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A mathematical study on creeping 	ow of non-Newtonian 	uids (power law model) through a nonuniform peristaltic channel, in
which amplitude is varying across axial displacement, is presented, with slip e�ects included.�e governing equations are simpli
ed
by employing the long wavelength and low Reynolds number approximations. �e expressions for axial velocity, stream function,
pressure gradient, and pressure di�erence are obtained. Computational and numerical results for velocity pro
le, pressure gradient,
and trapping under the e�ects of slip parameter, 	uid behavior index, angle between the walls, and wave number are discussed with
the help of Mathematica graphs. �e present model is applicable to study the behavior of intestinal 	ow (chyme movement from
small intestine to large intestine). It is also relevant to simulations of biomimetic pumps conveying hazardous materials, polymers,
and so forth.

1. Introduction

�e transportation of physiological 	uids due to continuous
wavelike muscle contraction and relaxation of physiological
vessels such as the oesophagus, stomach, intestines, ureter
and blood vessels (arteries, veins, capillaries, etc.), and other
hollow tubes is known as peristalsis [1]. Peristalsis is used
in many diverse applications in the human body. �ese
include urodynamic conveyance from the kidneys to the
bladder [2], swallowing of food through the esophagus, the
movement of chyme in gastrointestinal tract, intrauterine
	uid motion, and the 	ow of spermatozoa in the ductus
e�erentes of themale reproductive tract. Further applications
include the movement of ovum in the female fallopian tube,
transport of lymph in the lymphatic vessels, and the vaso-
motion of small blood vessels such arterioles, venules, and
capillaries. �ese are all internal peristaltic mechanisms. In
biolocomotion, earthworms also use peristalsis as an external
motion achieving very e�cient “geonautical” mobility, aided

by the secretion of lubricating mucus. �is also serves to
subject the soil to continuous biological “pistons” forcing
air through burrowed tunnels, promoting aeration and soil
mixing, and encouraging mineralization of nutrients and
their uptake by vegetation [3]. Roller and 
nger pumps also
operate on this principle and furthermore modern micro-
and nanorobots are exploiting peristaltic mechanisms [4].

�e behavior of most of the physiological 	uids is known
to be non-Newtonian. A simple yet versatile rheological
model is the Ostwald-DeWaele power law model which
successfully simulates viscosity, shear thickening, and shear

thinning e�ects. Representative studies deploying this model

in peristaltic 	uid dynamics include [5–9] wherein the e�ect

of 	uid behavior index on peristaltic pumping has been

examined. Other researchers [10–18] have deployed alter-

native rheological models for peristaltic transport of non-

Newtonian 	uids including Eyring-Powell 	uids [10], couple
stress 	uids [11], Williamson viscoelastic 	uids [12], Eringen
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micromorphic models [13], fractional viscoelastic mod-
els [14], Oldroyd-B viscoelastic models [15], second-grade
di�erential Reiner-Rivlin viscoelastic 	uids [16], micropolar
models [17], and Herschel-Bulkley yield-stress 	uids [18].
�ese studies explored a variety of 	ow geometries and
generally utilized the no-slip boundary condition at the
walls. However, in real physiological systems, slip e�ects
can arise at the walls, invalidating the classical Navier no-
slip boundary condition. �is modi
ed boundary condition
has been shown to exert a signi
cant e�ect on transport
phenomena in the near-wall region of biopolymeric sheet
[19], gastric duct [20], and abnormal swallowing dynamics
[21].

Kwang et al. [22] studied the peristaltic transport of a
Newtonian 	uid through a 2D microchannel where the slip
e�ect is present. Ali et al. [23] investigated slip e�ects on

the peristaltic transport of variable viscosity magnetic 	uid.

Hayat et al. [24] studied slip e�ect on the peristaltic motion

of a third-order rheological 	uid in an asymmetric channel.
Ebaid [25] analyzed e�ects of magnetic 
eld and wall slip

conditions on the peristaltic transport of aNewtonian 	uid in

an asymmetric channel. Recently Tripathi et al. [26] studied

slip e�ects in fractional viscoelastic Oldroyd gastric 	ows
using a homotopymethod, showing that pressure is decreased
with increasing slip.

It has been pointed out by Charm and Kurland [27, 28]
that the 	ow behavior of blood in vessels of small diameter

(0.02 cm) and at low shear rates (<20 s−1) can be represented

by a power law 	uid. Also, it is found that physiological

organs are generally nonuniform ducts [29, 30]. Remaining
cognizant of these facts, in this paper we investigate peristaltic
transport of power law 
uid in a nonuniform channel under
a slip boundary condition. �e e�ects of slip parameter, 	uid

behavior index, angle between the walls, and wave number

on pumping characteristics and trapping phenomenon are

investigated numerically and depicted graphically.

2. Mathematical Formulation

We consider the peristaltic 	ow of power law 	uid in a
nonuniform channel under a hydrodynamic slip boundary
condition (see Figure 1). Let the motion of the walls of the
channel be governed by a sinusoidal nonuniformwave which
is mathematically modelled as

ℎ = �+� tan�+ � sin(2��	 ) , (1)

where ℎ, �, �, 	, �, � are transverse vibration of the wall,
half width of the channel, amplitude, wavelength, axial dis-
placement, and angle between walls of channels, respectively.
�e sinusoidal nature of peristaltic waves is established in
numerous clinical studies andwe refer readers to the standard
monograph Keener and Sneyd [31].

�e governing equations of the motion of power law
	uids (see, e.g., [6] for two-dimensional channel 	ow) are
given by

��
�� +

�V
� = 0,

� (����� + V
��
�) = −

��
�� +

������ + ����� ,

� (� �V�� + V
�V
�) = −

��
� +

����
�� + ����� ,

(2)

where ���, ���, ��� are the shear stress components and �, �,
V, , � are the 	uid density, axial velocity, transverse velocity,
transverse coordinate, and pressure, respectively.

We introduce the following dimensionless parameters:

�� = �	 ,
� = � ,
� = ��� ,
V = V

�

�� ,
ℎ� = ℎ� ,
� = �� ,

�� = ���+1��	 ,
� = �	 ,

(3)

where �, �, �, � are the wave velocity, wave number, amplitude
ratio, and viscosity, respectively, and � is the 	uid behavior
index (i.e., � < 1 is pseudoplastic and � > 1 is the
dilatant 	uid and � = 1 is the Newtonian 	uid). Using the
above nondimensional variables and taking into account long
wavelength and low Reynolds number approximation, a�er
dropping the primes, the governing equations for 	ow of a
power law 	uid reduce to

��
�� +

�V
� = 0, (4)

��
�� = (sign

��
�)

�
� (

��������
��
�
��������
�) , (5)

��
� = 0, (6)
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where sign is a Signum function and is de
ned as

sign (�) =
{{{{{{{{{

−1, if � < 0

0, if � = 0

1 if � > 0.
(7)

�e nondimensional wall equation in the wave frame is

ℎ = 1+ �� tan�+� sin 2��. (8)

Boundary conditions in the wave frame of reference are
speci
ed thus:

��
� = 0, at  = 0, (9)

� = − 1∓���� at  = ±ℎ, (10)

where �(=�/�) is the dimensionless slip parameter and � is
the dimensional slip parameter.

3. Analytical Solutions

Integrating (5) with respect to  and using condition (9) we
get

��
� = 1/� (sign

��
��)(

��������
��
��
��������
1/�) . (11)

Again integrating (11) with respect to  and using condition
(10) we get

� = (sign ����)
�

� + 1

��������
��
��
��������
1/�

⋅ {(1+�)/� − ℎ(1+�)/� − 1 + �
� �ℎ1/�}− 1.

(12)

�e stream function is de
ned, based on Cauchy-Riemann
equations, as

� = �%� ,

V = − �%�� .
(13)

Using (12) and (13) we get

% = (sign ����)
�

� + 1

��������
��
��
��������
1/�

⋅ { �
2� + 1

(2�+1)/� −ℎ(�+1)/� − � + 1

� �ℎ1/�}
−.

(14)

�e nondimensional volumetric 	ow rate in the wave frame
is de
ned as

& = ∫ℎ
0

� * = ��������
��
��
��������
1/� ℎ(1+�)/� {( �

2� + 1
) ℎ+�}− ℎ. (15)

h

x
�

Figure 1: Geometry of nonuniform peristaltic channel.

�e pressure gradient is obtained from (15) as follows:

*�
*� = −

(& + ℎ)�
ℎ(1+�) {(�ℎ/ (2� + 1)) + �}� . (16)

Integrating (16)with respect to�, the pressure di�erence across
the axial line is

� (�) − � (0) = −∫�
0

(& + ℎ)�
ℎ(1+�) {(�ℎ/ (2� + 1)) + �}� *�. (17)

4. Numerical Results and Interpretation

In this section, numerical calculations executed on Mathe-
matica so�ware are presented via graphs, that is, Figures 2–5.

We systematically study the e�ects of slip parameter (�),
rheological 	uid power index (�), angle between the walls
(�), and wave number (�) on the velocity pro
le, pressure
gradient, and the trapping phenomenon.

Figures 2(a)–2(d) illustrate the velocity pro
les (axial
velocity versus transverse displacement). All plots exhibit
a distinctly parabolic shape and are generally symmetric
along the transverse (-)axis. Figure 2(a) depicts the e�ect
of slip parameter on velocity pro
le at prescribed values of
other physical parameters, � = 0.5, ��/�� = 1, � =
1, � = 1, � = �/4, � = 1. Evidently the curves for
velocity pro
le are displaced downwardswhen the magnitude
of � increases from 0 to 0.3. �e curve for � = 0 rep-
resents the velocity pro
le for a uniform no-slip channel.
�e slip boundary condition de
ned in (10) is a Navier
modi
cation of the conventional no-slip condition. In certain
physiological 	uids, a partial nonadherence of the 	uid to
a solid boundary is observed. �is constitutes momentum
or velocity slip. �is has been observed over four decades
ago in celebrated clinical physiological testing studies with
Weissenberg rheogoniometry for both blood and intestinal
liquids [32, 33]. As such, to provide a more realistic appraisal
of actual peristaltic transport, a slip condition is advisable.
Figure 2(a) shows that as the slip parameter increases, the
magnitude of the axial velocity (�) is evidently boosted. �e
	uid moves faster at the boundary with greater slip. �is
adds momentum to the near wall 	ow which is transferred to
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Figure 2: Velocity pro
les (axial velocity versus transverse displacement) at � = 0.5, ��/�� = 1, � = 1 for (a) � = 1, � = �/4, � = 1, and
various values of slip parameter � = 0, 0.1, 0.2, 0.3, (b) � = 0.1, � = �/4, � = 1, and various values of 	uid behavior index � = 0.8, 1, 1.2, (c)� = 0.1, � = 1, � = 1, and various values of inclination of channel � = �/3, �/4, �/6, and (d) � = 0.1, � = 1, � = �/4, and various values of
wave number � = 1, 2, 3.

the core region also and generates a consistent acceleration
in the 	ow. In the absence of the momentum slip e�ect
(� = 0) the magnitude is suppressed. �e implication is
that, with a slip e�ect, the axial 	ow distribution receives
a nontrivial modi
cation (acceleration) which is generally
ignored in the majority of peristaltic 	ow models, and this
can in	uence the e�ciency of the peristaltic pumping. It may
further be noted that with heat and species di�usion present
(not studied in the current analysis) thermal jump (slip) and
solutal slip (mass slip) at the deformable boundaries can also
be incorporated and this is being considered by the authors
for future investigations.

Figure 2(b) illustrates the impact of 	uid behavior index
on velocity pro
le at 
xed values � = 0.1, � = �/4, � = 1,� = 0.5, ��/�� = 1, � = 1. It is found that the curve is
displaced in an upward direction with increasing the value
of �. �e curve for � < 1 (� = 0.8) represents the velocity
pro
le for pseudoplastic and for � > 1 (� = 1.2) represents
the dilatant 	uid and for � = 1 represents Newtonian 	uid.
Figure 2(c) describes the velocity pro
le for various values of
angle between the peristalticwalls (� = �/3, �/4, �/6) at 
xed
values � = 0.1, � = 1, � = 1, � = 0.5, ��/�� = 1, � = 1.

�e curves of velocity pro
le move downwards with large
inclination between the peristaltic walls. Figure 2(d) shows
the curve between axial velocity and transverse displacement
for various values of wave number (� = 1, 2, 3) at 
xed value
of � = 0.5, ��/�� = 1, � = 1, � = 0.1, � = 1, � = �/4.
�e magnitude of axial velocity increases with increasing the
wave number.

Figures 3(a)–3(d) illustrate the evolution of axial velocity
with axial displacement (longitudinal coordinate) for varia-
tion of the slip parameter (�), rheological 	uid behavior index
(�), channel inclination angle (�), and wave number (�).
Inspection of these 
gures con
rms the sinusoidal nature of
the axial 	ow in the direction of propagation of the peristaltic
waves. In all these graphs the channel is diverging (� >0). �e axial velocity is generally enhanced in magnitude
with greater wall slip e�ect (Figure 3(a)), and the amplitudes
are progressively increased with progressive distance from
the apex of the channel. With greater geometric divergence
of the channel, the peristaltic wave is allowed to grow
considerably and axial 	ow is substantially accelerated with
increasing slip. Conversely with greater power law index,
owing to an elevation in bio	uid viscosity, the momentum in
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Figure 3: Axial velocity versus axial displacement at � = 0.5, ��/�� = 1,  = 1 for (a) � = 1, � = �/4, � = 1, and various values of slip
parameter � = 0, 0.1, 0.2, 0.3, (b) � = 0.1, � = �/4, � = 1, and various values of 	uid behavior index � = 0.8, 1, 1.2, (c) � = 0.1, � = 1, � = 1,
and various values of inclination of channel � = �/3, �/4, �/6, and (d) � = 0.1, � = 1, � = �/4, and various values of wave number � = 1, 2, 3.

the propulsion is opposed and the axial velocity is depleted,
as observed in Figure 3(b). Dilatant (� > 0) bio	uids
clearly propel slower than pseudoplastic (� < 0) bio	uids.
Figure 3(c) reveals that as the channel apex angle (inclination)
is increased, the axial velocity along the pumping direction
is markedly accelerated again. Naturally with an expanding
frontier to propel into, the waves grow and the bio	uid
accelerates. Finally in Figure 3(d), we 
nd that, with greater
wave number, the axial velocity magnitudes are enhanced for� > 0 whereas they are decreased for � < 0.

Figures 4(a)–4(d) show the pressure gradient across the
axial displacement for di�erent physical parameters. �e
pattern of pressure gradient is nonlinear and is opposite to
the geometry of nonuniform peristaltic channel across the
longitudinal axial line. It is apparent that pressure gradient is
maximized at the point of contraction and minimized at the
point of relaxation. Pressure enhances with distance between
the walls. �e e�ect of slip parameter on pressure gradient
at 
xed values of other physical parameters � = 0.5, & = 1,� = 1, � = �/4, � = 1 is shown in Figure 4(a). It is
observed that pressure gradient increases with increasing the
magnitude of �. �e impact of 	uid behavior index (�) on

pressure gradient at 
xed values � = 0.5, & = 1, � = 0.1,� = �/4, � = 1 is illustrated in Figure 4(b). It is found
that the pressure gradient increases with 	uid behavior index.
Pressure gradient for pseudoplastic bio	uid is a minimum
and it is maximum for dilatant 	uid. Figure 4(c) shows the
e�ect of inclination between the peristaltic walls on pressure
gradient for various values of (� = �/3, �/4, �/6) at 
xed
values � = 0.5, & = 1, � = 0.1, � = 1, � = 1. It is found
that the pressure gradient is maximumwith small inclination
and minimum with large inclination. Figure 4(d) depicts the
e�ect of wave number on pressure gradient at 
xed value of� = 0.5, & = 1, � = 0.1, � = 1, � = �/4. �e pressure gradient
once again is found to be enhanced with increasing the wave
number.

Trapping is an interesting phenomenon in peristaltic
motion in which an internally circulating bolus of 	uid
is formed by closed streamlines and this trapped bolus is
pushed ahead along with the peristaltic wave. �e e�ects
slip parameter, power law index, angle between the walls,
and wave number are illustrated with the help of contour
plots (Figures 5(a)–5(i)) of streamlines. A general observation
regarding the e�ects of slip parameter (�), 	uid behavior
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Figure 4: Pressure gradient versus axial displacement at � = 0.5, & = 1 for (a) � = 1, � = �/4, � = 1, and various values of slip parameter� = 0, 0.1, 0.2, 0.3, (b) � = 0.1, � = �/4, � = 1, and various values of 	uid behavior index � = 0.8, 1, 1.2, (c) � = 0.1, � = 1, � = 1, and various
values of inclination of channel � = �/3, �/4, �/6, and (d) � = 0.1, � = 1, � = �/4, and various values of wave number � = 1, 2, 3.

index (�), angle between the walls (�), and wave number
(�) is that the trapped bolus increases in size as �, �, and �
increase. However, the size of the trapped bolus decreases in
size as � increases. Evidently slip exerts a nontrivial in	uence
on pressure gradient, velocity, and bolus magnitude and
growth.

5. Conclusions

In this study the two-dimensional peristaltic 	ow of a power
law physiological 	uid with the e�ect of slip condition
through a nonuniform channel has been investigated. On
the basis of computational and numerical results, the main

ndings of the present study are as follows:

(i) Axial velocity across the transverse displacement
is parabolic in nature and shi�ed in a downward

direction increasing � and � and the converse behav-
ior with � and �.

(ii) Pressure gradient across the axial length increases
with slip parameter, 	uid behavior index, and wave
number and decreases with increasing inclination
between walls.

(iii) �e size of trapped bolus increases with �, �, and �
increase and decreases with �.

�e present study has ignored curvature e�ects of the physio-
logical vessel which are important in clinical applications and
also biomimetic pumps employed in chemical engineering.
�ese introduce a Coriolis e�ect and can lead to secondary
vortex e�ects. �ey have been studied by other authors [34]
and will be addressed imminently.
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Figure 5: Continued.
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Figure 5: Streamlines in wave frame at � = 0.3, & = 0.6 for (a) � = 0, � = 1, � = �/6, � = 1, (b) � = 0.1, � = 1, � = �/6, � = 1, (c) � = 0.2,� = 1, � = �/6, � = 1, (d) � = 0, � = 0.8, � = �/6, � = 1, (e) � = 0, � = 1.2, � = �/6, � = 1, (f) � = 0, � = 1, � = �/4, � = 1, (g) � = 0, � = 1,� = �/3, � = 1, (h) � = 0, � = 1, � = �/6, � = 2, and (i) � = 0, � = 1, � = �/6, � = 3.

Nomenclature

ℎ: Transverse vibration of the wall�: Half width of the channel�: Amplitude�: Axial displacement�: Axial velocity
V: Transverse velocity: Transverse coordinate�: Pressure�: Wave velocity�: Fluid behavior index�: Dimensional slip parameter&: Volumetric 	ow rate in the wave frame�: Wave number

�: Amplitude ratio�: Viscosity�: Dimensionless slip parameter%: Stream function	: Wavelength�: Angle between walls of channels���, ���, ���: Shear stress components

�: Fluid density.
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