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Abstract

Peristaltic transport of a power-law fluid in an axisymmetric porous tube is studied un-
der long wavelength and low Reynolds number assumptions. The slip boundary conditions
given by Beavers-Joseph and Saffman type are considered in obtaining solutions for the
flow and resulting pumping characteristics are compared. Trapping and reflux phenomena
are discussed for various parameters of interest governing the flow like Da Darcy number,
α Beavers-Joseph constant and n the fluid behavior index. The novel feature arising in
pumping due to a straight section dominated (SSD) wave form other than sinusoidal wave
is discussed. The time mean flow becomes negative in free pumping for a shear thickening
fluid or shear thinning fluid for an expansion or contraction SSD wave respectively. The
pressure rise increases for the increasing of Da against which the peristalsis acts as a pump
and decreases for an increase in α. Peristalsis works as a pump against a greater pressure
rise for a shear thickening fluid and the opposite happens for a shear thinning fluid, com-
pared with Newtonian fluid. The trapped bolus volume for sinusoidal wave is observed to
decrease as the fluid behavior index decreases from shear thickening to shear thinning fluid
whereas it increases for increasing Darcy number. The rheological property of the fluid,
wave shape and porous nature of the wall play an important role in peristaltic transport
and may be useful in understanding transport of chyme in small intestines.
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1 Introduction

Peristalsis is an important mechanism for mixing and transporting fluids, which is generated by

a progressive wave of contraction or expansion moving on the wall of the tube. The mechanism

is found in the gastrointestinal, urinary, reproductive tracts and many other glandular ducts in

a living body. Considerable analysis of this mechanism has been carried out, primarily for a

Newtonian fluid with a periodic train of sinusoidal peristaltic waves. The inertia free peristaltic

flow with long wavelength analysis was given by Shapiro et al. [1]. The early developments

on mathematical modeling and experimental fluid mechanics of peristaltic flow was given in a

comprehensive review by Jaffrin and Shapiro [2].
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The main features of the peristaltic pumping, such as trapping and reflux phenomena, have

been studied extensively for Newtonian fluids. However, the rheological properties of the fluids

can affect these characteristics significantly. Further, many of the physiological fluids are known

to be non-Newtonian. Peristaltic transport of blood in small vessels was investigated using the

viscoelastic, power-law, Casson, micropolar fluid models by [3, 4, 5, 6] respectively. Peristaltic

flow of a second-order fluid in a planar channel and in an axisymmetric tube is studied by

Siddiqui et al. [7, 8] under long-wavelength assumption. The power-law model was used to

study the fluid transport in the male reproductive tract by [9], small intestine and oesophagus

by [10, 11]. Peristaltic pumping of two-layered power-law fluids was investigated by [12, 13, 14].

However, the stress-strain relationship taken in [5, 9] for the peristaltic transport of power-law

fluid (Ostwald-de Waele type) is valid only when the rate of shear is negative and if it is positive

a real solution does not exist as the fluid behavior index n takes any positive real number. The

important characteristics of peristalsis such as trapping and reflux phenomena are not studied

in most of the above literature.

The gastrointestinal tract is surrounded by a number of heavily innervated smooth muscle

layers, contraction of these muscle layers can mix the contents of the tract and move food in

a controlled manner in an appropriate direction, [15]. Epithelial cells, beneath these layers are

responsible for the absorption of nutrients and water from the intestine. These layers consists

of many folds and there are pores through the tight junctions of them. Motivated by these

facts, peristaltic motion of a power-law fluid is investigated in an axisymmetric tube with porous

material at the boundary. A model coated with a porous layer at the wall for a Newtonian

fluid was studied by Reese and Rath [16] in order to model the transport of synovial fluid in a

knee joint. The boundary conditions to be satisfied at the interface between a porous medium

and fluid layer are the matching of velocity and stresses. Beavers and Joseph [17] were the

first to investigate the fluid flow at the interface between a porous medium and fluid layer in

an experimental study and proposed a slip boundary conditions at the interface. A theoretical

justification, using a statistical approach, of the boundary conditions of Beavers-Joseph was given

by Saffman [18] and proposed an improved boundary condition.

In this paper the peristaltic transport of a power-law fluid (Ostwald-de Waele type)[19] which

accommodates the study of both shear thinning and shear thickening fluids in an axisymmetric

porous-tube is investigated under long-wavelength and inertia free approximations. This non-

Newtonian fluid model is one of the simplest and most widely used. Food stuffs like banana

puree, tomato paste and apple sauce are observed to fit this power-law model (Cheremisinoff[20],

Usha and Ramachandra Rao [12]). They have presented the corresponding fluid consistency and

behavior index parameters at different temperatures. As the wall of the tube is made up of porous

material, slip boundary conditions of both Beavers-Joseph and Saffman type are considered to

obtain the solutions. It is assumed that the Darcy’s law holds inside the porous medium which

is saturated with a fluid of power-law type. The effects of straight section dominated(SSD)

wave forms on peristaltic pumping are discussed. A negative mean flow is achieved under free

pumping for a shear thickening fluid with a SSD expansion wave and the same is observed for

a SSD contraction wave in the case of a shear thinning fluid. These results are similar to those

of Provost and Schwarz [21], who observed that whenever the fluid deviated from Newtonian
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behavior there exists a nontrivial peristaltic wave form for which the time averaged flux is zero

or negative in the absence of a mean pressure gradient. Peristaltic pumping, trapping and reflux

phenomena are discussed for various parameters of interest governing the flow.

2 Mathematical formulation

Consider the peristaltic transport of an incompressible power-law fluid in an axisymmetric tube,

shown in Fig. 1. A porous material saturated with a power-law fluid with a consistency different

from that of the inside power-law fluid but having the same fluid behavior index n forms the

tube boundary. The mean radius of the tube is a. The wall of the tube is flexible, which is an

interface of the fluid and porous medium. The wall is subjected to a periodic peristaltic wave

movement with wave speed c, wavelength λ and amplitude b. The instantaneous radius at any

axial station Z is given by R = H(Z − ct), where t is time. The flow becomes steady in a wave

frame (r, z) moving away with speed c in the direction of the wave from a fixed frame (R, Z)

given by

z = Z − ct, r = R, u = U − c, v = V, p(x) = P (X, t), (2.1)

under the assumptions that the pressure difference across a wavelength is constant and the

length of the tube is an integral multiple of the wavelength. Here (u, v) and (U, V ) are the

velocity components in axial and radial directions, p and P are the pressures in wave and fixed

frame of references respectively.

We choose the Ostwald-de Waele power-law model which is characterized by the constitutive

equation [19]

τ = −m1





∣∣∣∣∣∣

√
1

2
(∆ : ∆)
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Here τ is the stress tensor, ∆ is the symmetric rate of deformation tensor,
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m1 and n are respectively the consistency and fluid behavior index parameters. A shear thinning

or pseudo plastic fluid is characterized by the fluid behavior index n < 1, and n > 1 corresponds

to a shear thickening or dilatant fluid. For n = 1, the Eq. (2.2) reduces to the usual Newtonian

model.

The equations of motion of a power-law fluid in an axisymmetric tube are given by

ρ
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Introducing the non-dimensional quantities
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where m2 is the consistency parameter of the fluid in the porous medium, and the components

of stress in Eq. (2.3)(dropping the primes), we get
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+ 1
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and Re = ρan/m1c
n−2, Reynolds

number for power-law fluid [22]. Under the assumptions of long wavelength, δ << 1 and low

Reynolds number Re → 0 (negligible inertia), the governing Eq. (2.4) become

∂p
∂z

= 1
r

∂
∂r

(
r ∂u

∂r

∣∣∣∂u
∂r

∣∣∣
n−1

)
,

∂p
∂r

= 0.



 (2.5)

The flow in the porous medium is governed by the Darcy’s law and following Shenoy [23], the

non-dimensional Darcy’s law of power-law fluid is given by

|upor|n−1 upor = −Da

m

∂p

∂z
, (2.6)

where upor is the velocity in the porous medium, Da = k
an+1 , Darcy number, k is a modified

permeability and its dimension is length to the power n + 1 due to the power-law behavior of

the fluid.

2.1 Boundary conditions

The boundary is an interface which separates the power-law fluid and the porous medium. Here,

we present solutions for two types of slip boundary conditions and try to compare the effects of

these conditions on the flow characteristics.

Beavers-Joseph boundary conditions for a power-law fluid are given by (in a waveframe of

reference):
u = uh − 1, at r = h(z),

∂u
∂r

= α

Da
1

n+1
(uh − upor) , at r = h(z),

∂u
∂r

= 0, at r = 0,





(2.7)

where uh is the slip velocity at the boundary r = h(z), α is dimensionless Beavers-Joseph constant

which depends on the nature of the porous medium but not on the fluid viscosity.

The boundary conditions corresponding to Saffman are given by:

u = Da
1

n+1

α
∂u
∂r
− 1, at r = h(z),

∂u
∂r

= 0, at r = 0.



 (2.8)

The third condition of (2.7) and second condition of (2.8) imply that the velocity is maximum

on the axis of the tube.
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3 Solutions

3.1 Beavers-Joseph model

From Eq. (2.6), the velocity of porous medium is upor = −
(

Da
m

)1/n ∂p
∂z

∣∣∣∂p
∂z

∣∣∣
1
n
−1

. Integrating the

Eqs. (2.5) using boundary conditions (2.7), we get
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The solution in terms of stream function
(
u = 1
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r
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)
is obtained from Eq. (3.1) by

using the condition ψ = 0 at r = 0, as
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(

Da
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n






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The non-dimensional flow rate q across any cross section of tube is independent of z under

lubrication approach and is given by

q = 2
∫ h

0
rudr

= h2


−1 +

∂p
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∣∣∣∣∣
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(
1

2
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n n

1 + 3n
h

1
n
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




 . (3.4)

Inverting the absolute value appropriately Eq.(3.4) is rewritten as

∂p

∂z
=

(
1 + 3n

n

)n 2

h2n


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n
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1
n+1

α
h

1
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(
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m
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.(3.5)

3.2 Saffman model

Integrating the Eq. (2.5) using Saffman boundary conditions (2.8), we get

u = −1 +
(

1

2

) 1
n ∂p

∂z
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1
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 , (3.6)
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and the solution in terms of the stream function is

ψ =
r2

2


−1 +

(
1

2

) 1
n ∂p

∂z

∣∣∣∣∣
∂p

∂z
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n
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

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1
n
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h

1
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+1
)
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1
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α
h

1
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
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


 .

(3.7)

The corresponding flow rate q is given by

q = h2


−1 +

(
h

2

) 1
n ∂p

∂z

∣∣∣∣∣
∂p

∂z

∣∣∣∣∣

1
n
−1





Da
1

n+1

α
− n

1 + 3n
h






 , (3.8)

and this implies

∂p

∂z
=

2

h1+2n




q + h2

Da
1

n+1

α
− n

1+3n
h




∣∣∣∣∣∣∣
q + h2

Da
1

n+1

α
− n

1+3n
h

∣∣∣∣∣∣∣

n−1

. (3.9)

In the limit Da → 0, the solutions given in Eqs. (3.1-3.9) reduce to the solutions with no-slip

boundary condition obtained by Usha and Ramachandra Rao [12] with parameters k1 = k2 = k

and m = 1 for a single power-law fluid. Further, when the fluid behavior index n = 1 and

Da → 0, our results reduce to the corresponding results for a viscous fluid given by Shapiro et

al. [1].

Srivastava and Srivastava [9, 10] have used the constitutive equation for Ostwald-de Waele

power-law fluid model without any absolute value sign which may not be correct as the rate of

deformation tensor takes both positive and negative values. Their relation is valid only when

∂u/∂r is positive and when it is negative no real solution exists. Radhakrishnamacharya [4] has

considered a proper constitutive equation for Ostwald-de Waele power-law fluid model to start

with, but the absolute sign was missed while considering the various orders equations leading to

incorrect solutions.

The dimensionless time averaged flux Q̄ in the fixed frame is obtained as

Q̄ =
2

T

∫ T

0

∫ H

0
RUdRdt = 2

∫ 1

0

∫ h

0
r(u + 1)drdz = q +

∫ 1

0
h2dz. (3.10)

4 Discussion of Results

4.1 Pumping characteristics

We study the pumping characteristics of a power-law fluid in a tube with consistency parameter

m=1, by choosing three types of non-dimensional wave forms, namely sinusoidal, expansion

(+sign) and contraction (-sign) waves, given by

h(x) = 1 + φ sin(2πx) 0 ≤ x ≤ 1, (4.1)

h(x) = 1± φ sin(πx/λc) 0 ≤ x ≤ λc,
= 1 λc ≤ x ≤ 1.

}
(4.2)

The wave of expansion or contraction given in Eq. (4.2) is confined to a portion of length λc and

remains same over the rest of the wavelength giving straight section. The integral in Eq. (3.10),
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depends on the wave form one chooses. It takes a value 1 + φ2

2
and 1 + φ2λc

2
± 4φλc

π
for sinusoidal,

expansion (+sign) and contraction (-sign) wave forms respectively. Substituting q from Eq.

(3.10) in Beavers-Joseph solution Eq. (3.5) or Saffman solution Eq. (3.9) and integrating ∂p
∂z

with respect to z over one wavelength yields a relation between Q̄ and ∆p as

∆p = p1 − p0 =
∫ 1

0

∂p

∂z
dz = f(Q̄,Da, α, n, φ). (4.3)

The variation of Q̄ with ∆p is given by evaluating the integral (4.3) for both Beavers-Joseph or

Saffman models, using the numerical quadrature formulae of the Matlab software package.

In Fig. 2 the variation of Q̄ with ∆p is shown for different Da and α by fixing the other

parameters n = 1 and φ = 0.6, for a sinusoidal wave form given in Eq. (4.1). It is observed

from Fig 2(i) that increasing Da from 0(no slip) to a small positive number (slip flow), gives a

better pumping performance (∆p > 0, in pumping region) as well as in free pumping (∆p = 0).

The dashed lines in the figure correspond to Saffman model and they coincide with the Beavers-

Joseph model for small Da(= 10−5, 10−4) where as for large Da(= 10−3) pumping is more for

Saffman model. The effect of the parameter α on pumping characteristics is plotted in Fig. 2(ii)

for φ = 0.6, Da = 10−4, n = 1. It is observed that, increasing α decreases the pumping as well

as free pumping and there is no difference between the Beavers-Joseph and Saffman models on

pumping as the pumping curves coincide with each other.

The effects of power-law behavior index n on pumping with slip and no-slip boundary condi-

tions are depicted for the sinusoidal wave shape (Eq. (4.1)) in Fig. 3. The pressure rise required

to produce zero time-averaged flux is denoted by ∆p0 and when ∆p > ∆p0, Q̄ is negative. The

variation of ∆p0 with n for φ = 0.6, α = 0.5 is plotted in Fig. 3(i) for different values of Da.

It is observed that ∆p0 increases with an increase of fluid behavior index n, indicating that the

pumping increases as the fluid changes from shear thinning (n < 1) to Newtonian (n = 1) and

to shear thickening (n > 1). Further, as Da increases ∆p0 also increases only for large value of

n, which means that the pumping is better for shear thickening fluid and the effects of slip are

not significant for small values of n < 1 for a shear thinning fluid. For Da ≥ 10−4, the pumping

characteristics are the same for Beavers-Joseph and Saffman models for a shear thinning fluid

but little differences are seen at larger values of n for shear thickening fluid. The variation of

∆p0 with n for φ = 0.6 and Da = 10−4 for different α is shown in Fig. 3(ii). Increasing values of

α one observes significant decrease in pumping for large values of n, similar to the effects of Da

as seen from Fig. 3(i). Saffman model gives a better pumping performance than Beavers-Joseph

model for a shear thickening fluid compared to shear thinning fluid and Newtonian fluid. Thus,

we conclude that the effect of slip condition is more prominent in the shear thickening fluid than

in shear thinning fluid or Newtonian fluid.

In order to observe the influence of the rheological properties of the fluid for different wave

shapes, we have plotted in Fig. 4 the pumping characteristics for a SSD expansion or contraction

waveforms given in Eq. (4.2). Figure 4(i) shows the variation of Q̄ with ∆p for a contraction

wave for no-slip boundary conditions Da = 0, and φ = 0.4, λc = 0.2. An interesting observation

is that for a specific parameter of shear thinning fluid (n < 0.4), free pumping results in negative

mean flow. The pressure rise required to produce zero mean flow, ∆p0, becomes negative where



A. R. Rao & M. Mishra 8

as ∆p0 is always positive for any non-Newtonian fluid with sinusoidal waveform. Figure 4(ii)

depicts the effects of expansion wave shape on pumping characteristics of power-law fluids with

Da = 0, φ = 0.4, and λc = 0.2. It is seen that for some shear thickening fluid with n ≥ 3, the

free pumping results in negative mean flow and ∆p0 becomes negative. Provost and Schwarz

[21], Usha and Rao [12] have also observed similar things for power-law fluid models.

The effects of slip flow with different α of Beavers-Joseph model for fixed Da = 10−5, φ =

0.3, λc = 0.2, n = 2 for an expansion wave is plotted in Fig. 4(iii) and it is observed that a

negative free pumping flux or negative ∆p0 is possible only for large values of α. Whereas, for

a contraction wave ∆p0 never becomes negative for any value of α. To understand the effect

of SSD on pumping, we have plotted the variation of ∆p0 with λc for a contraction wave (Fig.

5(i)) and an expansion wave (Fig. 5(ii)) for different values of n with Da = 10−5, α = 0.5

and φ = 0.4. As expected when λc increases the straight section domination reduces. From the

figures we observe that ∆p0 is negative for small values of λc, when n < 1 for a contraction wave

and when n > 1 for an expansion wave. Further, for an expansion wave form pumping decreases

with an increasing n for small λc where as when the straight section domination reduces (i.e.

when λc is large) the pumping increases with an increasing n as seen from Fig. 5(ii).

4.2 Trapping

The formation of an internally circulating bolus of fluid by closed streamlines is called trapping,

and this trapped bolus is pushed ahead along with the peristaltic wave. A criterion for central

streamline trapping is the existence of stagnation points where both the velocity components u

and v vanish in the wave frame and they are located at the intersections of the curve ψ = 0 and

the centerline. From the Eqs. (3.1) and (3.4), the stagnation points for Beaver-Joseph model are

given by

q − 2nh
1
n

+3

(3n + 1)
{

n+1
n

(
Da

1
n+1 h

1
n

α
−

(
2Da
m

) 1
n

)
− h

1
n

+1

} = 0. (4.4)

The stagnation points are real if the roots h of Eq. (4.4) lie in the interval 1 − φ ≤ h ≤ 1 + φ.

The value of q corresponding to the limiting cases h = 1 + φ and 1− φ are the lower and upper

trapping limits on the flux respectively. The corresponding trapping limits for the time averaged

flux can be obtained for a general wave shape using the Eq. (3.10). The center line trapping

limits (Q̄l < Q̄ < Q̄m) for a sinusoidal wave form (4.1) are given by

Q̄l = 1 + φ2

2
+ 2n(1+φ)

1
n +3

(3n+1)

{
n+1

n

(
Da

1
n+1 (1+φ)

1
n

α
−( 2Da

m )
1
n

)
−(1+φ)

1
n +1

} ,

Q̄m = 1 + φ2

2
+ 2n(1−φ)

1
n +3

(3n+1)

{
n+1

n

(
Da

1
n+1 (1−φ)

1
n

α
−( 2Da

m )
1
n

)
−(1−φ)

1
n +1

} .





(4.5)
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Similarly the trapping limits corresponding to Saffman model are obtained as

Q̄l = 1 + φ2

2
+ 2n(1+φ)3

(3n+1)

(
n+1

n
Da

1
n+1

α
−1−φ

) ,

Q̄m = 1 + φ2

2
+ 2n(1−φ)3

(3n+1)

(
n+1

n
Da

1
n+1

α
−1+φ

) .





(4.6)

These limits reduce to those given by Shapiro et al. [1] for a Newtonian fluid, in the limit Da → 0

and n = 1.

In what follows we discuss the streamline patterns for Beavers-Joseph model for a sinusoidal

wave form. The streamline patterns in the waveframe for Q̄ = 0.1, with α = 0.5, φ = 0.4, and

n = 1 for different values of Da are shown in Fig. 6. The trapped bolus doesn’t exist for the

flux Q̄ chosen in Fig. 6(i) for Da = 0 (no-slip condition), but the trapping exists when Da 6= 0

and the bolus volume increases with an increase in Da i.e. the pore size increases, which is seen

in Figs. 6(ii) and 6(iii). The streamlines with Q̄ = 0.1, φ = 0.4, Da = 10−4 and n = 1 for

different α are plotted in Fig. 7. It is observed that the size of the trapped bolus decreases with

increasing α. The effect of power-law fluid behavior index n on streamline patterns is depicted

in Fig. 8, for Q̄ = 0.3, φ = 0.4, Da = 10−4, and α = 0.5. The bolus size decreases as the fluid

behavior index n decreases and disappears for n = 0.3, as seen in Fig. 8(iv). In all the above

discussions the flux Q̄ is chosen in pumping range and we observe that the increase in pumping

corresponds to an increase in the trapped bolus size. The streamlines in copumping range fluxes

produce similar results as in [24], where the trapped bolus shifts towards the boundary and they

are not shown here.

4.3 Reflux

The presence of some fluid particles whose mean motion over one cycle is against the net pumping

direction is known as reflux. This phenomenon is of physiological importance as it implies

a possible backward motion of bacteria against the direction in which physiological fluids are

pumped. Shapiro et al. [1] have emphasized that the reflux phenomenon should be studied in

the fixed frame of reference using the Lagrangian method. But in wave frame the streamlines

and particle trajectories coincide. We may therefore employ the value of stream functions in the

waveframe as a means of identifying material particles. Following [1], Qψ defined as dimensionless

volume flow rate in the fixed frame between the axis of the tube and the wave frame streamline

ψ. This is an indicator of the material particles in fixed frame, and is given by

Qψ = 2
∫ R(ψ,Z,t)

0
RU(R, Z, t)dR. (4.7)

By using the transformation between the two frames of reference given in Eq. (2.1), we get

Qψ = 2ψ + r2(ψ, z, t). Averaging it over one period of the wave, we get

Q̄ψ = 2ψ +
∫ 1

0
r2(ψ, z)dz. (4.8)
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Now, we define Q∗
ψ = Q̄ψ/Q̄w, ψ∗ = ψ/ψw, where Q̄w and ψw are the values of Q̄ψ and ψ at the

wall(r = h), Q̄w = Q̄/2, and ψw = q/2. If Q∗
ψ increases with an increase in ψ∗ then the motion

of the particles is always in the pumping direction, and if Q∗
ψ decreases with increasing ψ∗ then

reflux appears in that region. It is shown in [1] for a single fluid that a reflux layer exists near

the wall whenever Q∗
ψ increases to a value greater than unity and decreases to unity at the wall.

Here, we discuss the reflux phenomena for Beavers-Joseph model with a sinusoidal peristaltic

wave. The Eq. (3.3) is solved numerically for r as a function of z, for a given value of constant ψ

and the integral in (4.8) is evaluated by using a numerical quadrature formulae of Matlab package.

The effects of porous wall and the fluid behavior index on reflux phenomena are plotted in Fig.

9. Figure 9(i) shows the variation of Q∗
ψ as a function of ψ∗ for different values of Da fixing

Q̄ = 0.915, α = 0.5, φ = 0.6 and n = 1. The variation of Q∗
ψ for Da = 0 is a strictly increasing

function of ψ∗ and attains unity only at the wall, which implies absence of reflux for the flux

chosen here. For Da = 10−5, when the wall is porous, there is a reflux layer adjacent to the wall,

and the reflux zone widens with an increase in Da. Figure 9(ii) depicts the variation of Q∗
ψ as a

function of ψ∗ for different value of α fixing Q̄ = 0.9, φ = 0.6, n = 1, and Da = 10−4. It is seen

here that there is no reflux for α = 5 where as for α = 1, 0.5 reflux layer exists near the wall and

it spreads towards the center line as α decreases. The effects of power-law index n on reflux is

shown in the Fig 9(iii) by fixing Q̄ = 0.9, φ = 0.6, Da = 10−4 and α = 0.5. Reflux layer doesn’t

exist for small n but for a value of n close to unity reflux may exist and for large n > 1 (shear

thickening fluid) it spreads towards the center line. In the Fig. 9, the curves intersecting the axis

of Q∗
ψ corresponds to the flow giving trapping bolus which is discussed in Figs 5-7, and these are

similar to qualitative curves given in [1]. The flux rate Q̄ of Fig 9 is chosen to lie in the pumping

range and the reflux layer for various parameters Da, α and n widens as the corresponding

pumping pressure is high. The limit on Q̄ for reflux is obtained numerically when ∆p ≥ 0, and

we find the reflux is absent in the entire copumping range irrespective of the presence of porous

wall or non-Newtonian nature of the fluid.

5 Conclusions

The peristaltic transport of a power-law fluid in an axisymmetric tube having a poroflexible wall

is studied under lubrication analysis. The effect of shear-thinning and shear-thickening proper-

ties of fluid are investigated on peristaltic pumping, trapping and reflux phenomena. Solutions

are presented for two types namely Beavers-Joseph and Saffman slip boundary conditions. The

peristalsis works as a pump against a greater pressure rise with the Saffman boundary conditions

compared with Beavers-Joseph conditions for a shear thickening fluid than a shear thinning fluid

or Newtonian fluid. Pumping characteristics are also discussed with a SSD wave form other

than the usual sinusoidal one. It is observed that the time-mean flow becomes negative in free

pumping for a shear-thickening fluid with a SSD expansion wave and the same is observed for

a SSD contraction wave in the case of shear-thinning fluid. The trapped bolus for sinusoidal

wave is observed to decrease as the fluid behavior index decreases, i.e. when it changes from

shear-thickening to shear-thinning.
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List of Figure Captions

Figure 1. Schematic representation of peristaltic transport in an axisymmetric tube with a

porous wall in a fixed frame.

Figure 2. The variation of Q̄ with ∆p fixing φ = 0.6, m = 1 and n = 1, (i) for different Da with

fixed α = 0.5, (ii) for different α with fixed Da = 10−4. Solid lines and dashed lines correspond

to Beavers-Joseph and Saffman models respectively.

Figure 3. The variation of ∆p0 with n fixing φ = 0.6, m = 1, (i) for different Da with fixed

α = 0.5, (ii) for different α with fixed Da = 10−4. Solid lines and dashed lines correspond to

Beavers-Joseph and Saffman models respectively.

Figure 4. The variation of Q̄ with ∆p fixing φ = 0.4, λc = 0.2, Da = 0(no slip) for different n, (i)

SSD contraction wave, (ii) SSD expansion wave, (iii) pumping characteristics for SSD expansion

wave with φ = 0.3, λc = 0.2, m = 1, Da = 10−5, and n = 2 for different α.

Figure 5. The variation of ∆p0 with λc fixing Da = 10−5, α = 0.5, m = 1, φ = 0.4 for different

n, (i) SSD contraction wave, (ii) SSD expansion wave.

Figure 6. Streamlines in the wave frame with Q̄ = 0.1, α = 0.5, φ = 0.4, n = 1, m = 1, (i)

Da = 0, (ii) Da = 10−5, (iii)Da = 10−4.

Figure 7. Streamlines in the wave frame with Q̄ = 0.1, Da = 10−4, φ = 0.4, n = 1, m = 1, (i)

α = 0.5, (ii) α = 1, (iii) α = 2.

Figure 8. Streamlines in the wave frame with Q̄ = 0.3, Da = 10−4, φ = 0.4, α = 0.5, m = 1,

(i) n = 2, (ii) n = 1, (iii) n = 0.5, (iv) n = 0.3.

Figure 9. The variation of Q∗
ψ versus ψ∗ with φ = 0.6, m = 1, (i) for different Da fixing

Q̄ = 0.915, α = 0.5, n = 1, (ii) for different α fixing Q̄ = 0.9, Da = 10−4, n = 1, (iii) for

different n fixing Q̄ = 0.9, Da = 10−4, α = 0.5.
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Figure 1: Schematic representation of peristaltic transport in an axisymmetric tube with a porous
wall in a fixed frame.
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to Beavers-Joseph and Saffman models respectively.
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Figure 3: The variation of ∆p0 with n fixing φ = 0.6, m = 1, (i) for different Da with fixed
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Beavers-Joseph and Saffman models respectively.
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Figure 6: Streamlines in the wave frame with Q̄ = 0.1, α = 0.5, φ = 0.4, n = 1, m = 1, (i)
Da = 0, (ii) Da = 10−5, (iii)Da = 10−4.



A. R. Rao & M. Mishra 19

−0.25 0    0.25 0.5  0.75 
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(i) 

−0.25 0 0.25 0.5 0.75
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(ii) 

−0.25 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(iii) 

Figure 7: Streamlines in the wave frame with Q̄ = 0.1, Da = 10−4, φ = 0.4, n = 1, m = 1, (i)
α = 0.5, (ii) α = 1, (iii) α = 2.
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Figure 8: Streamlines in the wave frame with Q̄ = 0.3, Da = 10−4, φ = 0.4, α = 0.5, m = 1,
(i) n = 2, (ii) n = 1, (iii) n = 0.5, (iv) n = 0.3.
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Figure 9: The variation of Q∗
ψ versus ψ∗ with φ = 0.6, m = 1, (i) for different Da fixing

Q̄ = 0.915, α = 0.5, n = 1, (ii) for different α fixing Q̄ = 0.9, Da = 10−4, n = 1, (iii) for
different n fixing Q̄ = 0.9, Da = 10−4, α = 0.5.


