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Abstract. Peristaltic pumping of fluid is a fundamental method of transport in many biological
processes. In some instances, particles of appreciable size are transported along with the fluid,
such as ovum transport in the oviduct or kidney stones in the ureter. In some of these biological
settings, the fluid may be viscoelastic. In such a case, a nonlinear constitutive equation to describe
the evolution of the viscoelastic contribution to the stress tensor must be included in the govern-
ing equations. Here we use an immersed boundary framework to study peristaltic transport of a
macroscopic solid particle in a viscoelastic fluid governed by a Navier-Stokes/Oldroyd-B model.
Numerical simulations of peristaltic pumping as a function of Weissenberg number are presented.
We examine the spatial and temporal evolution of the polymer stress field, and also find that the
viscoelasticity of the fluid does hamper the overall transport of the particle in the direction of the
wave.
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1. Introduction
Peristaltic pumping, the transport of a fluid in a tube due to waves of contraction, is fundamental
to many physiological flows. Peristaltic contractions in the oviduct and uterus contribute to ovum
transport and embryo implantation in the uterus [4, 11, 10, 13, 23], and peristaltic contractions
are responsible for the passage of urine from the kidneys to the bladder [5]. In some instances,
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particles of appreciable size compared to the tube diameter are transported along with the fluid. For
example, the embryo diameter at implantation is about 150 microns, whereas the uterine channel
diameter is on the order of 1000 microns [10]. Similarly, peristalsis of urine through the ureter can
sometimes be accompanied by particles such as kidney stones [21].

In this manuscript, we present a model of the transport of a single, macroscopic, solid particle
in a 2D peristaltic channel. Since many biological fluids have suspended microstructures, they may
exhibit complicated, non-Newtonian responses. For this reason, we consider a simple model of a
viscoelastic fluid within the channel. We describe a mathematical model and numerical method that
couples the motion of moving boundaries to a Navier-Stokes/Oldroyd-B description of an elastic
Boger fluid using an immersed boundary framework [27]. In particular, we extend the immersed
boundary model of peristaltic pumping of a Stokes viscoelastic fluid [31] to include inertial effects,
and the immersed boundary model of pumping of a solid particle within a Newtonian fluid [12] to
include viscoelastic effects.

Many fluid dynamical studies of peristalsis, both analytical and numerical, have been examined
in the last decades, e.g. [10, 25, 20, 19, 28, 30]. A recent analytical study of particle motion in a
peristaltic fluid flow was presented in [21]. A long wavelength perturbation method is used for the
fluid, along with the Basset-Boussinesq-Oseen equation for the small spherical particles. Particular
application to the transport of calcium renal stones from the kidney to the ureter is studied. In this
analysis, the fluid motion did influence the motion of the particles, but the particles did not affect
the motion of the fluid. An experimental study of macroscopic particle transport in a peristaltic
channel was presented in [18]. Immersed boundary simulations of the transport of a macroscopic
particle in a Newtonian fluid were performed in [12], and a lattice Boltzmann model of this same
system was recently presented [8].

Here, we study the transport of a single solid particle in a peristaltic channel with two-way
coupling between the viscoelastic fluid and the particle. We find that the viscoelasticity of the fluid
does hamper the overall transport of the particle in the direction of the wave. We examine the
trajectories of the particle at different Weissenberg numbers and the temporal and spatial evolution
of the viscoelastic stress field.

2. Mathematical Model
We choose an Oldroyd-B model that is derived from a microscopic description of viscoelastic-
ity where the fluid is treated as a dilute suspension of polymers in a Newtonian solvent [3, 24].
The transport and distension of this immersed polymer field generates extra stress on the New-
tonian solvent. The Navier-Stokes/Oldroyd-B equations that model the conservation of mass and
momentum of this incompressible, viscoelastic fluid are:
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σ + rt

(
∂σ

∂t
+ u · ∇σ − (∇u)σ − σ(∇u)T

)
− 2µpd(u) = 0 in Ω (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p− µs∆u−∇ · σ = f in Ω (2.2)

∇ · u = 0 in Ω (2.3)

Here u is the fluid velocity, p is pressure, σ is the viscoelastic contribution to the stress tensor,
d(u) = 1

2

(∇u +∇uT
)

is the fluid deformation tensor, rt is the polymer relaxation time, µs is the
solvent viscosity, and µp denotes the polymer contribution to the zero-shear-rate viscosity.

Denoting dimensionless quantities with a prime and µ0 = µs + µp, a dimensionless Navier-
Stokes/Oldroyd-B model is obtained by the change of variables:

σ′ =
Lσ

µ0U
, x′ =

x

L
, u′ =

u

U
, t′ =

tU

L
, p′ =

Lp

µ0U
, f ′ =

fL2

µ0U
,

where L and U are characteristic length and velocity scales respectively. The non-dimensional
Navier-Stokes/Oldroyd-B system is then (dropping primes):

σ + λ

(
∂σ

∂t
+ u · ∇σ − (∇u)σ − σ(∇u)T

)
− 2βd(u) = 0 in Ω (2.4)

Re

(
∂u

∂t
+ u · ∇u

)
+∇p− (1− β)∆u−∇ · σ = f in Ω (2.5)

∇ · u = 0 in Ω (2.6)

where
Re =

LUρ

µ0

, λ =
rtU

L
, β =

µp

µ0

.

Here λ is the Weissenberg number, Re is the Reynolds number, and β ∈ (0, 1) denotes the fraction
of the total viscosity that is viscoelastic.

In order to model the coupling of the viscoelastic fluid with the motion of the channel walls
and the solid particle, we represent each structure as a Lagrangian immersed boundary Γ whose
time dependent configuration is given by X(ξ, t). Each immersed boundary transmits force to the
surrounding fluid due to its elastic properties:

f(x, t) =

∫

Γ

F (X, t)δ(x−X(ξ, t)) dξ. (2.7)

Here δ is the 2D Dirac delta function. We will describe the choice of F in detail in Section 3. We
also require that the immersed boundaries move with the fluid, and enforce the no-slip condition:

u(X(ξ, t), t) =
∂X(ξ, t)

∂t
=

∫

Ω

u(x, t)δ(x−X(ξ, t)) dx. (2.8)

Equations (2.7) and (2.8) couple the Lagrangian descriptions of the immersed boundaries with
the Eulerian description of the fluid and viscoelastic stress.
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3. Numerical Methods
Following [12, 31], we model peristaltic pumping in a channel using an immersed boundary for-
mulation. Our computational domain is chosen to be a square whose side length is one wavelength
of the channel. The channel walls extend from one end of the domain to the other, and periodic
boundary conditions are used to model the infinite extent of the channel. Fluid velocity, pressure
and the polymer stress tensor will be discretized on an Eulerian background grid, but the channel
walls and the surface of the solid particle will be described by discrete collections of Lagrangian
points.

Channel walls and solid particle.
Elastic forces chosen to enforce preferred kinematics of the channel walls and the circular ge-
ometry of the solid particle will be communicated to the background viscoelastic fluid using the
Lagrangian force density F = F w + F s in (2.7). Here F w is used to drive the motion of the
channel walls, and F s is a tensile force chosen to maintain the circular shape of the solid particle.
As in [31], the force imposed by the immersed boundary walls Xw is:

F w = −kw (Xw(η, t)− Z(η, t)) . (3.1)

One may interpret these ‘tether’ forces as being due to very stiff springs of rest length zero connect-
ing the wall points Xw(η, t) to target or tether points Z(η, t). The stiffness constant kw determines
how closely the preferred shape is followed. In order to propagate a sinusoidal peristaltic wave,
we choose the tether points:

Z(η, t) =

{
(η,

1

2
+ d(η, t))

∣∣η ∈ [0, 1]

}
∪

{
(η,

1

2
− d(η, t))

∣∣η ∈ [0, 1]

}
, (3.2)

where
d(η, t) =

α

2π
(1 + χ sin(2π(η − t))) . (3.3)

In (3.3), χ is the channel occlusion ratio with χ = 0 yielding a straight channel and χ = 1
yielding a completely occluded channel. The aspect ratio of the channel, α, is taken to be 1.5 in
all computations. In the simulations, we discretize the channel walls using mw total points equally
spaced along each wall.

In order to model a solid particle whose preferred shape is a circle of radius r we discretize the
circle using ms equally spaced points Xs. Hookean springs with stiffness ks and rest length deter-
mined by the initial configuration are used between each point and every other on the discretized
circle to maintain a fixed solid shape. The Lagrangian force F s for point i on the circle is

F si = −ks

2

∑

j 6=i

(
∥∥Xsi −Xsj

∥∥−∆rij)
(Xsi −Xsj)∥∥Xsi −Xsj

∥∥ , (3.4)

where ∆rij denotes the rest length of the spring connecting point i to point j on the discretized
solid. How closely this elastic object maintains its circular shape may be controlled by the choice
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Figure 1: A MAC grid with pressure and diagonal stress components σ11 and σ22 stored at cell
centers, the off diagonal component of the viscoelastic stress σ12 is stored at cell corners, and the
fluid velocity components u1 and u2 are stored on vertical and horizontal cell edges respectively.

of stiffness constant ks. Note that if ks = 0, the discretized points do not exert force on the
surrounding fluid, and act as passive marker particles.

Eulerian discretization
The 2D periodic domain Ω is discretized using a uniformly spaced MAC (marker and cell) grid.
MAC grids store pressure and diagonal stress components at cell centers, the off diagonal compo-
nent of the viscoelastic contribution to the stress σ is stored at cell corners, and the x and y compo-
nents of the fluid velocity are stored at the center of vertical and horizontal cell edges respectively
[16, 31] (See Figure 1). A nice description of the use of staggered meshes for viscoelastic fluids is
given by Teran et al. in [31]. Second order finite difference techniques are used to discretize the
spatial derivatives.

Finite difference evolution of viscoelastic stress often exhibits grid-scale oscillations in some
components [15], and excessive growth in stress gradients [33]. To control polymer stress gradi-
ent growth a stabilization technique must be implemented. Here we follow [33], and add stress
diffusion to the constitutive equation (2.4) with coefficient ν:

σ + λ

(
∂σ

∂t
+ u · ∇σ − (∇u)σ − σ(∇u)T − ν∆σ

)
− 2βd(u) = 0. (3.5)

In this modified constitutive equation, we set the stress diffusion coefficient ν to be on the order
of the mesh spacing squared. Adding stress diffusion in this manner does not alter the consistency
of the numerical discretization. For other works discussing stress diffusion in viscoelastic flows
see [9, 17, 26, 29]. Other stabilization techniques are commonly used in finite element imple-
mentations of viscoelastic flow including Streamline-upwind Petrov/Galerkin (SUPG) [6, 7], and
Discontinuous Galerkin (DG) solution methods [1, 2].
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Temporal discretization
At the beginning of the nth time step, we are given un,σn. We advance to un+1,σn+1 by using
the projection method for the incompressible Navier-Stokes equations as in Kim and Moin [22]
and the viscoelastic evolution algorithm as in [31].
Step 1 (Velocity solve): Solve for the intermediate velocity field u∗. A Crank-Nicholson method
and a second order Adams-Bashforth method are used to temporally discretize the viscous and
convective terms:

u∗ − un

∆t
= −1

2

(
3un · ∇un − un−1 · ∇un−1

)
+

(1− β)

2Re
∆ (u∗ + un)− 1

Re
∇·σn+

1

Re
fn (3.6)

Step 2 (Poisson step): Incompressibility is enforced by solving the Poisson problem:

∆p̂ =
1

∆t
∇ · u∗, (3.7)

setting p̂ at a point to insure the system is not singular. Then un+1 = u∗ −∆t∇p̂.
Step 3 (Stress evolution): Writing (3.5) as

∂σ

∂t
= g(σ, u), (3.8)

where
g(σ,u) =

2β

λ
d(u)− 1

λ
σ − (

u · ∇σ − (∇u)σ − σ(∇u)T − ν∆σ
)
, (3.9)

we explicitly update σ using a second-order Runge-Kutta method by defining two intermediate
values of the viscoelastic extra stress σn+A and σn+B:

σn+A = σn + ∆tg(σn,un+1), (3.10)
σn+B = σn+A + ∆tg(σn+A,un+1), (3.11)

and

σn+1 =
σn + σn+B

2
. (3.12)

Immersed boundary and fluid interaction
The Eulerian force density is a Dirac delta function layer of force supported by the immersed
boundaries (2.7). A regularized delta function with compact support is used to spread the La-
grangian elastic forces from the immersed boundaries to the grid. Following [27], we choose
δh(x) = φh(x)φh(y) where h denotes the grid spacing, and

φh(r) =





1
8h

(
3− 2|r|

h
+

√
1 + 4|r|

h
− 4r2

h2

)
if |r| ≤ h,

1
8h

(
5− 2|r|

h
−

√
−7 + 12|r|

h
− 4r2

h2

)
if h < |r| ≤ 2h,

0 otherwise .

(3.13)
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Denoting the discrete Lagrangian point Xk and its Lagrangian force density as F k, Equations (2.7)
and (2.8) may be discretized as:

fi,j =
∑

k

F kδh(xi,j −Xk) ∆lk, (3.14)

and
uk =

∑
i,j

ui,jδh(xi,j −Xk) h2. (3.15)

Summary of algorithm
Given Xn,σn, un at time tn = n∆t:

• Calculate the force F due to the configuration Xn of the immersed boundaries.

• Spread F using the regularized delta function δh to the computational grid with (3.14).

• Solve the Navier-Stokes/Oldroyd-B equations using the three steps above.

• Update the position of the immersed boundary points by interpolating the fluid-velocity at
each immersed boundary point using (3.15).

The Kim-Moines projection method used for the Navier-Stokes solution is second order in both
space and time, as is the Runge-Kutta advancement of the polymeric stress field. However, the use
of the discretized delta functions to spread the forces of the immersed boundaries to the background
grid, and to interpolate the grid velocities back to the immersed boundaries degrades the overall
convergence to first order in space and time [27]. We note that variants of this implementation
that regard the immersed boundary as having a finite thickness are shown to be second order
[14]. We also note that since the immersed boundary forces are treated explicitly, ∆t must be
chosen small enough to ensure stability of the Navier-Stokes time-stepping. In particular, as the
stiffness constants used to drive the peristaltic channel and to maintain the circular particle shape
are increased, the time step must be decreased.

4. Numerical Results

Channel with no particle: mean flow calculations
To exam the effects of viscoelasticity on the flow generated by a peristaltic pumping channel, we
consider a base set of model parameters. These geometric, physical and numerical parameters are
the defaults used for the simulations presented and are shown in Table 1.

The stiffness constants kw and ks are used to enforce the traveling waves along the channel
walls and the circular shape of the solid particle respectively. While these values could be chosen
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to reflect material properties of the walls and particle, here we treat them as numerical parameters
that are chosen high enough to give the desired kinematics of the walls and to maintain the particle
shape. Because of the stiffness of the springs, the larger the values of kw and ks, the smaller the
time step ∆t must be for the stability of the calculations. We have found that for simulations that
involve a highly-occluded channel (χ = 0.5) and a significant Weissenberg number (λ = 5), it was
necessary to use the smaller values of kw, ks and ∆t presented in Table 1. In addition, for stable
evolution of the stress equation, we found that choosing ν = h2 ≈ 1.525e − 5 was satisfactory.
Without this added stress diffusion, the viscoelastic calculations became unstable for long run
times.

Parameter Symbol value Parameter Symbol value
Domain Ω (0,1)×(0,1) Solid particle radius r 0.075
Reynolds No. Re 1 Channel points mw 580
Grid spacing h 1

256
Particle points ms 241

Time step ∆t 1
10000

, 1
5000

Stiffness kw kw 2000, 4000
Diffusion coefficient ν h2 Stiffness ks ks 1.5,2
Viscosity fraction β 1

2
Aspect ratio α 1.5

Table 1: Case study parameters

The primary function of a peristaltic channel is to pump fluid in the direction of the wave. The
efficacy of this pumping is measured by calculating the dimensionless mean flow rate θ in the wave
direction. First, we will examine the effects of the occlusion ratio χ and Weissenberg number λ
on this flow rate in the absence of an immersed solid particle. The mean flow rate is obtained by
calculating the mass flux across the channel at a fixed position in the laboratory frame, xf , over a
period:

θ =
π

αχ(T2 − T1)

∫ T2

T1

∫ 1
2
−d(xf ,t)

1
2
+d(xf ,t)

u1(xf , y) dy dt. (4.1)

For a Newtonian fluid with Reynolds number zero, Jaffrin et al [20] computed the zeroth order
dimensionless mean flow rate θ in the case of α ¿ 1 as

θS =
3χ

2 + χ2
. (4.2)

This result was later extended to second order in α by Jaffrin and Shapiro in [19]:

θJ =
15χ2 + 2α2

(
4(1− χ2)

5
2 + (7χ2 − 4)(1− χ2)

)

χ (5(2 + χ2) + 6α2χ2(1− χ2))
. (4.3)

In our non dimensional channel, the period of the wave is one time unit. The mean flow rate θ
over this unit period can be computed as a function of the start time for the periodic movement, t0,
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at a fixed position in the laboratory frame xf , and is given by:

θ(t0) =
π

αχ

∫ t0+1

t0

∫ 1
2
−d(xf ,t)

1
2
+d(xf ,t)

u1(xf , y) dy dt. (4.4)

Because of the evolution of the viscoelastic stress, the nonzero Weissenberg calculations take
some time to reach steady state. To illustrate this transient behavior, we consider flow rates aver-
aged over a period for two different starting times, t0 = 0.2 and t0 = 19. We choose a non-zero
start time to allow the Newtonian case to reach a steady, periodic state. The mean flow for differ-
ent occlusion ratios and for Weissenberg numbers λ = 0, 0.5, 1, 2, and 5 are shown in Figure 2.
While we report the mean flow rate computed at cross-section xf = 0.5 of the channel, due to
incompressibility, the average flow rate is the same at all cross-sections. Figure 2 also shows a
comparison with the asymptotic analysis of Jaffrin and Shapiro [19]. Note that the asymptotic
values of mean flow predicted using a Stokes flow assumption agree very well with the calculated
values computed for the Newtonian case λ = 0, Re = 1. We remark that the results presented here
illustrate that the addition of inertial terms gives a slight increase in the flow rates, as computed for
the Stokes/Oldroyd-B case in [31]. When t0 = 19 (the twentieth period of motion for the walls),
the viscoelastic cases have reached their steady, periodic state. The flow rate values computed for
the Newtonian simulations during the twentieth period are indistinguishable from those computed
during the early period. However, this is clearly not the case for the λ = 5 calculation. As ob-
served in [31], the maximum mean flow rate at this higher Weissenberg number is achieved at a
value of χ well before complete occlusion. We also see a striking change in the ordering of flow
rates at a fixed occlusion ratio with respect to Weissenberg number when examining the values
computed with t0 = 0.2 versus t0 = 19. During the early period, the Newtonian case gives the
largest flow rate, followed by λ = 5 monotonically down to λ = 0.5. During the twentieth period,
this is entirely reversed, with a perfect ordering of decreasing flow rate as Weissenberg number is
increased.

To examine this reversal further, we plot the value of periodic mean flow rate θ(t0) as a function
of starting time for two occlusion ratios (χ=0.1 and χ = 0.4) in Figure 3. The Newtonian (λ = 0)
case is seen to obtain a steady periodic mean flow rate almost instantaneously. The mean flow rate
in the channel with greater occlusion ratio takes longer to achieve steady state, as do the higher
Weissenberg number flows.

Channel with solid particle
We now illustrate the dynamics of transport in a peristaltic channel with an immersed solid particle
within a Navier-Stokes/Oldroyd-B fluid with Re = 1 and λ = 5. Figure 4 shows a sequence of
snapshots of a particle of radius r = 0.075 initially placed along the centerline of a channel with
occlusion ration χ = 0.4 and aspect ratio α = 1.5. In order to interpret the directions and degree
of distension of the polymer field, we examine the scaled and shifted viscoelastic stress field

σ̂ =
λ

β
σ + I (4.5)
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Figure 2: Mean flow rate vs. occlusion ratio for different Weissenberg numbers for period of wave
starting at t = .2 (left) and t = 19 (right).
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χ = 0.4 (right).
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where I denotes the identity tensor. This shifted stress tensor arises from alternate, but equivalent,
scalings of the Oldroyd-B equations and has been used in [31, 32]. Here, the trace of σ̂ is the mean-
square distension of the microscopic polymer coils. The tensor σ̂ is symmetric positive definite,
and therefore has two positive eigenvalues and corresponding orthogonal unit eigenvectors. We
may visualize the stress field by plotting ellipses whose orientation and aspect ratio are determined
by the eigenvalues and eigenvectors of the stress tensors at grid points. These ellipses are aligned
with the local polymer distension in the fluid. The shifted stress tensor σ̂ represents the initial
isotropic stress σ = 0 (σ̂ = I) as a circles of radius 1, as seen in the time zero frame of Figure
4. A consistent scaling of the ellipse axes is used when displaying all frames in Figure 4, showing
the evolution of the stress field as the wave travels to the right. Looking at early times, (t =
0.1, 0.2, 0.3) it is evident that in the portion of the channel where the walls are moving inwards
(note velocity vectors), the stress ellipses become elongated in the x-direction. Similarly, in the
portion of the channel where the walls are moving outwards, the stress ellipses are elongated in
the y-direction. As the movement of the channel walls continue, the maximal polymer distension
occurs in the narrowest portion of the channel.

Since we are using an immersed boundary framework to model the solid particle, the particle
itself is filled with the same viscoelastic fluid in its interior as that on its exterior. Because there
is little deformation of the particle, the polymer stress ellipses in its interior undergo only small
changes.

Figure 4 shows that the particle is transported towards the right, in the direction of wave motion,
in a non-monotonic manner. The particle is moving rightwards until the frame t = 0.6, but then
reverses direction as it approaches the neck of the channel (or as the contraction wave passes over
it). It is then carried to the left until just before t = 1.0. Because the particle’s center was placed
directly on the centerline of the channel, there is no lateral displacement due to symmetry. Figure 5
examines the effect of the presence of the particle on the polymer stress fields for times t = 1, 4
and 12. Contours of the trace of σ are depicted in a channel with no particle (top row) and in a
channel with the particle (bottom row). For each fixed time, the contours are scaled consistently. It
is evident that the maximal polymer distension is in the contracted region of the channel, with and
without the particle. However, the presence of the particle does magnify this distension. Moreover,
it is when the particle is in the narrowest region that it is transported backwards. The stress build-up
in the contraction increases the velocity of this backwards motion.

We examine the effect of Weissenberg number on the particle trajectory in Figure 6, where the
x-position of the centroid of the particle is plotted as a function of time for λ = 0, 0.5, 1, 2, and
5. For very early times, each trajectory basically overlaps, because the polymer stress is initially
isotropic and uniform. However, the paths quickly diverge. The particle moving in the Newtonian
fluid enjoys maximal transport. The upper inset in Figure 6 shows that for early times, while the
Newtonian particle exhibits the largest displacement, it is followed by λ = 5 monotonically down
to λ = 0.5. The lower inset shows that this is reversed for later times, when a steady state has been
achieved for all Weissenberg numbers.
Note that the trajectories of the x-component of the centroids each evolve to temporally periodic
states, but with different periods. We see that the Newtonian particle spends longer time progress-
ing forward within its period compared to the particles in the viscoelastic fluids. We examine this
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Figure 4: Evolution of stress ellipses during the first period of pumping for a viscoelastic fluid with
Re = 1, λ = 5. Here the occlusion rato is χ = 0.4, the aspect ratio of the unit wavelength channel
is α = 1.5 and the radius of the particle is r = 0.075.
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Figure 5: Columns show contours of tr(σ) at t = 1, t = 4, and t = 12 without (top) and with a
solid particle (bottom). Here the occlusion rato is χ = 0.4, the aspect ratio of the unit wavelength
channel is α = 1.5 and the radius of the particle is r = 0.075.

Figure 6: Trajectory of x-position of centroid of solid particle placed initially at x = 0.25 in the
channel for Weissenberg numbers λ = 0, 0.5, 1, 2, 5.
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in more detail by looking at how the period of the particle evolves over time. (This information
may be extracted from the trajectory information by tabulating the times at which the x-centroid of
the particle changes direction from moving in a positive direction to a negative direction.) Figure 7
shows the time evolution of period length of the trajectories for λ = 0, 0.5, 1, 2, 5 (on the left),
as well as the time evolution of the fraction of that period where the particle has negative veloc-
ity (on the right). The period length for of the movement of the solid particle in the Newtonian
fluid is immediately established, and is about 1.7 times the unit speed of the wave of contraction
being passed along the channel walls. Note that the higher Weissenberg numbers take longer to
reach their steady periodic state, as expected. We also see a dramatic difference in time spent go-
ing backwards, increasing from just about 12% for the Newtonian case to over 25% for the most
viscoelastic fluid λ = 5.
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Figure 7: The temporal period of the solid particle as a function of starting time for Weissenberg
numbers λ = 0, 0.5, 1, 2, 5 (left). The fraction of each period that the particle experienced negative
velocity in the x-direction for Weissenberg numbers λ = 0, 0.5, 1, 2, 5 (right).

5. Conclusions
These numerical studies of the peristaltic pumping of a macroscopic solid particle show that there
is a marked difference in transport when the surrounding fluid is Newtonian compared to viscoelas-
tic. The presence of viscoelasticity impedes the forward motion of the particle, and enhances the
backward motion. We have demonstrated that complex stress patterns evolve in the peristaltic
channel, and that these patterns are also influenced by the presence of the particle.

Here, we have chosen to focus on the symmetric case of a single particle placed along the
centerline of the channel at the single Reynolds number Re = 1. Future investigations will examine
the effect of particle diameter, Reynolds number, and initial particle placement. Moreover, we
expect that the pumping of a group of macroscopic solid particles in this viscoelastic fluid will
give result to complex collective dynamics.
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