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We have observed very large changes in minority carrier 
lifetime when high purity float-zone (FZ) silicon wafers 
are subject to heat-treatments in the range of 200–1100˚C. 
Recombination centres were found to become activated 
upon annealing at 450–700˚C, causing significant reduc-
tions in the bulk lifetime, detrimental for high efficiency 
solar cells and stable high powered devices. Photolumi-
nescence imaging of wafers annealed at 500˚C revealed 
concentric circular patterns, with lower lifetimes occurring 
in the centre, and higher lifetimes around the periphery. 
Deep level transient spectroscopy measurements on sam-
ples extracted from the centre of an n-type FZ silicon wa-

fer annealed at 500˚C revealed a large variety of defects 
with activation energies ranging between 0.16–0.36eV. 
Our measurements indicate that vacancy related defects 
are causing the severe degradation in lifetime when FZ 
wafers are annealed at 450–700˚C. Upon annealing FZ 
silicon at temperatures >800°C, the lifetime is completely 
recovered, whereby the defect-rich regions vanish and do 
not reappear (permanently annihilated). Our results indi-
cate that, in general, as-grown FZ silicon should not be as-
sumed to be defect lean, nor can it be assumed that the 
bulk lifetime will remain stable during thermal processing, 
unless annealed at very high temperatures >1000°C.
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1 Introduction Float-zone (FZ) silicon is a commonly 
used material for the fabrication of very high efficiency 
(>24%) laboratory solar cells, and power devices where the 
requirement for pure (oxygen lean) silicon is essential. Be-
cause there is no crucible used in the FZ process, very high 
purities can be achieved and in particular low oxygen con-
centrations. In Czochralski (Cz) grown silicon, oxygen 
tends to precipitate during high temperature processing of 
solar cells and power devices (including dopant diffusion 
processes), and the precipitates negatively impact the life-
time/performance of the finished device [1–4]. In contrast, 
silicon from the FZ process is effectively immune to such 
oxygen-related lifetime-degradation during high tempera-
ture processing, thus making FZ an ideal material for high 
performance devices.  

The common assumption that FZ silicon is defect lean 
has largely restricted the examination of recombination ac-

tive grown-in defects to Cz and multicrystalline silicon. 
Recently however, we have found significant changes in 
the lifetime of commercially available FZ silicon wafers 
when subject to heat-treatments over the range 200–
1100˚C [5–8]. These changes have been attributed to the 
transformation of grown-in defects, primarily vacancies, 
which are linked to strong recombination activity after an-
nealing at temperatures of 450–700°C. While such defects 
in nitrogen doped (commercial standard) FZ silicon cannot 
be detected through X-ray topography [9], our sensitive 
photoconductance-based lifetime characterisation methods 
demonstrate that as-grown FZ silicon still contain a large 
number of recombination active defects, which can have a 
detrimental effect on the performance of high efficiency 
solar cells and stable high powered devices. 

In this work, we use a sensitive minority carrier life-
time measurement technique to examine the activation and 
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permanent deactivation of recombination-active defects by 
heat-treatments over a wide temperature range of 200–
1100 ˚C. We perform photoluminescence imaging to detect 
spatial non-uniformities in the bulk lifetime when the de-
fects are activated. Finally, the defects are examined by 
deep level transient spectroscopy (DLTS).  

2 Experiment The samples under investigation were 
(100) orientation float-zone (FZ) silicon wafers and their 
diameter was 100 mm. Details of the samples investigated 
are outlined in Table 1.  

 
Table 1 FZ materials used in this work. The nitrogen concentra-
tion was determined by SIMS and the resistivity is as quoted by 
the manufacturers. 

Manufacturer Resistivity 
(Ω·cm) 

Doping type Nitrogen 
(cm-3) 

A 1.5  n 5.0x1014 
B  >100  n 4.0x1014 
C 5  n 1014–1015† 

D 2  p 1.0x1015 
D 1.5 n N lean* 

E >100 p N lean (<5.0x1013) 
†  Estimated by the manufacturer but not measured. 
* Confirmed by the manufacturer. 

 
The wafers were cleaved into quarters, etched in a 1% 

HF solution and then RCA cleaned. Following the RCA 
clean and a subsequent 1% HF dip (to remove the chemi-
cally-grown oxide), the samples were loaded into a clean 
quartz tube furnace and annealed at the set temperature for 
30 mins in dry oxygen with a flow rate of ~150 l/hr. For 
temperatures higher than 700 ºC, there was an additional 
ramp up and cool down period. The ramp up and cool 
down rates were ~20 ºC/min. 

To examine the impact of annealing temperature on the 
bulk lifetime, minority carrier lifetime measurements were 
performed using a room temperature surface passivation 
technique [10],[11]. In this technique, silicon wafers are 
immersed in a container filled with 170 mL of 15 wt% hy-
drofluoric acid-hydrochloric acid (HF-HCl) solution 
(100ml of H2O, 50ml of 48% HF and 20ml of 37% HCl) 
and centred over an inductive coil for transient photocon-
ductance (PC) measurements (using a WCT-120 system 
from Sinton Instruments) [12]. To activate the surface pas-
sivation, the wafers are illuminated at 0.2 suns for 1 minute 
using a halogen lamp. The light source is then switched off, 
and a transient lifetime measurement is immediately per-
formed. To achieve a very low surface recombination ve-
locity (S) of less than 1 cm/s on n- and p-type silicon, the 
wafers were chemically treated prior to immersing the wa-
fers into the HF-HCl solution. The chemical treatment in-
volved two steps: (1) the wafers were cleaned by the stan-
dard RCA procedure; and (2) subsequently etched in 25 
wt% tetramethylammonium hydroxide (TMAH) at 80–

90°C for 5 minutes (removing about 2.5 microns of silicon 
per side). This chemical treatment ensures the silicon sur-
face is defect and contaminant lean prior to surface pas-
sivation. 

To investigate the spatial non-uniformity of the bulk 
lifetime using photoluminescence imaging, some wafers 
were passivated with a 20 nm atomic layer deposited 
(ALD) aluminium oxide (Al2O3) film. Prior to the deposi-
tions, all samples received a standard RCA clean. The 
Al2O3 films were deposited at 175 °C using a Beneq 
TFS200 ALD system at ANU. Post deposition, the Al2O3 
films were annealed in forming gas at 400 °C for 30 min-
utes to activate the surface passivation.  

For DLTS measurements, 1 mm diameter Schottky di-
odes were formed on n-type samples by thermal evapora-
tion of Au, and on p-type samples by plasma sputtering of 
Ti through a shadow mask. A thick layer of Al(Au) was 
evaporated onto the back side of the samples to form an 
Ohmic contact. Current-voltage and capacitance-voltage 
measurements at different temperatures were carried out in 
order to evaluate the quality of the diodes and to determine 
the concentration of uncompensated shallow accep-
tors/donors in the regions probed by DLTS. Deep elec-
tronic levels were characterized with conventional DLTS 
and high-resolution Laplace DLTS (L-DLTS) techniques 
[13]. 

The nitrogen concentration in the FZ wafers was de-
termined by secondary ion mass spectroscopy (SIMS) 
measurements made by EAG. For samples with an unde-
tectable quantity of nitrogen, we report the detection limit 
of the system (5x1013cm-3) as the upper limit. 
 

3 Lifetime instability upon heat-treating FZ sili-
con (200°C–1100°C) Figure 1 shows the bulk lifetime 
versus annealing temperature of FZ silicon wafers taken 
from 5 different ingots, where ‘bulk’ refers to the meas-
ured lifetime assuming S <1 cm/s (i.e, S is negligible). For 
each annealing temperature, new samples were used. For 
the lifetime reported in Figure 1, an injection level of Δn = 
1015 cm-3 was chosen instead of 0.1×Ndoping because such 
low injection levels could not be measured for some sam-
ples (i.e. >100 Ω-cm). 
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Figure 1: Bulk lifetime (at Δn = 1015 cm-3) versus annealing 
temperature for six different FZ silicon ingots (five different 
manufacturers). Annealing was performed in dry oxygen for 30 
mins. Each data point corresponds to a new sample. [copyrights 
for this figure] 

 
Prior to any thermal treatment, all samples in Figure 1 

show bulk lifetimes in the millisecond range (1–10 ms), 
however these values are well below the Auger limit [14], 
indicating the existence of grown-in defects which are 
causing additional bulk recombination. To highlight the 
existence of grown-in defects further, Figure 2 plots the 
bulk lifetime of 25 FZ >100 Ω⋅cm n-type silicon wafers (1 
box of wafers), which had not undergone any thermal 
processing post crystal growth. The wafer number in Fig-
ure 2 represents the position of the wafer in the box, as re-
ceived from the manufacturer. In this case, the nitrogen 
concentration in each of the wafers is unknown, however 
the concentration is expected to be of the order 1014–1015 
cm-3 as indicated by Table I. 

 

 
Figure 2: Bulk lifetime of silicon wafers as measured using the 
HF passivation technique [10],[11]. The wafer number represents 
the position of the wafer in the box, as received from the manu-
facturer. The nitrogen concentration was not measured in each of 
these samples, however the concentration is expected to be of the 
order 1014–1015 cm-3 as indicated by Table I. 

 
Figure 2 demonstrates that in one box of 25 wafers, the 

lifetime can vary from wafer to wafer. Surprisingly, in 
most cases, the lifetime is low (5–6 ms) relative to the wa-
fers with much higher lifetimes (shown in red) within the 
same box. These findings demonstrate that (i) a box of wa-
fers does not come from the same location within the ingot 
and (ii) the low lifetimes suggest a recombination active 
grown-in defect is present in FZ silicon.  

When the silicon samples shown in Figure 1 were an-
nealed at 200 °C and then 300 °C, a significant increase in 
τbulk is observed for both n- and p-type silicon wafers. For 
example, in the case of the 5 Ω-cm n-type sample, τbulk in-
creased from ~5 ms in the as-grown state to ~10 ms after 
annealing at 300 °C. This increase in lifetime is consistent 
with our previous work on deactivation of defects at low 
annealing temperatures [5], and thus the increase in life-
time as seen in Figure 1 is not related to surface passiva-
tion instabilities. At this time, it is unclear if the defect be-
ing deactivated at low temperatures (300–350 °C) is re-
lated to the same defect giving rise to the degradation in 
bulk lifetime upon annealing at 450–700 °C, however it is 
interesting to note that the lifetime post annealing at 300–
350 °C is generally the highest (see Figure 1). Irrespective 
of this however, low temperature annealing will not re-
move the grown-in defect (permanently annihilate), and 
therefore the bulk lifetime of FZ silicon wafers will still be 
susceptible to thermal instabilities as shown in Figure 1.    

When the silicon samples were annealed in the tem-
perature range 450–700 °C, the lifetime was found to de-
crease significantly, and in the worst case (5 Ω⋅cm n-type), 
τbulk decreased by more than two orders of magnitude. To 
elucidate why a very large decrease in τbulk is observed, 
photoluminescence (PL) images of samples annealed at 
500°C were recorded. 

 

       
Figure 3: Calibrated lifetime image of a nitrogen doped 100mm 
diameter FZ 5 Ω·cm n-type silicon wafer annealed at 500°C. The 
sample was passivated by 20 nm of ALD Al2O3. 
 

Figure 3 depicts a calibrated lifetime image of a nitro-
gen doped FZ 5 Ω·cm n-type silicon wafer annealed at 
500 °C. Figure 2 clearly demonstrates that the lifetime sig-
nificantly decreases and becomes spatially non-uniform, as 
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evident by the disc/ring patterns. In Cz silicon, such ring 
patterns are commonly attributed to oxygen-related ex-
tended defects, however for FZ, the rings can only be at-
tributed to the growth conditions of the ingot and thus the 
lifetime patterns shown in Figure 3 likely correspond to the 
distribution of vacancies [9],[15],[16]. At this time, it is 
unclear if nitrogen is involved in the defect reaction, how-
ever it is known from the literature that nitrogen doping in-
creases the vacancy concentration by preventing void for-
mation [9], thus giving rise to a vacancy distribution that is 
high in the centre of the ingot and lower around the periph-
ery, which could explain the lower lifetime in the central 
region of the wafer in Figure 3.  

When nitrogen doped silicon samples were subject to 
heat-treatments at temperatures ≥800°C in an oxygen am-
bient for 30 mins, the bulk lifetime not only recovered, but 
substantially improved relative to the as-grown lifetime for 
some wafers. At this stage, the reason for the rapid recov-
ery in lifetime at these temperatures is unclear, however it 
is clear that the vacancy defect giving rise to the disk like 
defect distribution shown in Figure 3 disappear post an-
nealing at ≥1000°C, as shown in Figure 4. 

 
 
 
 
 
 
 
 
 
Figure 4: Uncalibrated PL images of quarter 100mm diameter 
nitrogen doped FZ 2 Ω·cm p-type silicon samples annealed at 
500°C (left) and 1000°C (right) in oxygen for 30 mins. The sam-
ples were passivated by 20 nm of ALD Al2O3. 
 

Figure 4 depicts uncalibrated PL images of nitrogen 
doped silicon samples annealed at 500°C (left) and 1000°C 
(right) in oxygen for 30 mins and subsequently passivated 
with 20 nm of ALD Al2O3. The figure demonstrates that 
when FZ silicon wafers are annealed at very high tempera-
tures, the concentric circular defect distribution shown in 
Figure 4 (left) disappear upon annealing at 1000°C as 
shown in Figure 4 (right). To demonstrate the permanent 
annihilation of the defect shown in Figure 4 (left), silicon 
samples were annealed at 1000°C and then subject to an 
additional anneal at 450°C where the defect is known to 
arise. Figure 5 plots the results.  

Figure 5 plots the bulk lifetime (at Δn = 1015 cm-3) of 
nitrogen doped FZ 1, 10 and 100 Ω·cm n-type silicon (i) 
as-grown, (ii) after a 450°C anneal, (iii) followed by a 
1000°C anneal and (iv) annealed once again at 450°C. The 
lifetime dependence with resistivity in Figure 5 is at least 
in part attributed to intrinsic recombination, which is 
strongly dependent on doping level [14].  

Figure 5 demonstrates that when as-grown FZ silicon 
wafers are subject to a low temperature anneal at 450°C, a 

significant decrease in the bulk lifetime arises, which we 
attribute to the activation of a vacancy defect as shown in 
Figure 3. However, as demonstrated in Figure 1 and 4, 
when the wafers are subject to a very high temperature an-
neal in oxygen, the lifetime not only recovers, but im-
proves relative to the as-grown state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Bulk lifetime (at Δn = 1015 cm-3) of nitrogen doped FZ 
1 (red), 10 (green) and 100 (blue) Ω·cm n-type silicon (i) as-
grown, (ii) after a 450°C anneal, (iii) followed by a 1000°C an-
neal and (iv) a subsequent anneal at 450°C.  
 
To demonstrate the permanent annihilation of the vacancy 
defect, the wafers which had undergone a 1000°C anneal 
were subject to a second anneal in oxygen at 450°C, where 
previously the defect became activated. As seen in Figure 
5, no reduction in the bulk lifetime is observed following 
the second 450°C anneal, thus suggesting the vacancy de-
fect has been permanently annihilated, consistent with the 
PL images of Figure 4 and confirmed by DLTS measure-
ments in Section 4. 

Finally, returning to Figure 1 and the lifetime depend-
ence with annealing temperature (200–1100°C), it is inter-
esting to note that for nitrogen lean silicon wafers, their 
trend in lifetime is quite different to those samples which 
contain larger concentrations of nitrogen. Although the 
lifetime does decrease upon heat-treatments at 450–700 °C, 
the recovery in lifetime does not occur until a temperature 
of ≥900°C is achieved. One reason for this difference 
could be a higher void concentration (lack of nitrogen to 
suppress void formation), which can occur when nitrogen 
lean silicon crystals are pulled quickly [9],[15],[16]. Thus 
from Figure 1 it is clear that nitrogen doping does influ-
ence the minimum temperature at which the defect can be 
permanently annihilated. In contrast however, nitrogen 
doped silicon wafers tend to exhibit much higher recombi-
nation (compared to N-lean wafers) when heat-treated over 
the temperature range 450–700 °C, as seen in Figure 1. Ir-
respective of the differences between nitrogen doped and 
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nitrogen lean FZ silicon, the defect can be permanently 
removed, and lifetime recovered when FZ silicon wafers 
are subject to a very high temperature (1100°C) anneals. 

 
4 Observation of electrically active centres 

with deep levels by DLTS Figure 6 compares conven-
tional DLTS spectra recorded on samples from the central 
and edge parts of a 1 Ω⋅cm n-type FZ silicon wafer. Spec-
trum 1 and 2 in Figure 6 correspond to samples annealed in 
oxygen for 30 mins at 500°C, which were cut from the 
centre and edge parts of the wafer respectively. Spectrum 3 
of Figure 6 corresponds to a sample cut from the centre of 
the wafer and then annealed in oxygen for 30 mins at 
950°C followed by an anneal at 500°C. 

An analysis of spectrum 1 presented in Figure 6 shows 
that a 30 min heat-treatment in oxygen at 500°C resulted in 
the introduction of the E1 – E4 traps in the central parts of 
the wafer, consistent with the PL images of Figures 3 and 4. 
A detailed study of majority and minority capture cross 
sections has not been carried out for the E1 – E4 traps but 
from an analysis of their concentrations and positions of 
energy levels in the gap it can be suggested that at least 
one of these traps is responsible for the degradation of the 
minority carrier lifetime upon annealing in the temperature 
range 450-700oC (Figure 1).  

 The absence of the traps in spectrum 2 (the edge re-
gion of the wafer) annealed at 500oC explains the absence 
of lifetime degradation in this region after the heat-
treatment (Figure 3 and 4) and thus indicates that the E1 – 
E4 traps in spectrum 1 are related to vacancy defects.  

 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
Figure 6: DLTS spectra for samples with an initial resistivity of 
1 Ω⋅cm cut from an n-type FZ silicon wafer. Spectrum 1 and 2 
correspond to samples annealed in oxygen for 30 mins at 500°C, 
which were cut from the centre and edge parts of the wafer re-
spectively. Spectrum 3 corresponds to a sample cut from the cen-
tre of the wafer and then annealed in oxygen for 30 mins at 
950°C followed by an anneal at 500°C. Measurement settings are 
given in the graph. Spectrum 1 and 2 are shifted on the vertical 

axis for clarity. The corresponding electron activation energies 
for E1, E2, E3 and E4 are 0.159 ± 0.002, 0.20 ± 0.002, 0.284 ± 
0.002, 0.356 ± 0.002 eV, respectively. 
 

The measurement of spectrum 3 (central region sam-
ple) in Figure 6 provides two significant insights; (1) a 
high temperature anneal at 950°C removes the defects giv-
ing rise to the E1–E4 traps, which is consistent with the life-
time measurements of Figures 1, 4 and 5, and (2) the ab-
sence of traps in spectrum 3 after a subsequent anneal at 
500°C indicates the vacancy defects, which become highly 
recombination active upon heat-treating at 500°C, have 
been permanently annihilated, consistent with the PL im-
age of Figure 4 and the lifetime measurements of Figure 5.  

 
4 Conclusion When commercially available FZ sili-

con wafers were annealed at 450–700˚C in oxygen, the 
lifetime was found to degrade by more than one order of 
magnitude. PL imaging of nitrogen doped samples an-
nealed at 500˚C revealed circular patterns of recombination 
active defects, with higher recombination activity occur-
ring in the centre of the wafer, and far less around the pe-
riphery. DLTS measurements on samples extracted from 
the centre of an n-type FZ silicon wafer annealed at 500˚C 
revealed a large variety of defects with activation energies 
ranging from 0.16 eV to 0.36 eV, however for samples ex-
tracted from the edge of the wafer, no defects could be ob-
served, consistent with our PL images. Our measurements 
suggest that vacancy related defects are causing the severe 
degradation in lifetime when FZ wafers are annealed at 
450–700˚C. 

Upon annealing nitrogen doped FZ silicon at tempera-
tures >800°C, the lifetime is completely recovered, 
whereby the defect-rich regions vanish and do not reappear 
upon subsequent annealing at 500°C (permanently annihi-
lated), as demonstrated by our PL images, lifetime and 
DLTS measurements. For nitrogen lean FZ silicon, much 
higher temperatures of 1100°C are required to permanently 
remove the defect and recover the lifetime, which is likely 
correlated with a higher void concentration.  

Our results indicate that, in general, FZ silicon should 
not be assumed to be defect lean, nor can it be assumed 
that the bulk lifetime will remain stable during thermal 
processing. Therefore to retain stable high bulk lifetimes, 
which is essential for high efficiency solar cells and power 
devices, thermal processing must be carefully designed.     
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