P: planktonic), body size
(length × width in µm), and degree of average abundance (+ = 0–10 ind. cm–2; ++ = 10–100 ind. cm–2; +++ = 100 – 400 ind. cm–2;

++++ = over 400 ind. cm–2)
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[ANOSIM], p < 0.001): group I was  composed of the
winter month samples (Jan, Feb-I, Feb-II, Mar-I and
Mar-II); group II, the 2 August samples (Aug-I and
Aug-II); and group III, the rest of the samples (Fig. 6).
Furthermore, at 19% similarity level, group III are
clustered into 3 subgroups: IIIa, IIIb and IIIc (see
Fig. 7). The MDS ordination shows a temporal distrib-
ution of samples in agreement with the dendrogram
with the 3 groups appearing at separate locations on
the plot (Fig. 7).

Linking biota to environmental factors

Table 3 summarizes the correlations between the
various environmental parameters and species diver-
sity, species evenness and species richness, excluding
the 5 samples collected in winter (Jan, Feb-I, Feb-II,
Mar-I, Mar-II) because of the lack of organisms on the
slides. All 3 indices show significant positive relation-
ships with water turbidity and NO2-N, while signi-
ficant correlations between species richness and
nutrients such as NH3-N, DIN and SRP are also noted.

Correlations between abundance of dominant spe-
cies and environmental factors are shown in Table 4.
Significant positive relationships were found between
Amphileptus litonotiformis and NO3-N (r = 0.52, p <
0.05), and between Hartmannula angustipilosa and
NH3-N (r = 0.57, p < 0.05); the suctorian Corynophrya
lyngbyi was positively correlated to pH value (r = 0.49,

164

Fig. 2. Composition of periphytic ciliate communities; the
percentage of the total number of species recorded through-

out the period of sampling is shown for each order

1400

1200

1000

800

600

400

200

0

A
bu

nd
an

ce
 (i

nd
. c

m
–2

)
B

io
m

as
s 

(µ
g 

cm
–2

)
S

pe
ci

es
 n

um
be

r

vagile sessile planktonic

0

20

40

60

80

100

120

140

0

2

4

6

8

10

12

14

16

O
ct-I

O
ct-II

N
ov-I

N
ov-II

D
ec-I

D
ec-II

Jan
F

eb-I
F

eb-II
M

ar-I
M

ar-II
A

pr
M

ar-I
M

ay-II
Jun-I
Jun-I I
Jul-I
Jul-II
A

ug
-I

A
ug

-II
S

ep
-I

S
ep

-II

Fig. 3. Temporal variations of abundance, biomass and
species number of vagile, sessile and planktonic ciliates in
colonized biofilms. Two samples collected in 1 mo with an 
interval of 15 d were referred to as month-I and month-II

89%

2%

9%16%

1%

83%

73%

13%

14%

Abundance Biomass

Species 

Sessile Vagile Planktonic 

number 

Fig. 4. Proportions of cu-
mulative abundances, bio-
mass and species numbers
of vagile, sessile and
planktonic ciliates from
October 2000 to Septem-

ber 2001



Gong et al.: Environmental effects on ciliate community structure

p < 0.05); Orthodonella hamatus showed a strong sig-
nificant positive relationship with water temperature
(r = 0.70, p < 0.01); Pseudokeronopsis qingdaoensis
correlated with SRP with high level of significance
(r = 0.74, p < 0.01), and also with water temperature
(r = 0.59, p < 0.05); there was a strong negative rela-
tionship between Pseudovorticella sinensis and salin-
ity (r = –0.70, p < 0.01) and DO (r = –0.53, p < 0.05);
there was a significant positive correlation between
Zoothamnium duplicatum and SRP (r = 0.52, p < 0.05).

For all the 22 samples collected over the year, the top
6 correlations between biota and environmental vari-
ables, established by BIOENV analysis, are dominated
by temperature and nutrients (Table 5). The highest
correlation occurs with the combination of 3 variables:
temperature, NO2-N and NO3-N. Another BIOENV
analysis for 17 samples of biota (with the 5 winter sam-
ples excluded) and environmental variables showed a
similar result: temperature, nutrients and salinity are
all closely correlated to the community structure of
periphytic ciliates (Table 5).
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Fig. 5. Abundances (ind. cm–2) and temporal distribution of 
the 12 dominant ciliate species
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responds to a good ordination with no real prospect of a

misleading interpretation
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DISCUSSION

Sampling strategy

Biological colonization of a new artificial substrate is a
dynamic process, the primary stage of which generally
exhibits the following succession: at first, bacteria
colonize the slide, followed by diatoms and autotrophic
flagellates; the next groups are bacterivorous, vagile
species of amoebae and ciliates; then larger species with
a broader feeding spectrum and sessile feeders occur
(Railkin 1995, Strüder-Kypke 1999). During the primary
colonization process, the number of species generally
increases and then equilibrates, following the Mac-
Arthur-Wilson equilibrium model (MacArthur & Wilson
1967, Franco et al. 1998). Once equilibrium of

immigration ends, the early and late interactive
phases follow, during which internal factors
such as competition and predation pressure be-
come more important (Cairns & Henebry 1982,
Railkin 1995).

The time taken for primary colonization to
reach equilibrium greatly depends on envi-
ronmental factors such as water temperature
(seasonality) and trophic conditions. Strüder-
Kypke (1999) found that the primary coloniza-
tion in bog lakes reaches its climax after 6 wk
during winter months but after only 4 wk in
summer. Equilibrium was reached after 1 mo
for the mesotrophic White Sea (Railkin 1995),
up to 12 wk in oligotrophic lakes (Bamforth
1982), and on average within 2 wk in
eutrophic habitats (Wilbert 1969). These find-
ings suggest that, given certain parameters
remain constant (e.g. artificial substrate, tar-
get habitat and period of exposure), the colo-

nized community is possibly a function of at least 2
environmental aspects, namely seasonality and trophic
conditions.

During our 1 yr survey, glass slides were exposed for
a fixed period of 15 d, which is sufficient for optimal cil-
iate colonization in most months of the year (Persoone
1968, Agamaliev 1974). However, few or even no typi-
cal periphytic ciliates were found in the winter sam-
ples: Jan, Feb-I, Feb-II, Mar-I and Mar-II. The most
likely explanation for this is that when the water tem-
peratures were extremely low (3.5 to 6°C), the time to
reach equilibrium was probably far longer than 2 wk.

Glass slides proved to be a robust, inexpensive and
reliable method for collecting periphyton ciliates.
Other forms of artificial substrate that are commonly
used to collect protozoa communities for bioassess-
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H‘ J d Abundance Biomass B/A

T –0.04 0.13 –0.11 0.01 0.08 0.31
S 0.28 0.46* 0.04 –0.20 0.09 0.35
pH –0.28 –0.03 –0.34 0.15 0.47 0.56*
Tur –0.71** –0.75** –0.53* 0.34 0.28 0.34
NO2-N –0.59* –0.55* –0.49* 0.40 0.32 0.29
NH3-N 0.40 0.18 0.50* –0.26 –0.32 –0.50*
NO3-N 0.32 0.22 0.34 0.31 0.32 0.33
DIN 0.35 0.18 0.46 –0.22 –0.27 –0.46
SRP –0.33 –0.01 –0.53* –0.04 –0.01 0.04
DIN + SRP 0.27 0.14 0.33 –0.24 –0.3 –0.48*
DO –0.03 0.04 –0.03 0.03 0.44 0.60*
Chl a 0.25 0.18 0.29 –0.20 –0.45 –0.58*

Table 3. Correlation between environmental factors (DIN = dissolved
inorganic nitrogen; see Table 1 for other abbreviations) and species
diversity (H‘), species evenness (J ), species richness (d), abundance,
biomass and biomass/abundance ratio (B/A) of the ciliate community. 

*p < 0.05; ** p < 0.01  

T S pH Tur NO2-N NO3-N NH3-N SRP DO Chl a
(°C) (psu) (NTU) (mg l–1) (mg l–1) (mg l–1) (mg l–1) (mg l–1) (µg l–1)

Acineta tuberosa 0.10 0.11 –0.03 –0.11 –0.25 –0.18 0.07 –0.13 –0.21 0.24
Amphileptus litonotiformis –0.37 –0.04 –0.07 0.37 –0.20 0.52* –0.14 –0.19 –0.04 –0.30
Corynophrya lyngbyi 0.05 0.10 0.49* 0.28 0.43 0.34 –0.33 –0.01 0.48 –0.48
Hartmannula angustipilosa 0.07 –0.03 –0.11 –0.13 –0.15 –0.04 0.57* –0.29 –0.12 0.10
Holosticha heterofoissneri 0.20 –0.11 –0.29 –0.33 –0.10 –0.32 0.36 –0.35 –0.02 0.19
Orthodonella hamatus 0.70** 0.33 0.46 –0.22 0.14 –0.14 –0.21 0.40 0.16 –0.14
Pseudokeronopsis qingdaoensis 0.59* 0.23 0.39 –0.14 0.25 –0.03 –0.26 0.74** 0.19 –0.20
Pseudovorticella sinensis –0.01 –0.7** –0.34 0.18 0.21 0.00 0.09 –0.06 –0.53* 0.41
Thigmokeronopsis rubra –0.10 –0.10 –0.42 –0.09 –0.22 –0.30 0.42 –0.22 –0.08 0.22
Trochilia sigmoides 0.22 0.07 –0.13 –0.16 –0.17 –0.17 0.10 –0.20 0.06 0.15
Zoothamnium duplicatum –0.07 0.11 –0.24 0.00 0.27 0.27 –0.17 –0.19 –0.37 0.20
Zoothamnium plumula –0.27 0.04 –0.05 0.29 –0.05 –0.05 –0.16 0.52* –0.20 –0.15

Table 4. Correlation between abundance of dominant ciliates and environmental factors (see Table 1 for abbrevations).
*p < 0.05; **p < 0.01
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ment include polyurethane foam units (PFU) (Pratt &
Kepner 1992, Xu et al. 2002). PFUs are particularly
suited for investigating species numbers over an
expanding time scale (e.g. 1, 2, 4, 8, 16 d). Such a strat-
egy is, however, not so well suited for studies that
involve long time-scales (e.g. 1 yr) or large number of
sites because it is very demanding in terms of labour
and time. In addition, squeezing PFUs may result
in the failure to recover certain types of ciliates, e.g.
sessile and highly thigmotactic species.

Taxonomic composition

In the present study, 37 species representing 30 gen-
era and 10 orders of ciliates were detected. This result
is similar to the previous report by Persoone (1968),
who, using the same sampling method, found 30 ciliate
species (belonging to 21 genera and 9 orders) in a pol-
luted harbour at Ostend, Belgium, also over a period of
1 yr. Comparing the taxonomic compositions of the 2
communities, 5 species (Trochilioides recta, Acineta
tuberosa, Corynophrya lyngbyi, Uronema marinum
and Euplotes vannus) and 14 genera (accounting for
66.7% of genera recorded in the Ostend study) were
found at both locations. Comparison at the order level
indicates even higher similarity between the 2 faunas:
8 out of the 9 ciliate orders in Ostend were also present
in the Qingdao samples. Over half the species in the
Ostend samples were from the orders Hypotrichida
(30%) and Cyrtophorida (23.3%). The same 2 orders
accounted for similar proportions of the species com-
position in the present study (36 and 23%, respec-
tively; see Fig. 2).

A large number (130) of periphytic ciliates were
found on a combination of submerged objects and
glass slides in the Caspian Sea (Agamaliev 1974). Spe-
cies in orders Hypotrichida (36.2%) and Peritrichida
(18.5%) accounted for over half of the total. However,
it should be noted that the higher species richness of
periphytic ciliates in the Caspian Sea compared to the

present study was almost certainly
due to the larger number of samples
(500) and the wider range of loca-
tions sampled.

Coppellotti & Matarazzo (2000)
investigated ciliate colonization on
glass slides in the Lagoon of Venice
and found 45 species representing
34 genera, 12 (40%) of which were
also found at Qingdao. Like the cili-
ate faunas of Qingdao, Ostend and
the Caspian Sea, the Hypotrichida
represented the largest proportion
of species (33%) in the Venice

study, the second largest being the Peritrichida
(17.8%). Cyrtophorida accounted for only 2%. In addi-
tion, 5 species of karyorelictids, namely Trachelocerca
lacrymariae, T. multinucleata, Tracheloraphis gracilis,
Remanella multinucleate and Geleia swedmarki,
which are usually considered to be benthic species
(Fenchel 1969), were also included on the species list.
The depth at which the artificial substrate was sub-
merged might explain this finding since most samples
of the Lagoon of Venice were recovered from just 60
cm above the bottom (Coppellotti & Matarazzo 2000).

Considering the clear links between the ecological
niches of protists and their morphology (Fenchel 1986,
1987), Franco et al. (1998) classified various taxonomic
orders of ciliates into feeding categories, based on 3
parameters: the structure and function of the oral
apparatus; the way the ciliate collects its food; and the
size of the captured food particles. The taxonomic
order itself, however, circumscribes certain aspects of
the morphology of any given ciliate and hence, to a
certain extent, provides a clue to its ecology. In our
study, the predominance of the dorsoventrally flat-
tened hypotrich species is almost certainly due to this
adaptation of protozoa that crawl on surfaces (Fenchel
1987). The bilaterally flattened cyrtophorids were the
second largest group in both the Ostend and Qingdao
surveys, but only a minor component of the ciliate com-
munities in the Venice Lagoon and Caspian Sea areas
(Agamaliev 1974, Coppellotti & Matarazzo 2000). This
is in contrast to the situation in freshwater habitats,
where the peritrichs usually dominate the periphytic
communities (Shen et al. 1990, Song & Chen 1999).

Univariate and multivariate analyses

Univariate correlation analysis for community and
environmental factors was carried out on data sets
omitting the 5 winter samples. Species diversity, even-
ness and richness indices are commonly employed in
community studies and are amenable to simple statisti-
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Rank 22 samples 17 samples
p Variables p Variables

1 0.588 T, NO2-N, NO3-N 0.439 T, S, NO2-N, NO3-N, SRP
2 0.581 T, NO2-N   0.425 T, S, NO2-N, NO3-N
3 0.536 T, NO2-N, SRP, NO3-N 0.420 T, S, NO2-N, NH3-N NO3-N, SRP
4 0.515 T, NO2-N, NH3-N  0.416 S, NO2-N, SRP, NO3-N
5 0.511 T, NO2-N, SRP  0.410 T, S, NO2-N, NH3-N
6 0.508 NO2-N, NO3-N 0.409 T, S, NO2-N, NH3-N, SRP

Table 5. Summary of result from biota–environment (BIOENV) analysis, with the
top 6 correlations corresponding to different variables (p = Spearman correlation 

coefficient). See Table 1 for abbreviations
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cal analysis (Magurran 1991, Ismael & Dorgham 2003).
In our case, however, diversity and evenness generally
failed to show significant relationships with environ-
mental factors whereas species richness did. A similar
finding was demonstrated in a diatom community
study which also involved the use of artificial sub-
strates (Vaultonburg & Pederson 1994). 

All 3 indices sharply decreased in the Aug-I sample
when Pseudovorticella sinensis dominated the com-
munity. This may have been due to the low salinity and
DO, both of which showed highly significant negative
correlations with the abundances of other peritrich
species such as Zoothamnium duplicatum.

The ratio of biomass to abundance (B/A) of the com-
munity, i.e. the mean body-size of species in a sample,
showed strong negative correlations with nutrients.
That is to say, the higher nutrients load, the more
small-sized species were present. This is consistent
with the use of abundance/biomass comparison (ABC)
plots to determine levels of disturbance (Warwick
1986). This method, which is usually for benthic
macrofauna studies, might thus also be suitable for
biomonitoring using periphytic ciliate communities.

Multivariate analyses were more sensitive than uni-
variate ones for detecting changes in community struc-
ture. For example, the 2 samples in August (Group II)
comprised a distinct cluster at a similarity level of 12%
(Fig. 6) that corresponded to the decrease in salinity
and the increase in concentrations of NO3-N, NO2-N
and SRP. The separation of other groups basically
reflects seasonal effects, but with few exceptions (e.g.
Jul-I was grouped together with autumn samples in
subgroup IIIc). This indicates other physico-chemical
variables also play roles in the differentiation of com-
munity structures.

The subsequent BIOENV confirms that temperature
is the most important factor influencing the structure of
the periphytic ciliate community, based either on the
entire year’s samples or on those with the winter data
omitted. Likewise, nutrients were always among the
top combinations of variables in both cases whereas
salinity was only occasionally an important factor, par-
ticularly when the data from the winter samples were
omitted from the analysis. Since many ciliates are con-
sumers of bacteria and algae in microbial loops, nutri-
ents may affect the growth and structure of attached
bacteria and diatoms and further indirectly affect the
communities of periphytic ciliate on glass slides. 

Multivariate analysis was also employed but failed to
reveal any relationships between periphytic ciliate
community on glass slides and environment with pol-
lution of heavy metals (Coppellotti & Matarazzo 2000).
They classified ciliates into 3 groups (i.e. suctoria, peri-
trichs and vagile ciliates) rather than investigating
each species individually. This significantly reduced

the dimensions of the biota matrix and inevitably
weakened the sensitivity of the multivariate analysis.

In summary, our studies demonstrate that variations
of periphytic ciliate communities were not only sea-
sonal but were also highly correlated to the concentra-
tions of dissolved nutrients in the water and hence, to
some extent, show potential for the assessment of
water quality. Further studies, e.g. site-by-site compar-
isons of community responses to specific environmen-
tal stress such as heavy metals or organic pollutants,
are needed to further explore the possibility of using
periphytic ciliates in marine water biomonitoring.
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