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Abstract. Peristaltic transport of Herschel-Bulkley fluid in contact with a Newtonian
fluid in a channel is investigated for its various applications to flows with physiological
fluids (blood, chyme, intrauterine fluid, etc.). The primary application is when blood
flows through small vessels; blood has a peripheral layer of plasma and a core region of
suspension of all the erythrocytes. That is, in the modeling of blood flow, one needs
to consider the core region consisting of a yield stress fluid and the peripheral region
consisting of a Newtonian fluid. Peristaltic pumping of a yield stress fluid in contact
with a Newtonian fluid has not previously been studied in detail. Our goal is to initiate
such a study. The Herschel-Bulkley fluid model considered here reduces to the power
law model in the absence of yield stress.

The stream function, the velocity field, and the equation of the interface are obtained
and discussed. When the yield stress τ0 → 0 and when the index n = 1, our results agree
with those of Brasseur et al. (J. Fluid Mech. 174 (1987), 495) for peristaltic transport of
the Newtonian fluid. It is observed that for a given flux Q the pressure rise ∆p increases
with an increase in the amplitude ratio φ. Furthermore, the results obtained for the
flow characteristics reveal many interesting behaviors that warrant further study of the
peristaltic transport models with two immiscible physiological fluids.

1. Introduction. Physiological fluids in animal and human bodies are, in general,
pumped by the continuous periodic muscular oscillations of the ducts. These oscillations
are presumed to be caused by the progressive transverse contraction waves that propagate
along the walls of the ducts. Peristalsis is the mechanism of the fluid transport that occurs
generally from a region of lower pressure to higher pressure when a progressive wave of
area contraction and expansion travels along the flexible wall of the tube. Peristaltic
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flow occurs widely in the functioning of the ureter, food mixing, and chyme movement in
the intestine. It also occurs in the movement of eggs in the fallopian tube, the transport
of the spermatozoa in the cervical canal, transport of bile in the bile duct, transport of
cilia, and circulation of blood in small blood vessels. There are many other important
applications of this principle such as the design of roller pumps, which are useful in
pumping fluids without contamination due to contact with the pumping machinery.

In 1966, Latham [1] made an experimental study of the mechanics of peristaltic trans-
port. The results of the experiments were found to be in good agreement with the
theoretical results of Shapiro [2]. Based on this experimental work, Burns and Parkes
[3] studied the peristaltic motion of a viscous fluid through a pipe and a channel by
considering sinusoidal variations at the walls. Shapiro et al. [4], in 1969 analyzed peri-
staltic pumping with long wavelengths at low Reynolds number. The small Reynolds
number assumption of Shapiro et al. [4] was endorsed by Jaffrin [5] who extended the
analysis by considering the higher-order terms to include cases where the Reynolds num-
ber was higher. Barton and Raynor [6] studied peristaltic flow in tubes using long wave
approximation. Barton and Raynor also analyzed the case for a low Reynolds number.
Peristaltic waves in circular cylindrical tubes were analyzed by Yin and Fung [7], and a
complete review of peristaltic transport is given by Jaffrin and Shapiro [8].

In physiological peristalsis, the pumping fluid may be considered as a Newtonian
or a non-Newtonian fluid. Kapur [9] suggested several mathematical models for the
physiological flows. Among these some models deal with Newtonian fluids and others
with non-Newtonian fluids. Kapur made theoretical investigations of blood flows by
considering blood as a Newtonian as well as a non-Newtonian fluid. Blair et al. [10]
reported that blood obeys Casson’s model for moderate shear rate flows. Furthermore,
they observed that there is no difference between Casson’s and Herschel-Bulkley’s plots
over the range where Casson’s plot is valid for blood. In particular they suggested that
the Herschel-Bulkley model more closely explains the phenomena for cow’s blood than
Casson’s model. Chaturani and Samy [11] discussed blood flow through a stenosed artery
by considering blood as a Herschel-Bulkley fluid. Peristaltic pumping of viscoelastic fluids
was investigated by Bohme and Friedrich [12]. Shehawey and Mekheimer [13] discussed
couple-stresses in peristaltic transport of fluids. Peristaltic transport of a physiological-
fluid in a tapered channel is studied by Eytan et al. [14], and this model is applied to
explain embryo transport within the uterine cavity.

We know, of course, that a Herschel-Bulkley fluid is a semisolid rather than an actual
fluid. We know by definition, a fluid cannot support a shear stress. This implies that
materials that have a “yield-stress” are not fluids – such materials are referred to as a
Bingham fluid. A detailed discussion of the inappropriateness of the use of such models
for fluids is discussed in the recent review paper by Krishnan and Rajagopal [15]. While
such materials might not be fluids, there is value in studying them as they give some
idea of the behavior of fluids of interest under certain limits.

Among models of semisolids the Herschel-Bulkley model is preferable because it de-
scribes blood behavior very closely and because the Newtonian, Bingham, and power-law
models can be derived as special cases. Furthermore, Herschel-Bulkley fluids describe
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very well material flows with a nonlinear stress-strain relationship either as a shear-
thickening or a shear-thinning one. Since the shear-thinning and shear-thickening fluids
play an important role in biomedical engineering, Málek and his co-workers studied thor-
oughly several issues related to these fluids (for rigorous mathematical issues see Málek
et al. [16]; for global existence results see Málek et al. [17] and for regularity and
stability results see Málek et al. [18]). Some examples of fluids behaving in this man-
ner include food products, pharmaceutical products, slurries, polymeric solutions, and
semisolid materials (for details see Alexandrou et al. [19]).

There are numerous examples of peristaltic motion. Most living systems involve move-
ment of physiological fluids in response to mechanical forces, for example, mobility of the
spermatozoa and ova, propulsion of bacteria and protozoa, blood flow through circulatory
systems of mammals. The characteristics of these systems are studied through suitable
mathematical models of the systems using the principles of biofluid mechanics. It has
been suggested that the peristalsis may be associated with the vasomotion of small blood
vessels. Biomedical instruments such as heart-lung machines work using this mechanism.
Mechanical devices such as finger pumps apply peristalsis when pumping blood and other
bio-fluids. The peristaltic pumping of a toxic liquid is used in the nuclear industry to
avoid environmental contamination.

The viscosity near the wall of the duct has been found to be different than that in the
central region for many biological systems. Taking this fact into consideration Shukla
et al. [20], using Stokes approximations, studied two layered peristaltic flows through
tubes and channels. The results are applied to intestinal flows and the flows in the
ducts efferentes of the male reproductive tract. The effect of a peripheral layer of dif-
ferent viscosity on peristaltic pumping with Newtonian fluid is discussed by Brasseur
et al. [21]. Peristaltic motion of two immiscible fluids in a tube is investigated by
Rao and Usha [22]. Usha and Rao [23] discussed the peristaltic pumping of two lay-
ered power-law fluids in a tube. Most of the tubular organs in the living body con-
tain a thick coating of mucus secreted at the inner surface of the tube walls, which
serves as an excellent lubricant and protectant for the tube walls. The composition and
the rheology of the gastric mucus have a significant effect on the chyme transport in
the gastrointestinal tract. Experiments show that the rheological nature of the mucus
can vary from a weak, viscoelastic gel to a shear thinning or Newtonian fluid depend-
ing on the concentration of mucin. For example, the rat gastric mucus is observed
to show a shear-thinning behavior with apparent viscosity 7.8 × 104 ± 1.1 × 105 Pa·s
(Zahm et al. [24]). Hence, the study of gastrointestinal fluid mechanics is incomplete
without understanding the effect of rheology of mucus as well as that of the chyme on
peristaltic flow.

Motivated by these studies and their various applications, the peristaltic transport
of two fluids in a channel is investigated. The fluid in the core layer is described by
the Herschel-Bulkley model and the fluid in the peripheral layer is considered to be a
Newtonian fluid. The interface, which is also a streamline, is determined from a non-
linear equation. The velocity, the stream function, and the pressure rise are obtained.
Some deductions are made, and the results agree with those of earlier works.
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2. Basic equations. The basic equations governing the flow of an incompressible
Navier-Stokes fluid are the field equations

div V = 0, div σ + ρf = ρ
dV
dt

,

where V is the velocity, f the body force per unit mass, ρ the density, and d/dt the
material time derivative. σ is the Cauchy stress defined by

σ = −pI + T,

T = 2µD + S,

S = 2ηD,

where D is the symmetric part of the velocity gradient, that is,

D =
1
2
[L + LT ], L = grad V.

Also, −pI denotes the indeterminate part of the stress due to the constraint of incom-
pressibility; µ and η are viscosities.

The Herschel-Bulkley model combines the effects of Bingham and the power-law be-
havior in a fluid. For low strain rates (γ̇ < τ0/µ0), the “rigid” material acts like a very
viscous fluid with viscosity µ0. As the strain rate increases and the yield stress threshold,
τ0, is passed, the fluid behavior is described by a power law

η =
τ0 + k[γ̇n − (τ0/µ0)n]

γ̇
,

where k is the consistency factor and n is the power-law index.

3. Formulation and solution of the problem. Consider the peristaltic transport
of a physiological fluid consisting of two immiscible and incompressible fluids of different
viscosities occupying a channel of half-width a. The core fluid is a Herschel-Bulkley fluid
with viscosity µ1 while the peripheral layer is a Newtonian fluid with viscosity µ2. The
wall deformation due to the propagation of an infinite train of peristaltic waves is given
by

Y = H(X, t) = a + b sin
2π

λ
(X − ct), (3.1)

where b is the amplitude, λ is the wavelength and c is the wave speed (for details see
Figure 1). The subsequent deformation of the interface separating the core and the
peripheral layer is denoted by Y = H1(X, t), which is not known a priori.

Two facts follow from the assumption that the channel length is an integral multiple
of the wavelength λ. First, the pressure difference across the ends of the channel is a
constant and the periodicity of the interface is the same as that of the peristaltic wave.
Secondly, the flow becomes steady in the wave frame (x, y) moving with the velocity
c away from the fixed frame (X, Y ) called the laboratory frame. The transformation
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Fig. 1. Physical model

between these two frames is given by

x = X − ct, y = Y

u(x, y) = U(X − ct, Y ) − c

v(x, y) = V (X − ct, Y )

p(x) = P (X, t)

ψ = Ψ − Y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

where ψ and Ψ are the stream functions in the wave and laboratory frames, respectively,
using the following nondimensional quantities:

x =
x

λ
; y =

y

a
; h =

h

a
; t =

ct

λ
;

φ =
b

a
; τ0 =

τ0

µ
(

c
a

)n ; p =
an+1

λµcn
p;

Ψ(i) =
ψ(i)

ac
; q =

q

ac
; F =

Fa

µ1λc
;

u(i) =
u(i)

c
=

∂Ψ(i)

∂y
; ν(i) =

ν(i)λ

ac
=

∂Ψ(i)

∂x
;

µ = 1, 0 ≤ y ≤ h1,

µ = µ

(
=

µ2

µ1

)
, h1 ≤ y ≤ h,

⎫⎪⎬
⎪⎭ (3.3)
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where u(i) and v(i) are the x and y components of velocities in the wave frame. Under
the lubrication approach, the equations governing the motion become (ignoring the bars)

∂

∂y

[
τ0 + µ1

(
−∂2ψ(1)

∂y2

)n
]

= −∂p

∂x
, (3.4)

0 =
∂p

∂y
, (3.5)

and

∂

∂y

[
µ2

(
−∂2ψ(2)

∂y2

)]
= −∂p

∂x
. (3.6)

The dimensionless boundary conditions are

Ψ(1)
p = 0 at y = 0, (3.7)

τyx = 0 at y = 0, (3.8)

Ψ(2) = q = constant at y = h, (3.9)

Ψ(1) = q1 = constant at y = h1, (3.10)

Ψ(2)
y = −1 at y = h, (3.11)

where q and q1 are the total and the core fluxes respectively across any cross section in
the wave frame. Furthermore, the velocity and the shear stress are continuous across the
interface. The peripheral-layer flux is q2 = q− q1. We infer from the incompressibility of
the fluids and the lubrication theory that q, q1 and q2 are independent of x. The average
nondimensional volume flow rate Q over one period T

(
= λ

c

)
of the peristaltic wave is

defined as

Q =
1
T

∫ T

0

∫ h

0

(u + 1)dy dt

= q + 1. (3.12)

The stream function is obtained using the boundary conditions (3.7) to (3.11) together
with the boundary conditions at the ends of the channel given by specifying Q or the
pressure difference ∆p across one wavelength.

On solving equations (3.4)-(3.6) together with the boundary conditions (3.7)-(3.11)
and

ψ(1) = Ψ(1)
p at y = y0,

where y0 is the upper limit of the plug flow region and ψ
(1)
p is the stream function in

the plug flow region, we obtain the stream function in the core (plug flow region and
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non-plug flow region) and peripheral layer. This is

ψ(1)
p = −y +

P ky

k + 1

[(
h1 −

τ0

P

)k+1

−
(
y0 −

τ0

P

)k+1
]

+
Py

2µ
(h2 − h2

1) for 0 ≤ y ≤ y0, (3.13a)

ψ(1) = −y +
Py

2µ
(h2 − h2

1)

+
P k

k + 1

[
y

(
h1 −

τ0

P

)k+1

−
(
y0 − τ0

P

)k+1

k + 2

{
k + 2 − y0 +

τ0

P

}
−

(
y − τ0

P

)k+2

k + 2

]

for y0 ≤ y ≤ h1,

(3.13b)

ψ(2) = −Py3

6µ
+

(
Ph2

2µ
− 1

)
y +

(
q + h − Ph3

3µ

)
for h1 ≤ y ≤ h, (3.13c)

where P = − ∂p
∂x .

As τ0 → 0 (i.e., y0 → 0) and k = 1, the results obtained agree well with the results of
Brasseur et al. [21]. The stream function for the case of a power-law fluid (single fluid)
is obtained by setting µ = 1, h1 = h and τ0 = 0 in any one of the solutions (3.13). Also
the stream function for the Bingham fluid case is obtained by setting µ = 1, n = 1 and
h1 = h in (3.13).

The velocity field is given by

u(1) =
(Ph1 − τ0)k+1 − (Py − τ0)k+1

P (k + 1)
+

P (h2 − h2
1)

2µ
− 1, (3.14a)

u(1)
p =

(Ph1 − τ0)k+1 − (Py0 − τ0)k+1

P (k + 1)
+

P (h2 − h2
1)

2µ
− 1, and (3.14b)

u(2) = −1 +
P

2µ
(h2 − y2). (3.14c)

Also we have Ψ(1)
yy = 0 at y = y0. Using this condition and (3.13), we get the upper limit

of the plug flow region y0 as a solution of the equation

τ0(h3
1 − 3h2h1 + 2h3) − 6µ(Q − Q1)y0 = 0. (3.15)
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The interface is also a streamline as seen from the boundary condition (3.10). For a
given geometry of the wave and the time-averaged flux Q, the unknown interface h1(x)
is solved from (3.13) using the boundary conditions Ψ1 = q1 and Ψ2 = q2. Substituting
Ψ1 = q1 in (3.13a), we get

Q1 =
Ph1

2µ
(h2 − h2

1) +
P k

k + 1

[
h1

(
h1 −

τ0

P

)k+1

−
(
y0 − τ0

P

)k+1

k + 2

{
(k + 1)y0 +

τ0

P

}
−

(
h1 − y0

P

)k+2

k + 2

]
(3.16)

where Q1 = q1 + h1.
For determining P in equation (3.16) we use the continuity of the stream function at

the interface given by ψ1 = q1 at y = h1. Hence,

Q1 = Q − P

6µ
[h3

1 − 3h2h1 + 2h3], (3.17)

where Q = q + h.

Eliminating P from equations (3.16) and (3.17), we get the nonlinear equation gov-
erning the interface. The equation for the interface is given by

3h1(Q − Q1)(h2 − h2
1)

d

+
1

(k + 1)dk

[
h1(6µ(Q − Q1)h1 − τ0d)k+1

6µ(Q − Q1)

− 1
36µ2(k + 2)(Q − Q1)2

(6µ(Q − Q1)y0 − τ0d)k+1{6µ(k + 1)y0(Q − Q1) + τ0d}

− 1
36µ2(k + 2)(Q − Q1)2

(6µ(Q − Q1)h1 − y0d)k+2

]
− Q1 = 0, (3.18)

where d = h3
1 − 3h2h1 + 2h3.

4. Discussion of the results. As it is difficult to express q1, h1 and P explicitly,
their values are computed using an iterative procedure. Without loss of generality, we
take y0 as zero in all the computations involving small values of the yield stress τ0. The
interface which is a streamline in the wave frame is determined for different yield stresses
with α = 0.7, φ = 0.6, Q = 0.1, k = 3, and µ = 0.1 and is shown in Figure 2. It is
observed that the variation of the interface shape for low-yield stresses gives rise to a
thinner peripheral layer in the dilated region. The uniform sinusoidal interface shape is
not observed in the figure. From Figure 3, it is found that an increase in the viscosity
ratio µ gives rise to a thinner peripheral layer. From Figure 4 it is noticed that as k

increases, the thickness of the peripheral layer increases in the region 0 ≤ x ≤ 0.6.
The relationship between Q and ∆p is depicted in Figure 5 for different amplitude

ratios when µ = 0.1, τ0 = 0.1, k = 3, and α = 0.7. We observed that for a given ∆p,
the flux Q increases with increasing amplitude ratio φ. For a given flux Q, the pressure
rise ∆p increases with an increased amplitude ratio φ.
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Fig. 2. The shape of the interface for α = 0.7, φ = 0.6, Q =
0.1, µ = 0.1, k = 3 and for different yield stresses τ

Fig. 3. The shape of the interface for α = 0.6, φ = 0.6, Q =
0.1, τ0 = 0.1 and for different viscosity ratios µ
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Fig. 4. The shape of the interface for α = 0.7, φ = 0.6, Q =
0.1, τ0 = 0.1 and for different index values

Fig. 5. The variation of ∆P with Q for different Q for µ = 0.1, τ0 =
0.1, k = 3 and α = 0.7
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Fig. 6. The variation of ∆P with Q for different µ for α = 0.7, φ =
0.6, τ0 = 0.1 and k = 3

The variation of pressure rise with time-averaged flux is calculated and presented in
Figure 6 for different values of viscosity ratios µ with α = 0.7, φ = 0.6, τ0 = 0.1. It is
found that for a given ∆p, the flux Q depends on µ and increases with increasing µ. For
a given flux Q, ∆p increases with increasing µ.
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