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PERMANENT WAVE STRUCTURES ON AN

OPEN TWO LAYER FLUID

By P.J. Bryant

There is a significant nonlinear interaction between fast free
surface waves and slow interface waves when the group velocity of the free
sﬁrface waves is the same as the phase velocity of the interface waves.
This interaction leads to permanent wave structures consisting of a wave
group of permanent envelope on the free surface and a wave of permanent
shape on the interface. A theory is developed for periodic permanent
wave structures of this type, from which solutions are found numerically.
The theory includes all significant quadratic nonlinear interactions
between free surface harmonics and interface harmonics, as well as between
the interface harmonics themselves. It is found that there is a sequence

of forms of differing free surface group structure.



1. Introduction.

Two uniform layers of fluid with densities of similar magnitude and a
free upper surface have two modes of gravity wave propagation, a fast free
surface wave mode and a slow interface wave mode. When both wave modes
are present, a nonlinear interaction occurs between them. Benney [1] has
shown that the nonlinear interaction is resonant when the group velocity
of the fast free surface wave mode equals the phase>velocity of the slow
interface wave mode. This property leads to permanent wave structures in
which a wave group of permanent envelope on the free surface is coupled
with and moves with the same velocity as a permanent wave on the interface.

The interaction between surface waves and internal waves has been
studied previously in terms of the response of the surface waves to the
velocity field caused at the surface by the internal waves [2, 3, U]. "The
concept of radiation stress was used to determine the behaviour of a surface
wvave under the influence of a prescribed internal wave. This method is
unsatisfactory for the present problem because the shape of the internal
wave, as well as the shape of the surface wave, are unknown quantities. It
was found in these investigations that maximum interaction occurs when the
phase velocity of the internal wave and the group velocity of the surface
wave are matched.

The approach used here is to assume that the wave propagation is
unidirectional and is spatially periodic. The surface and interface waves
may then be represented by Fourier series whose coefficients have a slow
time dependence. Equations are found for the time rate of change of each
Fourier amplitude in terms of all significant quadratic interactions between
all Fourier amplitudes. BSolutions describing permanent wave structures are
found from these equations. In the limit as the fundamental wavelength
becomes large compared with the depth, the Fourier series tend towards

Fourier trangforms of a solitary permanent wave structure.



The properties of long waves on a shallow uniform single layer fluid
are dominated by the near-resonant nature of the interactions between wave
harmonics [5, 6]. If k and £ denote the wavenumbers of two long wave

harmonics propagating in the same direction with frequencies w, , W,, then

k
W+ Wy =W, = o(u?), (1.1)

where U is & measure of the ratio of fluid depth to wavelength. For waves
long compared with the depth, this near-resonant interaction causes the k+f
harmonic to grow to an amplitude comparable with the amplitudes of the k and
£ harmonics separastely. A long periodic wave therefore contains a large
nunmber of harmonics, whose amplitudes decrease with lncreasing wavenumber
because their interactionsg move further from resonance. The long periodic
wvaves of permanent form are approximated by cnoidal waves, tending towards
solitary waves as the separation between consecutive crests increases.

The same general properties are valid for single mode permanent waves
in a two layer fluid. Peters & Stoker [ 7] have showm that there exist fast
free surface permanent waves and slow interface permanent waves. The near-
resonant condition (equation 1.1) then applies respectively either to the
frequencies of the fast free surface wave harmonics alone, or to the
frequencies of the slow interface wave harmonics alone.

When both wave modes are present, significant‘near—resonant interactions
oceur between free surface and interface wave harmonics in the neighbourhood
of wavenumbers Ak, k, k+Ak (Ak <€ k) for which

- (wAk)interface = 0. (1.2)

(wk+Ak)free surface <mk)free surface
This near-resonant interaction takes two forms. It may describe an interface
wave harmonic of small wavenumber interacting with a free surface wave
harmonic of large wavenumber to modify another free surface wave harmonic
of large wavenumber. This is the nonlinear interaction that generates

free surface wavenumbers over a broad waveband to form a wave group. It

may also describe two free surface waves harmonics of large wavenumber



interacting to modify an interface wave harmonic of small wavenumber.

This is the nonlinear interaction that generates interface waves in the
presence of a group of free surface waves. It will be seen later (88 5, 6)
that equation (1.2) is modified by the horizontal velocity caused at the
free surface by the wave on the interface, but that this modification does

not alter the validity of the above arguments.

2. Governing equations.

The two layer fluid consists of a lower layer of mean depth h; and
density pi1 on a horizontal bottom, and an upper layer of mean depth h»
and density p2 with a free upper surface. Attention is confined to fluids
for which the density difference . p) -pP2 is small compared with p, and pz.
The fundamental wavelength is denoted by 27, and a,b are measure of free
surface and interface wave amplitudes respectively, to be defined more
precisely later. The horizontal and vertical coordinates x,y are non-

dimensional, being measured in units of hi+h2, and the origin of y is on

Nie

the mean interface. The time t is non-dimensional in units of ((hi +h2)/g) ",
where g is gravity. Interface displacement, N, and free surface displacement
€, are measured in units of b, and both velocity potentials ¢1,02 in units

of (g(h1-¥h2)3)%. The principal small parameter is €= b/(hi +h2) €1, and
other non-dimensional parameters are €' = a/(h1+h2)‘< l, U= (hy +ha ) /L,
p=p1/p2, h = h1/(h1+h2).

The governing equations are then

<blxx + ¢lyy =0 , -h<y<o, (2.1a)
¢2xx + ¢2yy =0 0<y<1--nh (2.1b)
¢1y = 0 ony = -h, (2.1c)
by = Ny = emo ), = 0(e*) ony = o0, (2.1d)
boy = My - e(ne, ) = o(e*) on y = 0, (2.1e)



e0(9)2 d>ly) - Be(o ) + ¢22y ='0(e?) on y = 0, (2.1f)
by = &y (&ng)x = (62) ony = 1-h, (2.1g)
bop * &+ e, o+ (O + 0 ) = 0(e*) on y = 1-h. (2.1n)
Spatially periodic solutions are sought of the form
£ =% Z Ak exp i(kux - wkt) + % (2.2a)
n=% ) Bk(t) exp i(kpx - wkt) % (2.2Db)
k=1
(o0}
by =% ) €y () cosh ku(y +h) exp i(kux-wt) + * (2.2¢)

1

(t) sinh kpy) exp i(kpx - w t) + * (2.24d)

2k k

o
$p2=% ) (c, (%) cosh kuy + D
2k

k=1

vhere ¥ depotes complex conjugate, and k, wk are non-dimensional wavenumber
‘ L ‘ 1

(in units of 1/4) and frequency (in units of (g/h1~+h2))é.

Substitution of these Fourier series in equations (2.1) followed by

neglect of the 0(¢) terms yields the linear approximstion, whose solution

is (with Ty = tanh kyh , T, = tanh ky (1 -h))

(O+T1Tﬂ(%WMUZ“ P(Ty +T5) %:/mi+(Pnl)T1Tz=(h (2.3)
= - 2 - = (1 i
By (1 Tzku/wk ) cosh {ku(1-hj} A (1ku/wk) sinh {kuh} Clx (2.L4)
- = (s 2 _ _ 2
(1ku/w )D Dy = 1ku/wk)(wk Jku - Ty ) /(1 Dot /ku) Copr
Equation (2.3) is the dispersion relation, with the solution
2 ) 1/2
S _o(MAm) (), o Merm )T, p-1 ) (2.5)
ky 2(p +1T2) - p(Ty + Ty )? p 7
where the larger root will be denoted wAk’ and the smaller root ka. When

p=1+Ap, Ap <€ 1, as in the present application, the two roots reduce to

w&i kU tanh ku (1 + 0{Ap)),

2
Way

The fast wave mode with frequency wAk is the free surface wave mode with

properties almost independent of the presence of the interface. The slow

Ap Ty To /(T +T2)(1 + 0(Ap)).

T

wave mode with frequency'mBkis dependent on the reduced gravity zglAp at the

interface, with a free surface displacement that is small compared with the



interface displacement.

The linear solution in equations (2.3) and (2.4) may now be used in
the calculation of the next approximation, that is, in the substitution of
equations (2.2) in equations (2.1) including the evaluation of the 0(€)

C D are eliminated,

1k® "2k’ T2k

two differential equations emerge from lengthy calculation, namely

terms. When the velocity potential amplitudes C

(with D = d/dt),
D(D -2iw ) (A + (p =1)(1 - T2ku/w *) cosh {kp(1-h)} B,)
k=1

- l/zgﬂzl Pl Bp Byop &xP = Hug vy p -0 )t

z Pk ) Bz By, p €XP - i(wk+£'— o - wk)t + 0(e?),

K= 1y 2ycceces (2.6a)

(D= d(wy, =w, o /w))( (wy +wy, w0 ) (B
(L-m, ku/wk ) cosh {ku(l-n)} Ak)
k-1
- 1/28112 Q _p Bp By_p exp - i(w£+mk_£ - wk)t
‘;‘l ?

[ee)

+€££1 Qk,ﬂ BE By yp €XP - i(wk%uwﬂ-wk)t + 0(e?),

The frequencies we defined for positive wavenumbers by equation (2.5)
are continued to negative wavenumbers by w_p = Wy (£ > 0). The coefficients

Pk,ﬂ ) Qk,ﬂ are stated in the Appendix. Note that Pk,—ﬂ = Pk,w(kml)’

Ul = Yo (e)r O S ES K

Equation (2.6a) has a complementary function which when substituted
into equations (2.2a) or (2.2b) yields wave harmonics with exponents
kyx + wkft‘ For a given initial displacement, this equation describes
waves of one mode (either fast or slow) propagating in the positive and

negative x-directionsg, modified as they propagate by the nonlinear right

hand side. The complementary function of equation (2.6b), when substituted



into equations (2.2a) or (2.2b), yields wave modes with exponents

+ . .
kux * Ak ka/w t. The frequency wk is equal either to wAk for a fast mode

or ka for a slow mode. Hence, for a given initial displacement, equation

(2.6b) describes waves of the mode other than that in equation (2.6a)
propagating in the positive and negative x-directions.
If equation (2.6a) is integrated as it stands, the right hand side of

the resulting equation would contain the denominators - i(wﬁfkwk-ﬂ"wk)

and - i (w

k+£f"w£f_wk)' When all three frequencies in either of these

denominators are of the slow mode, the expressions are O(uz) as 4 >+ 0

interface
(equation 1.1). Since the equations will be applied to long/waves for which

e/u? = 0(1), this integration is not permissible. When equation (2.6a) is
multiplied by exp(inwk't), no such difficulty occurs and the equation

integrates to

D(A, + (p=1)(1 = T2 kn/w ?) cosh {ku(1-h)} B )

1, y Pk a"«e

= dg i€

B, B exp - i (w, +w - )t
221 u)g+wk~_£+wk £ "x-p £ "k-£ Tk

[ee)

P
k.4
ig )
£=1 Yrep "Wty

By Byyp ©XP = i(0y 0 =0y =0, )%

+0(e®), k=1, 2, «v... (2.7a)
When equation (2.6b) is multiplied by the integrating factor

exp - i(uk'FwAk Bl/wk t and integrated, it becomes

(D= 3wy ~w,, W /0 ) ) (B, = (1 -Ty ku/wk ) cosh {ku(1-h)} A)

k-1 %Y _p

=1 Yo FWeop t Py Cpy

[«e]

Q
tie 2 (W. f))g [{}] 3}
£=1 "k+& "L TAk Bk

Jo Bp Byp exp -i(wp*uw, o -w )t

% .
/wk BE Bk+£’, exp —1(wk+£~u)£-wk)t

+0(e?), k=1, 2, ..... . (2.7Db)

If this equation is now multiplied by the integrating factor
o=~ 1 (W
exp ~ 1 (0 -0y, Lpy
equation contains the denominators - i(uY +wk—£'.wAk ka/wk) and

/w ) and integrated, the right hand side of the resulting

- i(wk+£«»w£ Oy wBl/w ). Either or both of these denominators may have a



magnitude small compared with 1 when k and £ are such that the triad
describes the near-resonant interaction of equation (1.2). 1If attention
is restricted to those k and £ for which these denominators have a magnitude
comparable with 1, equation (2.7b) may be multiplied by the integrating
factor and integratéd to leave

B, - (1-Tokn/w ?) cosh {ku(1-n)} A

k-1 Qk )

;@Zl (wp oy _p)? = (W wpy /6y )* K

k

= -5

B, _p ©Xp - i (m£+wkm£—mk) t

o]

z kel :
pe1 (Opp = 0p)® = (W vy /w0y )

* vy o 4 .
- € BZ B g XD 1(wk+£ wp wk)t

+0(e®), k=1,2, «eoer (2.8)
Benney | 81 derived équations for the time evolution of long nonlinear
waves, that is, waves for which n2~eg €1, His analysis, applied to the
present problem, predicts that for a long nonlinear wave on the free surface
£ satisfies a Korteweg and de Vries equation, ﬁhile for a long nonlinear
wave on the interface n satisfies a Korteweg and de Vries equation. The
latter equation is now derived by taking the long wave limits of equations

(2.7a) and (2.8) with Wes oo W p and

\ wk+£ all referring to the slow

interface wave mode.
The linear long wave veloclty on the interface is

Co = lim ka/ku,
>0

and, from equation (2.3), is the smaller positive root of

b4 2

Co' -=Co” +h(l~-h)(p-1)/p = 0. (2.9)

The coefficients Pk,ﬂ/(wk

+£f-w£-+wk) in equation (2.7a) reduce to
3pCokU Co" +(3h-2)Co% + 1-2h

- (1+0(n*))
hn? Co? - (1 -h)

and the coefficients Qk 2 in equation (2.8) are O(p?). On substitution

from equation (2.8), equation (2.7a) reduces to



k-1
DBk = -léier’ex ku BK Bk—K exp - i(wszwk_ﬂ"Qk)t
=1
—jﬁr'glkuBszﬂem)_iM%%— K—%Jt

+0(e?), k=1, 2, vven. . (2.10)

30, Co" #(3n-2)Ce%2 + 1-2h
where r = (1+0(p?)).
b (2% =1)(Co? - (1 ~h))

Equation (2.10) may be summed over £ and k, using equation (2.2b), to give

ng + Con +2ermn + wPsn_ =0 (e?, en®, u*), (2.11)

where, from equation (2.3),
w /ki = Co - k*u®s + o(u"),

Co (1+ (3/p-2)n(1=h))Co* -h(1-h)
and g5 = -

6 2002 ~1

Equation (2.11) is a Korteweg and de Vries equation, as predicted by Benney

[8].

3. Permanent waves on the interface

Permanent periodic waves of (nondimensional) velocity ¢ on the inter=

face have the Fourier expansion

0
n(x,t) = } b, cos ku(x = ct) . (3.1)
k=1
where from equation (2.2b)
Bk(t) = b, exp 1((1)k - kie)t (3.2)

When Ak is eliminated between equations (2.7a) and (2.8), and Bk is replaced
from equation (3.2), then
k=1 ©
. ‘31
(wy kuc)bk /aez Rka_zb'e b _p *tE Z ka by b, .o
£=1 £=1
+ 0(e?), k=1, 2, «vev (3.3)

where the coefficients Rk g are given in terms of Pk 2° Qk ) in the Appendizx.
9 5 9
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If the wave height, trough to crest, is denoted by 2b, where

£ = b/(hl +h2), then

w0

) b = -1 (3.4)
oy 2kl

vhere the origin in x -ct is taken at the trough of the wave.

The properties and method of solution of equations (3.3) have been
described previously | 6] for permanent waves on a single layer fluid, and
apply again here. Tor waves of length small or comparable with the lesser
of the layer depths, the permanent waves are Stokes' waves on the interface
for which by =-1, b2 =0(g). For longer waves, as | decreases, the nonlinear
interactions between the wave harmonics lie closer to'resonance, and the
permanent waves therefore contain more harmonics. Starting from large values
of Y, equations (3.3) may be solved numerically for successively smaller values
of U to any required numerical accuracy, with the neglect of the 0(62)
remainder. One wavelength of the solution for p = 1.05, h = 0.9, € = 0.05,
and § = 2 is sketched in figure 1. This periodic permanent wave is closely
approximated by the cnoidal wave solutions of the Korteweg and de Vries
equation (2.11), since for a small upper layer (h = 0.9), the coefficients
r and s in equation (2.11) are of comparable magnitude when (1 -h)%p? ~ ¢.

As equations (3.3) are solved for smaller values of U at constant 0, h, and &,
the solutions tend towards periodically spaced solitary waves, and the number
of harmonics increases. The solution in figure 1 for U = 2 containsg 11
harmonics exceeding lo_3 in magnitude, while that for U= 0.2 contains T1
harmonics exceeding 10_3i11magnitude,

The present calculations héve been checked analytically against two
previous investigations of the long wave 1limit. Long permanent waves at
the interface of a two layer fluid were investigated by Peters & Stoker | 7).
who developed perturbation expansiong for the streamline displacements in the
corresponding steady flow problem. Their solutions agree exactly with the
cnoidal and solitary wave solutions of equation (2.11). Benjamin [9] showed

that long permanent wave solutions exist for a wide class of fluids whose



11.

density and velocity are arbitrary functions of height. When his method is
applied to the particular case of a two layer open fluid, agreement is obtained
again with the cnoidal and solitary wave solutions of equation (2.11).

The coefficient r in equation (2.11) is negative when the interface is
high, positive when the interface is low, and r=0 for Ap €1 when

h=3%(1-"%0p + 0(p)?). (3.5)

When r < 0, the cnoidal wave solutions of equation (2.11) are peaked towards
the troughs, as in figure 1. As the upper layer is increased in depth and r
approaches zero, the periodic solutions tend towards the sinusoidal solution
of equation (2.11) for r = 0. When r >‘O, the cnoidal wave solutions of
equation (2.11) are peaked towards the crests, as in figure 1 inverted. The
same properties are true of the solitary wave solutions of equation (2.11),
although as was noticed by Peters and Stoker, there is no solitéry wave
solution for which u? = 0(¢) when r = 0. In this case, following Benney [ 8],

equation (2.11) may be rewritten

3, en?, u"), (3.6)

24..2 2
+ + + =
" Co M 3e°Ann Hesn o(e
where Y = 0(€) and A is an O(1l) coefficient, and this equation does have

solitary wave solutions.

i, Permanent wave structures

Periodic permanent wave structures containing both the fast free surface
wave mode and the slow interface wave mode are now investigated. Solutions

to the governing equations are sought of the form

n
n= J b, cos ku(x-ct) (4.1a)
=1
my
E= 7 &, cos {kpu(x-ct) -ot} , (h.1p)
k=m,
where by (1 €k < n); ay (my <k <my), ¢ and o are to be determined. The

form of these solutions is such that the interface wave and the envelope

of the surface wave group are in phase, and the surface wave itself moves
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with a constant frequency O relative to the group envelope. The corresponding

complex amplitudes, from equations (2.2),are

A
JAN

k

=
—~
ot
e
"

b, exp 1(u%-=kUC)t , 1 n, (4.2a)

akem)ﬂwk—Mm—um , mSk

A

my. (k.2b)

—
ct
~—
i

The significant nonlinear interactions are divided into three types:

1. Two interface wave modes interacting to modify a third interface wave mode,
A << - < )
A VR ST S VA P £ x <n. (4.3a)

Bquation (2.8) is valid for this interaction, since Wy e p o, - O is
k-

comparable with 1.

II. Two free surface wave modes interacting to modify an interface wave mode,

- o < < < <
Opgekl ~ Yap T > 1 SESn, om S kbl Smo. (4. 3b)

[ b . is i . is i vt 4 8] i - ), e Y
Equation (2.8) is valid for this interaction also since wA,k+K Wl Ak
is comparable with 1.

IIT. An interface wave mode and a free surface wave mode interacting to

modify a free surface wave mode,

£ < < < k--f < m,. i
mA,k—ﬂ + sz Wy o 1 |£| Sn, m Sk-€, k Smp (k4. 3c)

n i . i i w W, - W i
Equation (2.8) is wvalid here also because A kL Bl —_ comparable

with 1.

These three types of quadratic interaction dominate all other nonlinear
interactions because of their nearness to resonance. For this reason, they
are the only nonlinear interactions included in the calculations.

The governing equations are formulated in terms of the Fourier amplitudes
defined in equations (4.2), for otherwise exponentially large coefficients
are multiplied by exponentially smali amplitudes. The free surface amplitudes
Ay (m; €k Smy) have associated with them exponentially small interface
amplitudes Bk (my €k <my), so it is possible in principle to nse equations
(2.7a), (2.8) throughout the calculations. This is not desireble in practice
because of the errors caused in the numerical calculations. When equations

(2.7a), (2.8) are reformulated with the complex amplitudes replaced from
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equations (4.2), the governing equations become

(ka--kuc)bk = %t;iil (Rl)k,—ﬂ bﬂbk-K + € ngk (Rl)k,ﬁ b@bk+£
=1 £=1
my~k
+€1{=§n1 (RZ)k,K 8o p 1<k <n, (4.ha)
Min(n,k-m;) Min(n,mg—k)(Rs) b8 ,
(w,, - kue —Ol,)ak =g Ezl (R3)k.’_/e bpa, p *E gzl kL Lk+L
m Sk <mp. (k. kw)

The coefficients Ry, R2, R3 associated with the three types of nonlinear
interaction are defined in the Appendix.

Equation (3.4) measuring the height of the interface wave is still wvalid,
nanely

-

. bk = ] . (l!"' 58.)
k odd
Since the height of the wave group on the free surface is independent of the

height of the interface wave, then

Doa= A, (4.5b)

k odd
where A is a prescribed constant. The maximum height of the envelope of the
wave group above the mean free surface is denoted by a, where a/(h; +hy) = ',
It is to be noted that if a, (m; Sk <my) is one solution for the free surface

harmonics, then -a, (m, <k < my) is another solution with the same envelope.

k
The n +my -~m; +3 equations (4.h), (L.5) are now solved for the n+my ~my + 3
variables b, (1 <k <n), 3y (my Sk Smp), ¢ and o.

5. Permanent wave structures of short wavelength.

The simpler solutions of equations (L4.4) and (4.5) include those of short
wavelength, when the wave on the interface is almost sinusoidal because the
first type of interaction is far from resonance. TFor a free surface wave
group of sufficiently small amplitude, equations (k.La), (4.5a) are then

satisfied by b; = =1, by = 0{g), c = wBl/u, and equations (4.hb) become



1k,

(wAk - kg, - a)ak + E(Rg)k,_l a1 * S(R3)k,l 841 = 0»

m Sk < m. (5.1)
This set of my ~my +1 linear algebraic equations has in general mj; =m; +1 sets
of solutions, each set containing an eigenvalue o and the corresponding
elgenvector a, (m; Sk <myp) of the matrix of coefficients. BHach eigenvector
may be scaled to satisfy equation (L.5b).

It is a straightforward numerical calculation [10] to find the eigenvalues
and eigenvectors of the set of equations (5.1) for any given external parameters.
These parameters were taken to be p = 1.05, h = 0.9, 4 = 20, € = ' = 0.005,
for which the equality Wpy = dek/dk occurs at about k = 10.5. The interval
m Sk Smp was chosen to be sufficiently large that sets of solutions were
reproducible to within the desired numerical accuracy (10”“) when the sige of
the interval was increased further. Bach set of solutions was then used as
the starting estimate for a Newton-Raphson solution of equations (L.4) and
(4.5) to the same numerical accuracy. The first five sets of solutions are
drawn in figure 2(a), and the corresponding free surface wave groups (equation
4.1b) are drawn in figure 2(b).

In order to understand the sets of solutions in figure 2(a), equations
(5.1) are written as the set of difference equations

B ~ 28 ta ot (k) a, =0 , m <k <ng, (5.2)

1
4

where (R3)k .1
b1

= (Ry), . , and f(k) is approximately a quadratic form in %k
k,1

A comparison of these difference equations with the differential equation
a%y
>+ f(x)y =0,
dx

shows that solutions for a, are oscillatory in k when f(k) > 0, and are

convergent or divergent in k when f(k) < 0. The only stationary value of (k)

. . d
makes it & maximum near * (

Hence acceptable solutions for a, (my Sk S<m2) consist of a range in the

Wpp ™ kal - ) = 0, that is, near Wy = dmAk/dk'

neighbourhood of resonance where a, ig an oscillatory function of k, encloged

k

by ranges at each end where a, decreases monotonically in magnitude towards

k

zero. Further, ag o decreases, f(k) increases, which means that the extent
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of the range of oscillation and the number of oscillations of 8y as a function
of k both increase when o decreases. These properties are all present in the
five solutions sketched in figure 2(a).

The structures of the free surface wave groups in figure 2(b) may be
interpreted in terms of their interaction with the horizontal velocity field
caused at the free surface by the wave on the interface. Since the wave on
the interface is sinusoidal, the horizontal velocity u at the free surface is
also sinusoidal with a positive maximum at the centre of the group and a
negative minimum at the two ends of the group. The resonance equation (1.2)
is modified now to
gB) +u (5.3)
where ¢ = 0.035 and -0.001 < u < 0.001 (from equations 2.2d, 2.4) for the wave
groups in figure 2(b). Hence the wavenumber of the free surface wave within
the group varies from 10.8 at the centre of the group to 9.6 where the group

extends to the ends of the fundemental wavelength. Measurements in figure 2(b)

confirm the accuracy of this interpretation.

6. Permanent wave structures of long wavelength.

When the fundamental wavelength increases, the first type of interaction,
namely that between harmonics on the interface, moves closer to resonance.

The number of interface harmonics therefore increases, and since each interface
harmonic interacts near resonance with a range of pairs of free surface
harmonicsg, the number of free surface harmonics also increases. The latter
effect may be seen alternatively as a consequence of a longer interface wave
causing a stronger horizontal velocity gradient at the free surface.

Two methods have been developed for calculating numerically the solutions
of equations (k.k), (4.5) for long wavelengths. The harmonics of & permanent
interface wave of given wavelength in the absence of a free surface wave group,
by (1 €k <n), may bg calculated as in §3 and then substituted into equations

(4.hb). The resulting linear algebraic equations for & (m; Sk €mp) and o

may then be solved as in 85 for a free surface wave group of small amplitude,
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and the solution used as a starting estimate for a Newton-Raphson solution
of equations (4.4), (4.5) at the given wavelength. Alternatively, the
solutions in §5 at short wavelengths may be continued step by step in u to
long wavelengths, using the Newton-Raphson method of solution at each step.

The first two sets of solutions for the harmonics at o = 1.05, h =0.9,
W=2, €=g'= 0.0l are shown in figure 3(a), and the corresponding
permanent wave structures are sketched in figure 3(b). It can be seen that
the shape of the spectra of the free surface harmonics in figure 3(a) is the
same as that of the first two forms in figure 2(a). This similarity of shape
was found for all five forms in figure 2(a) as U decreased from 20 to 2. The
free surface wave groups in all five forms of permanent wave structure also
retained similarity of shape as | decreased.

The horizontal velocity at the centre of the free surface wave group is
0.008, 0.009 respectively in the two examples in figure 3(b), and the phase
velocity is 0.066, 0.067 respectively. Equation (5.3) therefore predicts that
the wavenumber at the centre of the free surface group should be about 37
in both examples. The validity of this interpretation is confirmed by figure
3(a), where k = 37 lies near the centre of the spectrum in both examples, and
by figure 3(b), where measurement of the wavelength within the free surface
wave group agrees with this estimate.

The interface wave spectrum is broader in the presence of a wave group
than in its absence. The interface spectrum for the first form of permanent
wave structure in figure 3 contains 15 harmonics exceeding 107% in magnitude,
while the interface permanent wave spectrum in the absence of a surface wave
group contsins only 6 harmonics exceeding 1072 in magnitude. The free surface
wave group, through the second type of nonlinear interaction identified in 8k,
broadens the interface wave spectrum and hence sharpens the interface wave.

The amplitude of the free surface wave group (measured by €') may be
increased step by step so that the second type of nonlinear interaction causes
a greater change to the shape of the wave on the interface. One such example

is illustrated in figure 4, which shows the second form of permanent wave
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structure at p = 1.05, h = 0.9, u= 2, € = 0.01, €' = 0.05.

The spectrum of the free surface harmonics in figure L(a) displays the
characteristic shape of the second form of permanent wave structure, but the
spectrum of the interface harmonics, instead of decreasing monotonically in
magnitude as previously, now displays a small overshoot. It can be seen in
figure 4(b) that the shape of the envelope of the free surface wave group has
been impressed onto the interface wave, which is a property that also occurs
for the other forms of permanent wave structure in this limit. The phase
velocity of the structure has increased from 0.067 at € = €' = 0.01 to
0.12% at € = 0.01, €' = 0.05 because the structure is now dominated by the
fast free surface wave mode. The horizontal velocity at the centre of the
free surface wave group due to the interface wave is now 0.010, so equation
(5.3) predicts that the wavenumber at the centre of the free surface wave
group should be about 10. This is in agreement with figures L(a) and L(b).
The wavenumber is smaller than in the examples of figure 3 because the phase
velocity of the structure is larger, requiring from equation (5.3) a larger
free surface group velocity.

The amplitude of the interface wave (measured by €) in the examples of
figure 3 may be increased step by step while the amplitude of the free surface
wave group is held constant. Pigure 5 shows the first form of permanent wave
structure at p = 1.05, h = 0.9, u= 2, € = 0.05, €' = 0.01. The phase velocity
of the structureis 0.0T4, which is the same (to this accuracy) as the phase
velocity of the permanent interface wave in the absence of a free surface wave
group. The horizontal velocity at the centre of the free surface wave group
due to the interface wave is 0.045, and from equation (5.3) the wavenumber at
the centre of the free surface wave group is therefore about 150. This is
consistent with figures 5(a) and 5(b). The central wavenumber is much larger
than in the examples of figure 3 because the horizontal velocity at the free
surface is much larger, requiring a smaller group velocity in equation (5.3).

When the fundamental wavelength is increased while all other parameters

are held constant, the periodic permanent wave structure tends towards a train
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of solitary permanent wave structures. JThe central quarter of one wavelength
of the first form of permaﬁent wave structure at p = 1.05, h = 0.9, U = 0.5,
€ = €' = 0.0l is drawn in figure 6(b). The remainder of the wavelength consists
of a level free surface and a level interface. The spectra of harmonics of the
interface and free surface waves are drawn in figure 6(a) as continuous curves
for convenience and because they approximate to the Fourier transforms of a
solitary permanent wave structure.

In all the calculations above, the depth of the lower layer is fixed at
0.9 of the total depth (h = 0.9). As this ratio is decreased with all other
parameters held constant, the horizontal velocity field at the free surface
due to the interface wave also decreases, since the interface moves further
from the free surface. Beginning from the example of figure 3, as h is
decreased at constant P, U, €, and €', the spectra of the interface wave and
free surface wave tend towards those of the example in figure 2. The number
of harmonics in the interface wave decreases as h decreases until about
h = 0.35, when the second harmonic passes through zero. When h is decreased
further, the number of harmonics in the interface wave increases again, but
the number of harmonics in the free surface wave remains small because the

horizontal velocity field at the free surface is also small.

T, Discussion

The permanent wave structures described here consist of a wave of permanent
shape at the interface and a wave group of permanent envelope at the free
surface. An interface wave has permanent shape when the linear dispersion and
the nonlinear steepening or flattening of inclined surfaces is in balsance
(I9l, §1). There is a similar explanation for the permanent shape of the free
surface wave envelope. The horizontal velocity field at the free surface due
to the interface wave has a forward maximum above the wave trough, decreasing
on either side of the trough. Hence a free surface wave behind the trough is
stretched and therefore moves faster, since the phase velocity is an increasing

function of wavelength., On the other hand, a free surface wave ahead of the trough
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is compressed and therefore moves slower. The net effect for the free
surface waves is one of balance between the linear dispersion and the nonlinear
interaction with the interface wave. |

This physical argument may be applied also to wave groups of permanent
envelope on deep water ([11], §17.8). In this case, there is s balance between
linear dispersion and the mean quadratié velocity field caused at the free
surface by the wave group itself.

On comparing the different forms of permanent wave structure in figures
2 or 3, for example, it can be seen that the higher the form, the more complex
is the shape of the free surface wave group; although the interface wave
remains almost unchanged. Hence, when all other parameters are held constant,
the energy of the permanent wave structure is expected to be greater, the higher
the form of structure. This in turn implies that the higher forms are less
stable, and that the first form of permanent wave structure is most likely
to occur in practice. A stability analysis will be made to test this argument.

The unsteady solutions of equations (2.7) will also be investigated. The
second type of nonlinear interaction identified in 84, for example, generates
interface waves whenever there is a spectrum of free surface waves. When the
free surface waves are forced by the wind, this interaction provides a near-
resonant mechanism for the generation and growth of interface waves. The
permanent wave structures described here may in some sense represent an

asymptotic state for waves on a two layer fluid.
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Appendix.
Define F, = mf{ cosh pk(1l-h) - pk sinh uk(1-h),
Gy = wf{ sinh pk(1-h) - yk cosh uk(1=h).
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pr = 1

hy = O.l(h1 + hz)
pr = 1.05

hy = 0.9(hy + hy)

Tigure 1. Oné wavelength of a permanent interface wave
(vertical magnification 2m).
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Figure 3(a). Wave spectra for the first

structure at long wavelength with € =

€' = 0.01.

two forms of permanent wave



Figure 3(b). One wévelength of the first two forms of permanent wave
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structure st long wavelength with € = €' = 0.01 (vertical magnification

2m) .
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Figure 4(a). Wave‘spéctra for the second form of permanent wave structure

at long wavelength with € = 0.01, €' = 0.05.

Figure 4(b). One wavelength of the abo#e form of permanent wave structure

(vertical magnification 2m).
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Figure 5(a). Wave spectra for the first form of permanent
wave structure at long wavelength with € = 0.05, €' = 0.01.

The discrete points have been replaced by a continuous curve.

b x magnification

Figufe 5(b). One wavelength of the above form of permanent wave

structure (vertical magnification 2m).
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Figure 6(a). Wave spectra for the first form of permanent
wave structure at very long wavelength,

The discrete points have beenvreplaced by a continuous curve.
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Figure 6(b). The central quarter of one wavelength of the above

form of permanent wave structure (vertical magnification 2m).
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