Perm: Processing provenance and data on the same
data model through query rewriting

Boris Glavic
Database Technology Research Group
University of Zurich

glavic@ifi.uzh.ch

Abstract— Data provenance is information that describes how
a given data item was produced. The provenance includes source
and intermediate data as well as the transformations involved in
producing the concrete data item. In the context of a relational
databases, the source and intermediate data items are relations,
tuples and attribute values. The transformations are SQL queries
and/or functions on the relational data items. Existing approaches
capture provenance information by extending the underlying data
model. This has the intrinsic disadvantage that the provenance
must be stored and accessed using a different model than the
actual data. In this paper, we present an alternative approach that
uses query rewriting to annotate result tuples with provenance
information. The rewritten query and its result use the same
model and can, thus, be queried, stored and optimized using
standard relational database techniques. In the paper we formal-
ize the query rewriting procedures, prove their correctness, and
evaluate a first implementation of the ideas using PostgreSQL.
As the experiments indicate, our approach efficiently provides
provenance information inducing only a small overhead on
normal operations.

I. INTRODUCTION

A large portion of data generated and stored by scientific
databases, data warehouses, and workflow management sys-
tems is not entered manually by a user, but is derived from
existing data using complex transformations. Understanding
the semantics of such data and estimating its quality is not
possible without extensive knowledge about the data’s origin
and the transformations that were used to create it. For these
application domains and, in general, for every application
domain where data is heavily transformed, data provenance
is of essential importance.

Mere storage of provenance information is not very useful,
if no query facilities for provenance are provided. Ideally it
should be possible to use provenance and normal data in the
same query. We use the term provenance management system
(PMS) to refer to a system that is capable of computing
and storing provenance and supports querying the provenance
information [1]. A PMS should also be able to handle prove-
nance imported from external sources (external provenance).

In this paper we describe a novel provenance management
system called Perm (Provenance Extension of the Relational
Model) that is capable of computing, storing and querying
provenance for relational databases. Perm generates prove-
nance by rewriting transformations (queries). For a given query
q, Perm generates a single query g7 that produces the same
result as ¢ but extended with additional attributes used to

Gustavo Alonso
Systems Group

Department of Computer Science ETH Zurich

alonso@inf.ethz.ch

store provenance data. An important advantage of the approach
used in Perm is that ¢© is also a regular relational algebra
statement. Thus, we can use the full expressive power of SQL
to, e.g, query the provenance of data items from the result of
q, store ¢ as a materialized view, and apply standard query
optimization techniques to the execution of ¢*. Perm can be
used both to compute provenance on the fly (i.e., at query time)
and to store provenance persistently for future access. Perm
also supports external provenance and incremental provenance
computation reusing stored provenance information.

An important contribution of Perm is that, although not yet
complete, it already covers a far wider range of relational alge-
bra than existing systems. As shown in our experiments, Perm
can run almost all of the queries of the TPC-H benchmark
and efficiently compute their provenance. This is a significant
improvement over existing systems, which typically can only
run a few, if any at all, of the queries in the benchmark.
Our experiments also demonstrate that Perm can efficiently
compute the provenance of complex queries with only a
minimal overhead on normal operations. As an example, on
the few queries that are also supported by the Trio system,
Perm outperforms Trio at least by a factor of 30.

The paper is organized as follows. In the next section we
presented related work. Section III covers the formal founda-
tions of the Perm approach. The prototype implementation of
Perm is presented in section IV. An experimental evaluation
of the prototype is discussed in section V. We conclude in
section VL.

II. RELATED WORK

Two types of information are generally considered to form
the provenance of a data item. Information about the source
data items that contributed to a result and the fransformations
used in the creation process of the data item. These types
where first introduced in [2] as provenance of data and
provenance of a data product.

Source provenance can be distinguished by the definition of
contribution used to estimate if an input data item influenced
a result data item. Buneman et al.[3] describe two definitions
of contribution semantics: Why- and Where-provenance. Why-
Provenance includes all data items that influence the creation
of a data item. Where-Provenance includes only parts of
the input literally copied to the output. In practice, these
definitions are only two possibilities from a broader solution

space. For example, some systems consider the whole input
of a transformation as the provenance of its output. To have
a consistent terminology, we refer to these definitions as
input-, influence- (for Why-provenance) and copy-contribution
(for Where-provenance). There are basically two approaches
to compute a mapping between sources and results of a
transformation. One approach is to compute some kind of
inverse of the transformation that maps a result (or a set of
results) to the sources contributing to it. The other approach
generates the mapping by propagating identifying annotations
from the source to the result during the execution of the
transformation.

Source provenance can be examined at different levels of
granularity. A composite data item can be seen as a single
data item or each of its components examined separately. For
example, for the relational model, the provenance of data items
could be at the granularity of relations, tuples or attribute
values.

Some approaches compute provenance at the time new data
is derived by a transformation, other approaches reconstruct
provenance when is is requested by a user. In [2], Tan
referred to these strategies as eager and lazy. A provenance
management system that supports both strategies leaves this
choice to the user.

In the area of data warehouses, Cui et al.[4] studied the
problem of finding the portions of the input of a relational
query that influenced a certain part of the its output (influence-
contribution). This is achieved by generating inverse queries
for an original query. The result of a provenance computation
is a list of subsets of the base relations accessed by the original
query that contributed to a specific subset of the result. A
disadvantage of this approach is that the result of a provenance
computation is a list of relations and the computation is not
expressed in relational algebra. Hence, provenance queries
cannot be used as subqueries of normal relational queries
and only partially benefit from the query optimization of
the underlying DBMS. Depending on the type of algebraic
operators that are used in a query, the provenance computation
may also require the instantiation of intermediate results.

Trio is a system extending the relational model with prove-
nance and uncertainty [5]. Trio computes the provenance
of a query during execution and stores the results in so-
called lineage relations (eager provenance computation). To
trace the provenance of a tuple produced by a sequence of
transformations the system iteratively computes the contribut-
ing input tuples of each transformation using the lineage
relations. To our knowledge, Trio currently supports only a
small subset of features present in SQL (i.e., it does support
neither aggregation nor subqueries, and supports only single
set operations and a limited set of datatypes).

DBNotes [6] extends the relational model with attribute level
annotations. Every attribute value can be annotated with a
set of textual annotations. The pSQL language (a extension
of a subset of SQL) allows to specify how annotations are
propagated from the source to the results of a query. Two
standard propagation schemes are defined from which one is

independent under query rewrite. Base relations are extended
with additional annotation attributes. Each annotation attribute
stores the annotations of one of the original attributes. pSQL
currently does not support aggregation, disjunctive queries and
set operations.

Theoretical aspects of provenance have been studied by
Buneman, Tan and Cheney in [7], [8]. Newer approaches use
the nested relational algebra and calculus [9] instead of the
simpler hierarchical language used in [10]. In [11], [12] the
relationships between provenance and program dependency
analysis are studied. While stating interesting theoretical re-
sults, their work has not yet been implemented so it is not
possible to ascertain its impact on practical systems.

Provenance methods developed in the context of workflow
systems and grid computing such as [13], [14] and [15] are
more focused on transformation provenance and only analyze
input-contribution source provenance. In general, these sys-
tems provide more extensive transformation provenance and
some allow re-execution of transformations in case of changed
source data.

The aforementioned systems represent provenance informa-
tion in a data model that is either an extension or completely
different from the data model for which the provenance is
computed. This has the disadvantage that provenance data
cannot be stored directly in the data repositories or queried
using the query language used for the normal data. The
DBNotes and Trio systems provide provenance computation
and query facilities only for a small subset of SQL. We
take a different approach by using solely relational algebra
for provenance computation and representing provenance in
the relational data model. At first sight this seems to be a
strong restriction, but in fact allows us to achieve a broad
range of functionality by reusing most of the query, storage,
and optimization methods provided by relational databases.
The Perm prototype supports provenance computation for the
complete SQL language except correlated subqueries. For
normal queries and queries on provenance data we support
the complete SQL functionality implemented by PostgreSQL.

III. THE PERM APPROACH

In this section we present the underlying algebra of the
Perm approach, introduce a pure relational provenance rep-
resentation, and demonstrate how provenance is computed
using relational algebra exclusively. Perm uses the influence-
contribution-semantics of Cui et al. [4], because it better
captures user expectations than copy-contibution-semantics.
For example, for a query computing the sum of an attribute for
all tuples of an input relation the influence-contribution source
consists of all input tuples, because each tuple contributed to
the result of the sum. This seems to be more intuitive than none
of the inputs which would be the result for copy-contribution
semantics. We consider queries expressed in the extended
version of relational algebra presented below. How the rewrite
mechanism developed for this algebra can be applied to SQL
statements is covered in section IV.

(1a) Set operators

s
IaA(T) ={a = (a1,...

S
T1UT2:{t1 ‘tETl\/tGTQ}

capn)t | I e T t.A=a}

S
Tlﬂng{tl ‘tETl /\tGTQ}

S
Tl—TQZ{tl ‘tGTl /\t¢T2}

(1b) Bag operators

B
TaA(T) = {a = (ay,...

D

treT t.A=a

(n)}

,an)%"™ | sum =

B
TWUTy = {t"T™ | t" € Ty At € To}

B .
TyNT, = {t™0m) | e Ty At € Ty}

B
T =Ty = {tnim | theTi ANt e TQ}

oo(T) = {£" | " € T At = C}
T, x Ty = {(tl,tg)nxm | ti"eTi Nt™ € TQ}

aGaggr(T) = {(t.G,resy, .

(1c) Set/Bag operators

T D<o T = {t = (tl,tg)nxm ‘ theTi ANt™ € To Nt ': O}
T D<icTh = {(tth)nxm | ti"eTi ANt™ € TQ} U {(tl,t;u”)n ‘ t"eTy A (/th eTy: (tl,tg) ’: C)}
coresp)t [t e T AV € {1,n} : res; = aggri(Ilp, (0G=¢.c(T))}

Fig. 1: The Perm algebra

A. Underlying Algebra

We have developed the Perm approach for the variant of
relational algebra depicted in Figure 1. The algebra operates
on bag-semantic relations. For a tuple ", n is the multiplicity
of ¢t. If no multiplicity is given, an arbitrary multiplicity is
assumed. For convenience, a multiplicity of 0 or below is an
alternative representation for a tuple that is not included in a
relation. t € R is a shortcut for t" € R with n > 0. We use R
to refer to a base relation and 7' to refer to a base relation or
the result of an algebra statement. Sometimes we abuse this
notation and use 7" for result relations and algebra expressions
interchangeably. R is the schema of a relation R.

Some of the algebra operators are provided as a set-
and a bag-semantic version denoted by S or B (Figures la
and 1b). Projection II4 projects the attributes from 7' on
A and is available as a set- and a bag-semantics version.
A is a list of attributes, constants, attribute renamings and
deterministic functions on one or more attributes or constants.
Renaming attribute a in attribute b is presented as a — b.
The selection operator’s condition C' can contain boolean
operations, comparison operators, attribute and constant values
and functions on values, but is restricted to yield a boolean
result. Crossproduct x and inner join D><Ic are defined as in
standard relational algebra. The left outer join operation Z><lc
is a union from the tuples of ><i and all tuples from 7} that
did not have a join partner in 75 (Figure 1c). t3%!, used in the
definition of the left outer join, is a single tuple relation with
schema T and all attribute values set to null. Right outer join
and full outer join are defined analogously and are therefore
not included in the figure. The aggregation operator aqgg G
allows to specify a list of grouping attributes G on which
the input tuples are grouped before the aggregation functions
aggi, - -.,aggy, from list agg are applied (Figure 1c). An

aggregation function computes a single result value for a set of
tuples with schema B. The result of the aggregation operator
includes the results of the aggregation functions and the
grouping attribute values. Set operations (union, intersection
and difference) operate on union-compatible inputs 73 and 75
and are available as set- and bag-semantics versions. The result
schema of a set operation is T'y.

For convenience, renaming all attributes from a list of
attributes A into B and applying a comparison operator comp
to all attributes from lists A and B is presented as A — B
and A comp B. For a tuple ¢, t.A is the projection of ¢ on a
list A of attributes, functions and renamings.

B. Perm Provenance Representation

Before we introduce the relational provenance representa-
tion used by Perm, we demonstrate the disadvantages of non-
relational provenance representations by a motivating example
(Figure 2). The example is a database of shops (with name and
number of employees), items they are selling, and purchases
(sales relation). Assume a user wants to query the total profits
for each shop. This query can be expressed in relational
algebra as:

Gex = Oname,sum(price) (O'namezsName/\itemldzid (p’l"Od))

prod = shop X sales X items

If the user wants to investigate which source tuples con-
tributed to the result tuple (Merdies,120) using influence-
contribution semantics (Why-provenance) the result should
include tuple (Merdies,3) from relation shop, tuples
(Merdies, 1), (Merdies,2) and (Merdies,2) from relation
sales and tuples (1,100),(2,10) from relation iterns. The
approach from [4] would present this provenance data as the

ales
sName

itemId

shop Merdies | 1 ztiedms price

name | numEmpl Merdies | 2 T [100
Merdies | 3 Merdies | 2 2 10
Joba 14 Joba 3 32

Joba 3

result geq

name sum(price)

Merdies 120

Joba 50

Fig. 2: Example database

following list of relations: !

({(Merdies, 3)},
{(Merdies, 1), (Merdies,2), (Merdies, 2)},

{(1,100),(2,10)})

This representation has two major disadvantages. First a
query having a list of relations as its result can not be
expressed in relational algebra, because each algebra operator
has only a single result relation. Thus provenance queries
and data are not in the same data model as the original data
and queries. Second the result only includes provenance data.
There is no direct association between the original result and
the contributing tuples. This is especially problematic if the
provenance of a set of tuples is computed, because one would
loose the information about which of the provenance tuples
contributed to which of the original result tuples.

These shortcomings can be avoided if provenance is rep-
resented as a single result relation including complete prove-
nance and normal data. We represent provenance information
as a single relation by extending the original result tuples with
contributing tuples from each base relation accessed by the
original query. If there is more than one contributing tuple
from a base relation, the original tuple has to be duplicated.
For example, using this representation the provenance result
for the example above would be:

{(Merdies, 120, M erdies, 3, Merdies, 1,1,100),
(Merdies, 120, Merdies, 3, Merdies, 2,2,10),
(Merdies, 120, Merdies, 3, Merdies, 2,2,10)}

It is obvious that this representation is only useful if
descriptive names for the attributes are provided to preserve
the information regarding which base relation and attribute
are used to derive a value. For simplicity, we ignore this issue
here and assume we have a appropriate naming scheme for
provenance attributes. A concrete solution to this problem
is given in the next section. In the following provenance
attributes are represented as P(a) where a is an attribute from
a base relation.

Let us now consider the provenance result format for
an arbitrary algebra statement g. To produce a provenance

The actual representation would be different because we are using bag
semantics here.

result relation, the original result relation is extended with
all attributes from all base relations accessed by q. Multiple
references to a base relation are handled as separate relations.
A result tuple of a provenance query is built by attaching
contributing tuples to an original result tuple. Hence the
original tuple has to be duplicated, if there is more than one
contributing tuple from one of the base relations. The result
schema of the rewritten query contains all attributes of the
original query and in addition a set of provenance attributes
for each base relation accessed by the original query. For each
base relation we duplicate its attributes creating unique names
for the duplicated attributes 2. For example query ¢, accesses
base relations shop, sales and items. In consequence the
provenance result schema for ¢, is:

(name, sum(price), P(name), P(numEmpl),
P(sName), P(itemId), P(id), P(price))

Alternatively we could produce two result relations. One
with the original result and a second with provenance informa-
tion. This representation omits the redundancy of duplicating
result tuples, but has the same disadvantages as the represen-
tation from [4].

C. Provenance Query Rewrite Mechanism

Having presented the structure of a provenance query result
and the algebra for which rewrites should be produced, we
now present how a query is transformed by the Perm approach
into a query that generates the desired provenance result
schema and propagates provenance according to influence-
contribution-semantics. Perm propagates provenance from the
source to the result of a query. Recall that the approach from
[4], based on inversion of queries, requires the instantiation
of intermediate results, because there is no direct association
between the original data and intermediate results. The Perm
approach omits the instantiation of intermediate results. Each
provenance propagation step depends exclusively on the result
of its direct predecessor and is independent from previous
stages. Thus we do not have to keep earlier results to compute
the current step.

The Perm method transforms a query ¢ into a prove-
nance query gt by iteratively rewriting each relational op-
erator of q. The rewritten form of an operator preserves the
result of the original operator, but adds additional prove-
nance attributes and propagates provenance data according to
influence-contribution-semantics. The rewrite rules for each
algebra operator are presented in Figure 3. To be able to
rewrite a query incrementally, the rewrite rules need to support
rewritten inputs, i.e., a rewrite has to distinguish between
normal and provenance attributes. For each rewrite rule, P
is the list of provenance attributes that are attached to the
original result. For two P-lists, P; = (p1,...,pn) and Py =
(g1,--.,qn), the list concatenation operation » is defined as
Pl > 7)2 = (p17"'apnaq17"'7Qn)‘

2By unique we mean unique in the scope of g

R1 R+ = IIgr, z(R) with P(R") = R where R is a unique renaming of the attributes from R

R2 ((Nt = i apr+) (TF) with P((TT i A(T)") =P(TF)

R3 | (0c(T))" = 0c(T7) with P((0c(T))F) = P(TT)

R4 | (Ty x o)t =Ty" x Tyt with P((Ty x o)) = P(Ty 1) » P(Tx™)

RS | (06,090 (1)* = g agerp () (@Guager(T) Pg_g Mg prs) (TF)) With P((0Gager (1)) = P(T)

R6 | (Th L/J Ty)* HT1 Py)Pyt (11 U / T2 g, 7y HTlﬂfl,P(Tl‘*')(leL)MTl:TQ HT2~>T2,P(TQ+)(T2+))
with P((T} * TQ))=P(Th") » P(Tu")

R7 (Tls/)t = HT1 P(Tat)J’(Tz*)(Tlsr/{BT2 P, =7, HTlﬂfl,P(Tﬁ)(TlJr) P, =7, HTZHTQ,P(TQ‘*)(T;))
with P((T} °A TQ))=P(Ty") »P(Tf)

RS (T1§T2)+ = HTI PP (Ti— T2 D<Ip, g, Uop, gy ey (T 0)) T2 T)
with P((T1—T»)*) = P(Ty 1) » P(T2)

R9 (Tlsz)Jr HT1 Py Pty (11— °r, D<Ip, i, Mo, gy pery+y (T) D<Imy 2w, T2)
with P((T1—T2)) = P(Th ") » P(To ™)

Fig. 3: Perm provenance rewrite rules

We now discuss each rewrite rule in detail. The rewrite
rule R1 for base relations duplicates the attributes from a
base relation R and renames them according to a provenance
attribute naming scheme.

The rule R2 for I14(T") rewrites a projection by adding
the list of provenance attributes from 7' to the projection
list. For example, if T is the base relation items, P(TT) is
(P(id), P(price)). So, (ILa(item))* preserves the complete
tuples that were used to compute the result of I 4 (item).

For a selection operator (rule R3), the unmodified selection
is applied to its rewritten input, because a selection only filters
out tuples but does not change or add tuples.

The crossproduct operator concatenates input tuples from
Ty and T5. Adding provenance attributes to the input relations
Ty and T35 does not change the original part of the result.
Hence rule R4 rewrites a crossproduct as the crossproduct of
the rewritten inputs 77 and T5. Notice that we do not provide
rewrite rules for other join types than cross product, because
rewrite rules for inner join, natural join and outer joins can be
defined using algebraic equivalents for these join types and the
given set of rewriting rules. The rewrite rules that are produced
by these equivalence rules are of the form (where ¢ is one of
the defined join types):

(T1<>T2)+ = T1+<>T2+

The rewrite rule RS rewrites an aggregation operation. We
can not add additional tuples to the input of an aggregation or
add additional attributes to its result schema without changing
the values of the aggregation functions. So the aggregation is
applied to the original input 7'. The results of the aggregation
are joined with the rewritten version of 7' using a equality
condition on the grouping attributes. This is feasible because,

according to the definition of aggregation, all tuples with the
same grouping attribute values g contribute to a single result
tuple with grouping attribute values g.

For set operations the result of the operation would change
if we add attributes or tuples to its input relations. In addition
if T;T # T2 holds the set operations can not be applied
to 71" and T, ". Thus for set operations, the original query
must be conserved. Provenance is attached by joining the
original query with its rewritten inputs. Rewrite rules R6 and
R?7 for union and intersection use joins on T; and T2 because,
according to the definition of these operations, a tuple ¢ from
T} or T; contributes to a result tuple ¢ if their attribute values
are equal. For union, the left outer join operation is used
because some tuples might be only present in 7} or 15

For set-difference, the provenance of tuple ¢ includes all
tuples from 7% that are different from ¢. The rewrite rules R8
and R9 use the left join operation on T; # Ty to attach
these tuples to the result. For the set-semantics version of
set-difference, the condition can be omited because tuples
fulfilling this condition can not occur in the result of this
operation.

D. Example Query Rewrite

As an example, query g, from the example in the previous
section can be rewritten as shown in Figure 4. The top level
operation of ¢., is an aggregation operator. Applying rewrite
rule R5 we get q., 7 as in 4 (step 1). Rule R5 states that the
P-list for g., ™ equals P(T'"). At this point, 7" has not been
computed so P(qe, ") is left undefined for now. The remaining
subquery T is a selection, which is left untouched by the
rewrite. The cross-product shop X sales x item is handled by
rewrite rule R4 (see 4 (step 2)). The P-list of a rewritten cross-
product is the concatenation of the P-lists of the subqueries

original query | gex = Qname sum(price) (Tname=sNamenitemid=id(shop X sales X items))

step 1 Gex ™ = Wyame, sum (price), P(1+) (Qname,sum(price) (T') P<hame=naime Hname—name,p(r+)(TT))
T = Oname=sNamenitemid—=id(Shop X sales X items)
P(ges™) = P(TT)

step 2 TT = Gpname=sNamenitemid—ia(shop™ x sales™ x items™)
P(Tt) = P(shop™) » P(sales™) » P(items™)

step 3 shopt = Iyame, numEmpl,name—pName,numEmpl—pNum Empl (Shop)
P(shop™) = (pName,pNumEmpl)

step 4 sales™ = IyName,itemId,s Name—pSName,itemId—pItemid(Sales)
P(sales™) = (pSName, pltemlId)

step S itemst = iq price,id—pld,price—pPrice (items)
P(items™) = (pId,pPrice)

result relation qe, ™

name sum(price) | pName | pNumEmpl | pSName | pltemld | pld | pPrice
Merdies 120 Merdies 3 Merdies 1 1 100
Merdies 120 Merdies 3 Merdies 2 2 10
Merdies 120 Merdies 3 Merdies 2 2 10
Joba 50 Joba 14 Joba 3 3 25
Joba 50 Joba 14 Joba 3 3 25

Fig. 4: Example application of rewrite rules

used in the cross-product. In this case, the provenance attribute
lists of rewritten base relations shop, sales and items. In
Figure 4 (steps 3-5) rewrite rule R1 is used to derive the
rewritten base relations shop™, sales™ and items™.

If one takes a careful look at this example, it is obvious
that if ¢.,, had been represented as an operator-tree, we would
have computed the rewrite top-down and computed the P-
lists in a second bottom-up tree-traversal. A single bottom-
up computation of a rewrite is possible as well, because the
rewrite rules do not enforce a specific evaluation order. It
seems that the bottom-up approach is better suited, because
the P-lists of sub-expressions of a query ¢ needed to compute
q’s P-list are immediately available, but as we will see in
section IV, the bottom-up approach has other disadvantages.

Using the set of rewrite rules, we are able to transform a
query ¢ into a single relational algebra query ¢+ propagating
provenance. A major advantage of our provenance representa-
tion format is that provenance is presented as complete base
relation tuples and is directly associated with the original data.
For example, if a user needs to know which items where sold
by shops with a total sales bigger than 100, this query can
be represented as q1 = II,7q(0sum(price)>100(qez")). Note
that it is possible to write down the algebra expression of
this query as a query solely on ¢., ™, because of the direct
association between provenance and original data, i.e., we
can use provenance and original attributes in conditions and
projections.

E. Correctness Proof

It can be shown that the influence-contribution-semantics
defined by the Perm rewrite rules is equivalent to the semantics
introduced in [4]. The only difference is that we might loose
the information of the multiplicity of original result tuples for
some operations. Due to space constraints we present only a
proof sketch. The equivalence is proven by first showing that
the original attribute part of a rewritten query’s result tuples is
the same as the original result tuples except for multiplicity:

e (T*) = Tin(T)

This can be proven by induction over the set of algebra
operators. Having shown that we do not create spurious result
tuples or omit original result tuples, we prove in a second
step that the provenance attached to the original result tuples
represent exactly the provenance produced by Cui’s approach
[4]. This step uses a mapping between our provenance repre-
sentation and the representation presented in [4] and induction
over the set of algebra operators.

IV. IMPLEMENTATION

In this section we present the prototype implementation of
the Perm approach. Before being able to implement a Perm-
prototype, we had to define a SQL language extension for
provenance and define a mechanism for provenance attribute
handling.

A. SQL Provenance Language Extension

1) Provenance Attribute Handling: To enable a user to
query provenance data, a mechanism for addressing prove-
nance attributes in a query is needed. Either a new language
construct has to be introduced or provenance and normal
attributes are distinguished by name. We decided to reserve a
distinct set of names for provenance attributes. A provenance
attribute name consists of the fixed prefix prov_, the name of
the base relation, the attribute is derived from, and the original
attribute name. Each part of a provenance attribute name is
separated by an underline character. If a relation is referenced
more than once in a query, an identifying number is attached
to the relation name. For example, the names of the prove-
nance attributes from the example query ¢ of the last section
are prov_shop_name, prov_shop_numEmpl, prov_sales_sName,
prov_sales_itemld, prov_items_id and prov_items_price. To keep
the following examples concise, the praefix p is used as a
shortcut for provenance attribute names (e.g. p/Name instead
of prov_shop_name).

2) Provenance Extension: A simple way to extend SQL
with provenance rewrites is to add an optional keyword
PROVENANCE to the SQL select-clause. A query or subquery
is rewritten, if the PROVENANCE keyword is present in the
select-clause. For example, the query ¢; from the example
of the last section is expressed in SQL with the provenance
language extension (SQL-PLE) as following:

SELECT pld
FROM
(SELECT PROVENANCE name, sum(price) AS sum
FROM shop, sales, items

WHERE name=sName AND itemlId=id
GROUP BY name) AS prov
WHERE sum > 100;

3) Incremental Provenance Computation: To support ex-
ternal provenance and incremental provenance computation
a user can define that a subset of a from-clause item’s
attributes are provenance attributes by appending PROVE-
NANCE (attrlist) to the text of the from-clause item. The
Perm module is instructed by the PROVENANCE clause to
stop rewriting when processing the subquery and to accept it
as an already rewritten subquery. This is especially useful to
compute provenance incrementally starting at a stored result
of a provenance query.

For example, assume a view totalltemPrice is used to
store provenance data. If totalltemPrice is used in a prove-
nance query the provenance stored in the p/d and pPrice
attributes of this view should be used in the provenance
computation:

CREATE VIEW totalltemPrice AS
SELECT PROVENANCE sum(price) AS total
FROM items ;

SELECT PROVENANCE total * 10

FROM totalltemPrice PROVENANCE (pld, pPrice);

4) Limited Provenance Scope: A from-clause item is
marked to be handled as a base relation by specifying the
key word BASERELATION. The BASERELATION keyword
should be used if a user does not want to trace provenance
down to the base relations, but is interested in the influence a
view or subquery had on the query results. In the following
example the rewriter would use rewrite rule R1 for subquery
sub instead of applying rule R5.

SELECT PROVENANCE total *x 10 FROM
(SELECT sum(price) AS total
FROM items) BASERELATION AS sub;

B. Extensions to PostgreSQL

We have implemented a first prototype of Perm by extending
the PostgreSQL DBMS [16]. In the system, the Perm module
is located below the postgres rewriter (see Figure 5). Our
module does not need to care about semantic checks and view
unfolding, because this is done by the analyzer and rewriter
modules. The output of the provenance rewriter is passed to the
optimizer, thus we benefit from the full query optimization of
PostgreSQL. Small changes had to be made to the parser and
analyzer module for recognition of the provenance language
extensions and handling of references to provenance attributes
in select-, where-, group-by- and having-clauses.

Syntactic and
semantic analysis

Parser &
Analyzer

view unfolding

Provenance provenance
Rewriter rewrite
optimize and

Executor

Fig. 5: Perm architecture overview

transform into plan

execute plan
and return results

To integrate the rewrite mechanism presented in the last
section in PostgreSQL, the rewrite rules have to be adapted
for SQL or the internal algebraic operator tree representation
of the database system. In most database systems, including
PostgreSQL, the result of the SQL-parser is a so-called query
tree. Each query node in the query tree represents one or more
relational algebra operators. The main components of a query
node are the target list, the range table and the set operation
tree. The target list is a list of expressions on attributes and
constants that define the schema of the result relation of the
query. The range table contains references to base relations
and query nodes of subqueries. The set operation tree, used
only in set operation queries, consists of set operations and
references to range table entries that are accessed by these
set operations. For PostgreSQL, each node in the query tree

(1) SPJ (2) ASPJ

(0] = 2]

—-

A

(3a) union/intersection set tree

Q

Fig. 6: Query tree rewrite

(3b) set difference

-

is either an aggregate-select-project-join (ASPJ) segment or a
set-operation segment. If we distinguish between ASPJ nodes
with and without aggregation there are three different cases:

1) select-project-join (SPJ) query

2) aggregate-select-project-join (ASPJ) query

3) set operations

We distinguish between these cases because for each case
a rewritten subtree can be computed according to the Perm
rewrite rules.

1) SPJ: In relational algebra case 1 is equivalent to the
query ¢ = I a(oc(Tho...0T),)) where ¢ is one of the join
operations (x>, ><1,><_, Z><I7). By using the rewrite rules
and induction over n, it can be shown that ¢ is equivalent to
4 pru..upy) (0c(Tite.. . oT,")). Thus a SPJ query
node is rewritten by rewriting its rangetable entries and adding
all provenance attributes from the subqueries to its target list
(see Figure 6.(1)).

2) ASPJ: The algebra representation of an ASPJ query
node Qugg 18 ITaA(Ohaving(c,aggr(oc(Tio...0T,)))). Re-
member that the result of the rewrite rule for aggregation
includes the original aggregation operation (Qqq44) and the
rewritten subquery (Q7T) of the original operation without
aggregation. For an ASPJ query node we duplicate the original
query node @444, strip off the aggregation operation, selection
on having and projection on A and rewrite the duplicated
node. Afterwards, a new query node Qs is created that joins
Qagy and QT according to the rewrite rule for aggregation
(see Figure 6.(2)). The selection on having and projection on
A are defined on attributes from G, aggr. Which means they
can be omitted in Q* without affecting the result of the join
between Qqqy and Q.

3) Set-operations: ~Set operation query nodes are
equivalent to an algebra statement of the following form:
q = Ty setop setop T, with possible association of
set operations using brackets. The position of the brackets
is defined by the structure of the set operation tree. If none
of the set operations is a set-difference, ¢ is of the form
qop, =, U, o, pomy) (7). 'OleanTnHTn,P(Tn)(T”JF)
(same argument as for case 1). In this case, the operator
o represents a left join for setop = U and an inner join
for setop = N. A set operation query node is rewritten by
duplicating the query nodes of all T's, rewriting the duplicates

variables :
input: the
output: the

pStack
root node of a query tree
root node of the rewritten query tree
traverseQueryTree (QueryNode g) {
if (IsMarkedForRewrite(q)) {
gt := rewriteQueryNode(¢);
else
foreach subquery ¢ in
traverseQueryTree (§)

rangetable ¢

}

rewriteQueryNode (Querynode ¢) {
P—list := (// Provenance attrs of g¢q
case is SPJ node
foreach ¢ in range table
rewriteQueryNode (q)
P—list := pop P—lists
case is ASPJ node
top := createQuerynode
d := duplicate (q)
add ¢ and d to rangetable of top
create join conditions for ¢ and d
strip of aggregation from d
rewriteQueryNode (d)
P—list := pop P—list of d
case is set operation node
create QueryNodes ¢1 and g2
for children of top level set
range table q := 0
add g1 and g2 to range table of ¢
top := createQueryNode
d1, do := duplicate (q1,q2)
add ¢, di, d2 to range table of top
rewriteQueryNode (d;)
rewriteQueryNode (dz)
P—list := pop P—lists
case is base relation
push R on pStack;
return
push P—list
return gq

of all ¢

operation

of di and ds

on pStack
}

Fig. 7: Rewrite algorithm

and creating a new top node Q. that joins the original query
node Qg.; with the rewritten duplicates (see Figure 6.(3a)).

If the set operation tree contains set-difference operations,
the structure of ¢ depends on the order and association of the
set operations. This means we have to split a set-difference set
operation query node into a query node for the set-difference
operator ()4; ¢y and two new nodes for its left and right subtree
(Q1 and @Q-). If the set-difference operation is not the top
level set operation, we add (Qg;s; to the range table of its
parent query and replace the complete subtree under Qgiff
by a reference to the new range table entry for Qg;rs. Qaifs
is rewritten using the method 3a outlined above (see Figure
6.(3b)).

C. Rewrite Algorithm

With the results from the three cases of query node handling
we are able to explain the rewrite algorithm used in the
provenance rewrite module. The input to the algorithm is
a query tree produced by the PostgreSQL rewriter module.
Remember that the query tree has been semantically checked

M 2

pStack

‘

pStack

@)

pStack

) o) |

(6)
pStack
(5) pStack [®3»-[pName ToNumEmpl Tpid [pPrice [pSName [pitemid |

pName_[pNumEmp |
pid [pPrice |
pSName Jpitemid]

Fig. 8: Query tree rewrite

by the analyzer and views have been unfolded by the rewriter.
A pseudo-code algorithm for the rewrite method is given
in Figure 7. The main procedure (traverseQueryTree) of the
provenance rewriter module traverses the query tree until
a query node ¢ marked for rewrite is found. Node ¢ is
passed to the rewriteQueryNode procedure that computes g*.
Afterwards ¢ is replaced by ¢ in the query tree of the original
query. If the traversal is finished the (possibly modified) query
tree is passed to the planer module.

Procedure rewriteQueryNode computes g™ top down by first
rewriting the node ¢, leaving the subqueries in its range table
untouched. In a second step, all direct child query nodes are
rewritten by recursive calls to rewriteQueryNode. Afterwards
the P-list of ¢ is computed using the P-lists of its child
nodes. Provenance attribute lists are stored on a stack data
structure (pStack). Before returning from rewriteQueryNode
q’s ‘P-list is pushed on the stack. The first step distinguishes
between the query node types presented above by inspecting
the set operation tree and the boolean variable hasAggs of ¢.>
Note that we do not compute the rewrite bottom-up, because
we would have to keep references to unmodified copies of
subtrees of the original query in memory. For example, for
an aggregation over a projection, the bottom-up computation
would rewrite the projection first. To rewrite the aggregation
the original projection is needed. This means we have to
keep a copy of the original projection. For complex query
trees access to certain subtrees of the original query would
be cumbersome. Hence we compute provenance top-down to
avoid this additional complexity.

D. Rewrite Example

Reconsider the example from section III. Algebraic state-
ment ¢, can be expressed in SQL as follows:

SELECT PROVENANCE name, sum(price)
FROM shop, sales, items
WHERE name=sName AND itemId=id
GROUP BY name;

3For set operation queries we included only the set-difference case to keep
the algorithm short.

The query tree representation of g, is depicted in Figure
8.1. The traverseQueryTree procedure recognizes that the top
query node () is marked for rewrite and calls rewriteQueryN-
ode. @) is a ASPJ query node (case 2), so rewriteQueryNode
will create a new query node @y, create a duplicate) p of @
and add @) and Q) p to the range table of Q,, (Figure 8.2). In
the next step, aggregation target entries are removed from Q) p,
hasAggs is set to false, and group-by- and having-clauses are
removed (8.3). Afterwards rewriteQueryNode is applied to the
base relations shop, items and sales. Figure 8.4 captures the
state after the rewrite of shop. Note that the P-list from shop™
is pushed on pStack. After the rewrite of all base relations
there are three attribute lists on pStack (see Figure 8.5). In the
last step these lists are poped from pStack and are combined
to form the provenance attribute list for Q;,p, Which is pushed
on pStack before rewriteQueryNode returns (8.6).

E. Subqueries in Expressions

Until now we did not explain how subqueries in conditions
are handled by the provenance rewrite module. To distinguish
between from-clause subqueries and expression subqueries, we
refer to the latter as sublinks. A sublink is called correlated,
if it contains attribute references of the query it is used in.
The algebra we introduced in section III has no support for
subqueries in expressions (IN, EXISTS, ...), but the current
implementation of Perm is able to rewrite sublinks, if they are
uncorrelated. We plan to add support for correlated sublinks
in the future.

Sublinks are rewritten by adding the rewritten sublink query
to the range table of the query they are used in and join
them with the other range table entries on the expression
C the sublink is used in. In the join condition the sublink
is replaced by a normal comparison operator. According to
the contribution definition of Cui et. al, the provenance of
a tuple includes all tuples accessed by the sublink query, if
the expression C' is true independent of the truth-value of
the sublink condition Cj,;. In this case we have to add the
crossproduct of all base relations accessed by the sublink to the
provenance result. For example consider the following query

Overhead
Query absolute | relative 10MB | relative 100MB
1 0.007670s 1.0 % 0.10 %
3 0.001096s 2.3 % 0.20 %
5 0.000018s 0.2 % 0.02 %
6 0.000116s 0.3 % 0.03 %
7 0.024633s 38.0 % 6.60 %
8 0.013342s 25.0 % 1.50 %
9 0.001982s 1.5 % 0.10 %
10 0.000012s 0.2 % 0.01 %
11 0.000261s 33 % 0.03 %
12 0.000310s 0.5 % 0.05 %
13 0.000064s 0.2 % 0.01 %
14 0.000513s 1.4 % 0.10 %
15 0.000513s 1.3 % 0.10 %
16 0.000074s 0.4 % 0.02 %
19 0.000808s 1.3 % 0.10 %

Fig. 9: TPC-H: Compilation Time Overhead for Normal
Queries

with a disjunctive where condition:

SELECT PROVENANCE name
FROM shop
WHERE numEmpl < 10
OR name IN (SELECT sName FROM sales);

C = (numEmpl < 10V Cyyp)
Csup = name IN (SELECT sName FROM sales)

For the tuple ¢t = (Merdies, 3) from the shop relation the
where condition C' is true whether or not the sublink condition
Clyp 1s fulfilled. This means the provenance of tuple ¢ includes
all tuples from the sales relation.

V. EXPERIMENTS

Before explaining the experimental evaluation of the Perm
approach, we summarize the functionality of our system. With
the Perm system, a user can compute the provenance of a SQL-
query, create a view for the provenance computation of this
query, and store provenance by using SELECT INTO. Stored
and external provenance is used in a provenance computation,
if the user specifies a list of provenance attributes in the
PROVENANCE-clause. Provenance queries can be used as
subqueries, hence we provide query-functunality with full
expressive power of SQL.

We used the TPC-H benchmark [17] to evaluate the cost
of provenance computation with the Perm prototype. This
decision support benchmark consists of 22 complex queries
with aggregation and subqueries in expressions (sublinks).
The Perm prototype currently supports all SQL-features im-
plemented by PostgreSQL except correlated sublinks, thus we
can not compute the provenance of queries 2,4,17,18,20,21
and 22 from the benchmark. Each benchmark query was
run in three different configurations. One configuration is
a normal PostgreSQL instance. One configuration used the
Perm prototype without computing provenance information,
to evaluate the overhead our system introduces for normal
operations. In the last configuration the queries are executed

10MB 100MB 1GB
Q norm. prov. norm. prov. norm. prov.
1 [[0.764s | 2.258s | 7.610s 287794s | 77579s | 235334s
3][0.042s | 0.070s | 0.594s 1.095s | 39.165s | 227.809s
§ [[0.010s | 0.018s | 0.083s 0.098s | 0.889s 0.818s
6 [[0.036s | 0.074s | 0.373s 0.770s | 18.152s 35.818s
7 |[0.063s | 0.105s | 0.374s 1.096s | 31.779s | 278.191s
8 |[[0.05Is | 0.080s | 0.884s 1.949s | 56.043s 91.027s
9 || 0.122s | 16.896s | 1.950s | 4985.910s | 76.577s
10 [0.008s | 0.0I2s | 0.08Ts 0.093s | 0.80Is 0.903s
I1_|[0.008s | 0.102s | 0.838s 11.693s | 3.638s | 1038.826s
12 [0.057s | 0.058s | 0.569s 0.585s | 17.780s 17.948s
13 [0.036s | 0459 | 0.476s 5.235s | 10.463s | 397.869s
14 [0.036s | 0.074s | 0.370s 0.777s_| 17.216s 36.609s
15 [0.038s | 0.044s | 0.371s 0.421s | 17.996s 13.480s
16 || 0.020s | 4917s | 0.280s | 73185 |
19 || 0.061s 0.06s | 0.626s 1.323s | 20.266s 40.647s

Fig. 10: TPC-H: Execution Time Comparison

10MB 100MB 1GB

Q norm. prov. norm. prov. norm. prov.
I 41 60°175 4] 600572 4] 6000215
3 I11 287 | T'149 3’008 | 11478 30222
5 0 0 0 0 0 0
6 1 0 I 0 I 0
7 4 56.22 4 575 4 5844
8 2 23.04 2 240 2 27429
9 173 37313 175 | 307755 75 1
10 0 0 0 0 0 0
11 14 3’376 104 | 410°011 | 1469 | 38°5357360
12 0 0 0 0 0 0
13 32 | 15°336 37 | 1537364 42 | 1533833
14 I 0 I 0 I 0
15 0 0 0 0 0 0
16 296 | 119224 | 2°820 [187193 \
19 I I I 12 I 118

Fig. 11: TPC-H: Number of Result Tuples

with provenance computation. All experiments are performed
for test database sizes of 10MB, 100MB and 1GB on a 2GHz
Intel-dual-core machine with 1GB of main memory. The TPC-
H benchmark is provided with a query generator that randomly
sets the parameters of a query and adapts the queries for a
certain database size. We used this generator to generate a set
of 100 versions for each benchmark query and database size.
The same sets were used in all configurations. We stopped
queries after 12 hours of execution if they had not terminated
by then. These queries are represented by black table cells in
the tables.

A. TPC-H Benchmark Results

1) Overhead for Normal Queries: The average absolute
and relative overhead introduced by Perm for normal query
execution is depicted in Figure 9. The overhead depends only
on the algebraic structure of the query and thus is independent
of the database size. This experiment clearly shows that the
overhead of Perm for normal operations is negligible. The
maximal overhead was 25 milliseconds. We omited the results
for database size 1GB, because the overhead is insignificant
small in comparison with the overall execution time.

Fig. 12: Set-operations: Execution Time Comparison

2) Costs of Provenance Computation: A comparison be-
tween the run times of normal and provenance queries is
shown in Figure 10. To have an estimate for the complexity of
a provenance computation in comparison with normal queries,
the average number of result tuples of provenance and normal
queries is presented in Figure 11. 4

Except for queries 9,11 and 16 the overhead of provenance
queries lies in a range of factor 3 to 30. In most cases a
higher factor indicates a huge increase in the number of result
tuples. For example, for query 1 and database size 10MB the
number of result tuples increases approximately by a factor
of 15000, but the execution time only increases by a factor
of 4. The queries with high factors are usually queries with
sublinks, which result in inefficient algebra expressions and
in general generate huge amounts of result tuples. Query 9
is an aggregation over a join on 8 tables grouping on a
functional expression. Thus, the rewritten query is a join on
this functional expression with a table consisting of a join over
8 tables. Of course this type of query is expensive to compute.
Query 11 is an aggregation with a sublink in the having clause
condition. The sublink is an aggregation that accesses three
base relations. In the rewritten form, this query includes a
theta-join on the rewritten sublink, which itself is a join of
its aggregation operation with the accessed base tables. The
rewritten form of query 11 produces approximately 38 million
tuples in an execution time that increases only by a factor of
300. Query 16 is an aggregation containing a negated sublink.
According to the contribution definition, the provenance of a
single tuple of the result of query 16 includes every tuple from
the subquery that did not fulfill the sublink condition.

B. Results for Artificial Queries

In addition to the TPC-H benchmark, we generated artificial
queries to test the performance of specific types of queries.

1) Set-operation Queries: We generated queries consisting
only of set operations with simple selections on the TPC-H
base table part restricted to a random range of primary key
attribute values as inputs for the set operations. A set operation
query is a random set operation tree structure with numSetOp
leaf nodes (Selections on part). For one value of numSetOp,
we measured the average execution time of 100 of these set
operation queries. In the worst case, the provenance computa-
tion of a set-difference operation can degrade to a crossproduct

“For some queries the number of provenance results is 0, but the number
of original results is 1. These queries are aggregations over an empty relation,
which lead to a single result tuple with all attribute values set to null.

10MB 100MB 1GB 10MB 100MB 1GB
numSetOp Query

norm. prov. | norm. prov. | norm. prov. norm. prov. | norm. prov. | norm. prov.

1 0.005s | 0.008s | 0.032s | 0.061s | 0.298s | 0.588s 1 0.006s | 0.015s | 0.055s | 0.102s | 0.573s | 1.037s

2 0.004s | 0.021s | 0.041s | 0.415s | 0.447s | 1.077s 2 0.008s | 0.015s | 0.084s | 0.147s | 0.826s | 1.439s

3 0.005s | 0.079s | 0.055s | 1.037s | 0.579s | 1.686s 3 0.011s | 0.019s | 0.093s | 0.158s | 0.939s | 1.601s

4 0.006s | 0.166s | 0.064s | 1.243s | 0.737s | 2.593s 4 0.012s | 0.019s | 0.118s | 0.200s | 1.037s | 1.757s

5 0.008s | 0.193s | 0.081s | 2.284s | 0.893s | 4.256s 5 0.015s | 0.022s | 0.119s | 0.194s | 1.347s | 1.887s

6 0.022s | 0.031s | 0.131s | 0.207s | 1.201s | 1.954s

Fig. 13: SPJ Operations: Execution Time Comparison

10MB 100MB 1GB
age norm. ‘ prov. norm. prov. norm. ‘ prov.
1 0.0002s | 0.0011s | 0.0014s | 0.0067s | 0.0117s | 0.0634s
2 0.0005s | 0.0019s | 0.0041s | 0.0215s | 0.0181s | 0.1721s
3 0.0011s | 0.0151s | 0.0024s | 0.0139s | 0.0668s | 0.3777s
4 0.0012s | 0.0067s | 0.0094s | 0.0498s | 0.0197s | 0.1896s
5 0.0015s | 0.0098s | 0.0118s | 0.0683s | 0.1160s | 0.7483s
6 0.0019s | 0.0138s | 0.0144s | 0.0899s | 0.1425s | 0.9554s
7 0.0022s | 0.0188s | 0.0171s | 0.1153s | 0.1696s | 1.1937s
8 0.0025s | 0.0218s | 0.0197s | 0.1407s | 0.1954s | 1.5011s
9 0.0028s | 0.0267s | 0.0225s | 0.1712s | 0.2212s | 1.7876s
10 0.0031s | 0.0326s | 0.0251s | 0.2043s | 0.2480s | 2.0680s

Fig. 14: Aggregation Operations: Execution Time Comparison

of the subqueries used in the right operand (7%) of the set
difference. The number of result tuples grows exponentially in
the number of set difference operations. Therefore, we used
only union and intersections in the experiment to evaluate the
effect of the computational complexity of a provenance query
instead of the effect of exponential result growth. The results
from Figure 12 show that union and intersection operations are
handled well by the Perm system. Note that the current version
of Perm uses the simpler version of set operation rewriting
(see Figure 6 (3.b)). We expect a significant speedup using the
other set rewrite variant (3.a), because it omits the creation of
unnecessary intermediate results.

2) SPJ Queries: The second set of artificial queries tests
the performance of SPJ-queries. Each query is built using
numSub leaf subqueries. For each query a random query
tree is created. A run of this experiment is built using 100
queries. The results indicate that provenance computation of
SPJ queries is a very efficient operation. As shown in Figure
13, the provenance computation results in a maximal average
overhead of a factor of 10. This is expected behavior, because
the rewrite algorithm only adds new attributes to the target list
of a SPJ query and does not change its structure.

3) ASPJ Queries: In the next set of experiments, the
performance of nested aggregation operations is tested. An
aggregation test query consists of agg aggregation operations.
Each aggregation operates on the result of its child aggre-
gation. The leaf operation accesses the TPC-H table part.
Every aggregation groups the input on a range of primary key
attribute values. The ranges are chosen so that each opera-
tion performs approximately the same number of aggregation
function computations. This is achieved by grouping on the
primary key attribute divided by numGrp = *%/| part |.
Figure 14 demonstrates that the execution time grows linear in

System 10MB | 100MB 1GB
Trio 113s 922s 9309s
Perm 3s 25s 249s

Fig. 15: Execution Time Comparison with Trio

database size and number of aggregation operations, because
each aggregation operation introduces a new join for the
provenance query.’

C. Comparison with the Trio Approach

As a final experiment, we compared the execution of queries
between Perm and the Trio system. For these experiments we
had to use simple SPJ queries and one level set operations,
because other query types are not supported by Trio. We
generated 1000 simple selections on a range of primary key
attribute values of relation supplier. Figure 15 presents the
overall execution times in seconds for the complete set of
queries. Perm outperforms Trio by a factor of at least 30.
Note that 7rio does not support lazy provenance computation,
so the provenance was computed beforehand. The measured
execution time includes only the time to query the stored
provenance. For Perm the provenance was computed lazily.
Note that a certain amount of the observed overhead may be
due to the uncertainty management features provided by Trio.
We did not compare the performance of our system to the
approach presented in [12] because this approach uses different
contribution semantics.

VI. CONCLUSION

In this paper we have described the Perm system, a prove-
nance management system supporting an almost complete sub-
set of the SQL language. Perm uses query rewrite mechanisms
to compute the provenance of an SQL query. In addition to
providing lazy and eager computation of provenance, SQL
query facilities, and support for external provenance, the
experiments described in the paper indicate that Perm can
outperform existing approaches by a factor of 30. Moreover,
the experiments show that normal database operations are not
effected by the provenance extensions. Queries with multiple
set-difference operations and subqueries in negated or disjunc-
tive expressions generate enormous amounts of provenance
data and thus are still an open problem. This is partly due
to the contribution definition, so a more restrictive definition
should be used for provenance computation in future versions
of the system.

We plan to investigate if the Perm approach can be extended
for transformation provenance, data manipulation queries and
correlated sublinks. Further areas of interest include different
contribution semantics, different data item granularity and
more efficient set-operation, aggregation and sublink compu-
tation using specialized plan operators.

SFor some values of agg the expression numGrp yields an integer result.
In these cases the groupby expression is of less computational complexity,
leading to faster query execution.

VII. ACKNOWLEDGEMENTS

We would like to dedicate this work to Klaus R. Dittrich,
who passed away on 20 Nov 2007. Klaus helped to establish
the Perm project and advised Boris in the preliminary research
that led to the work reported in this paper.

REFERENCES

[1] B. Glavic and K. R. Dittrich, “Data provenance: A categorization of
existing approaches,” in Proc. BTW’07, pp. 227-241.

[2] W. Tan, “Research problems in data provenance,” I[EEE Data Engineer-
ing Bulletin, vol. 27, no. 4, pp. 42-52, 2004.

[3] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A character-
ization of data provenance,” in Proc. ICDT 01, pp. 316-330.

[4] Y. Cui and J. Widom, “Lineage tracing in a data warehousing system,”
in Proc. ICDE 00, p. 683.

[5] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar,
T. Sugihara, and J. Widom, “An introduction to ULDBs and the Trio
system,” IEEE Data Engineering Bulletin, vol. 29, no. 1, pp. 5-16, 2006.

[6] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “DBNotes: a post-it
system for relational databases based on provenance,” in Proc. SIGMOD
’05, pp. 942-944.

[7]1 P. Buneman, S. Khanna, and W.-C. Tan, “Computing provenance and an-
notations for views,” in Workshop on Data Derivation and Provenance.
Chicago IL., October 2002.

[8] P. Buneman, A. Chapman, and J. Cheney, ‘“Provenance management in
curated databases,” in SIGMOD’06, pp. 539-550.

[9] P. Buneman, J. Cheney, and S. Vansummeren, “On the expressiveness
of implicit provenance in query and update languages,” Proc. ICDT 07,
p. 209.

[10] P. Buneman and J. Cheney, “A copy-and-paste model for provenance in
curated databases,” The University of Edinburgh, Tech. Rep., 2005.

[11] J. Cheney, A. Ahmed, and U. Acar, “Provenance as dependency analy-
sis,” Proc. DBPL’07.

[12] J. Cheney, “Program slicing and data provenance,” IEEE Data Bulletin
Engineering, vol. 30, no. 4, pp. 22-28, 2007.

[13] D. Lui and M. Franklin, “GridDB: A data-centric overlay for scientific
grids,” Proc. VLDB’04, pp. 600-611.

[14] P. Groth, S. Miles, and L. Moreau, “PReServ: Provenance recording for
services,” in Proc. AHM’05.

[15] T. Heinis and G. Alonso, “Efficient lineage tracking for scientific
workflows,” in SIGMOD’08, pp. 1007-1018.

[16] B. Momyjian, PostgreSQL: Introduction and Concepts.
Addison-Wesley, 2001.

[17] Transaction Processing Performance Council. (2008) TPC-H benchmark
specification. [Online]. Available: http://www.tpc.org/tpch/

Boston, MA:

