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PERMANENT WAVE STRUCTURES ON AN 

OPEN TWO LAYER FLUID 

By P.J'. Bryant 

There is a significant nonlinear interaction between fast free 

surface waves and slow interface waves when the group velocity of the free 

surface waves is the same as the phase velocity of the interface waves. 

This interaction leads to permanent wave structures consisting of a wave 

group of permanent envelope on the free surface and a wave· of perma,nent 

shape on the interface. A theory is developed for periodic permanent 

wave structures of this type, from which solutions are found numerically. 

'l'he theory includes all significant quadratic nonlinear interactions 

between free surface harmonics and interface harmonics, as well as between 

the interface harmonics themselves. It is found that there is a sequence 

of forms of differing free surface group structure. 

1. 



1. Introduction. 

Two w1iform layers of fluid with densities of similar magnitude and a 

free upper surface have two modes of gravity wave propagation, a fast free 

surface wave mode and a slow interface wave mode. When both wave modes 

2. 

are present, a nonlinear interaction occurs between them. Benney [l] has 

shown that the nonlinear interaction is resonant when the group velocity 

of the fast free surface wave mode equals the phase velocity of the slow 

interface wave mode, This property leads to permanent wave structures in 

which a wave group of permanent envelope on the free surface is coupled 

with and moves with the same velocity as a permanent wave on the interface. 

The interaction between surface waves and internal waves has been 

studied previously in terms of the response of the surface waves to the 

velocity field caused at the surface by the internal waves [2, 3, 4J. The 

concept of radiation stress was used to determine the behaviour of a surface 

wave under the influence of a prescribed internal wave. This method is 

unsatisfactory for the present problem because the shape of the internal 

wave, as well as the shape of the surface wave, are unknown quantities. It 

was found in these investigations that maximum interaction occurs when the 

phase velocity of the internal wave and the group velocity of the surface 

wave are matched. 

The approach used here is to assume that the wave propagation is 

unidirectional and is spatially periodic. The surface and interface waves 

may then be represented by Fourier series whose coefficients have a slow 

time dependence. Equations are foW1d for the time rate of change of each 

Fourier amplitude in terms of all significant quadratic interactions between 

all Fourier amplitudes. Solutions describing permanent wave structures are 

found from these equations. In the limit as the fundamental wavelength 

becomes large compared with the depth, the Fourier series tend towards 

Fourier transforms of a solitary perm.anent wave structure. 



The properties of long waves on a shallow uniform singZe layer fluid 

are dominated by the near-resonant nature of the interactions between wave 

harmonics [5, 6], If k and l denote the wavenumbers of two long wave 

harmonics propagating in the same direction with frequencies u)k, wl, then 
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wk + w l - wk+ l = O ( µ 2 ) ' ( 1. 1) 

where µ is a measure of the ratio of fluid depth to wavelength. For waves 

long compared with the depth, this near-resonant interaction causes the k+l 

harmonic to grow to an amplitude comparable with the amplitudes of the k and 

l harmonics separately. A long periodic wave therefore contains a large 

number of harmonics, whose amplitudes decrease with increasing wavenumber 

because their interactions move further from resonance. The long periodic 

waveB of permanent form are approximated by cnoidal waves, tending towards 

solitary waves as the separation between consecutive crests increases. 

The same general properties are valid for single mode pennanerrt waves 

in a two layer fluid. Peters & Stoker [ 7] have shown that there exist fast 

free surface permanent waves and slow interface permanent waves. The near~ 

resonant condition (equation 1.1) then applies respectively either to the 

frequencies of the fast free surface wave harmonics alone, or to the 

frequencies of the slow interface wave harmonics alone. 

When both wave modes are present, significant near-resonant interactions 

occur between free surface and interface wave harmonics in the neighbourhood 

of wa.venumbers L'ik, k, k +L\k (tik ~ k) for which 

(wk+L'ik)free surface - (~)free surface - (wl\k)interface = o. (1.2) 

This near~resonant interaction takes two forms. It may describe an interface 

wave harmonic of small wavenumber interacting with a free surface wave 

harmonic of large wavenumber to modify another free surface wave harmonic 

of large wavenumber. This is the nonlinear interaction that generates 

free surface wavenumbers over a broad waveband to form a wave group. It 

may also describe two free surface waves harmonics of large wavenumber 
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interacting to modify an interface wave harmonic of small wavenumber. 

This is the nonlinear interaction that generates interface waves in the 

presence of a group of free surface waves. It will be seen later (§§ 5, 6) 

that equation (1.2) is modified by the horizontal velocity caused at the 

free surface by the wave on the interface, but that this modification does 

not alter the validity of the above arguments. 

2. Governing__equation~, 

The two layer fluid consists of a lower layer of mean depth h1 and 

density pi on a horizontal bottom, and an upper layer of mean depth h2 

and density P2 with a free upper su-rface. Attention is confined to fluids 

for which the density difference P1 - P2 is small compared with P1 and P2· 

The fundamental wavelength is denoted by 2TI.l, and a,b are measure of free 

surface and interface wave amplitudes respectively, to be defined more 

precisely later. The horizontal and vertical coordinates x,y are non-

dimensional, being measured in uni ts of hi + h2, and the origin of y is on 

:),;; 

the mean interface, The time t is non-dimensional in uni ts of ( (hi + h2) / g) ", 

where g is gravity. Interface displacement, n, and free surface displacement 

E;,, are measured in units of b, and both velocity potentials c/i1,cl>2 in units 

3 1: 
of ( g( hi + h2) ) 2

• The principal small parameter is c = b/ ( h 1 + h2) <{ 1, and 

other non-dimensional parameters are £' = a/ (hi + h2) ~ 1, µ = (hi + h2) I l b 

The governing equations are then 

¢ + ¢ "' 0 h < y < 0 (2.la) 
lxx lyy 

¢ + <P2yy 
:: 0 o<y<1 h (2.lb) 

2xx 

<Ply ·- 0 on y ::: -h, (2.lc) 

<Ply nt s(n<P ) ::::: O(t:2) on y = o, (2.ld) 
lx x 

¢2y n, E:(n¢2 ) :::::: 0( £2) on y = o, (2,le) 
i:; x x 

P¢lt - ¢2t + (P-l)n + cpn¢lyt - £nq1 
2yt 



+ ~£P ( ¢ 2 + ¢ 2 ) - ~£ ( ¢ 2 + ¢ 2 ) = . 0 ( E 2 ) on y = 0 ' 
lx ly 2x 2y 

¢ - t;, - £ ( t;,¢ ) = O( £
2

) on y = 1 - h, 
'2y t 2x x 

¢2t + t;, + st;,¢2yt + ~£(¢22x + ¢2~) = 0(£2) on y = 1-h. 

Spatially periodic solutions are sought of the form 

00 

t;, ::;; ~ l ~(t) exp i(k]Jx - wkt) + 

k=l 

00 

n = ~ l Bk ( t) exp i ( k]Jx - wk t) + 
k=l 

00 

* 

* 

¢1 =~ l c
1
k(t) cosh kµ(y + h) exp i(kJJx -wkt) + * 

k=l 

00 

¢2 =~ l (c
2
k(t) cosh k]Jy + D

2
k(t) sinh kµy) exp :i.(:kµx- wkt) + 

k=l 
* 

5. 

(2.lf) 

(2.lg) 

(2.lh) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

Where 11- denotes complex conjugate, and k, ~ are non-dimensional wavenumber 

~ 
(in units of 1/f) and frequency (in units of (g/h 1 +h 2)) 2

• 

Substitution of these Fourier series in equations (2.1) followed by 

neglect of the 0(£) terms yields the linear approximation, whose solution 

is (with T 1 = tanh k]Jh T2 = tanh kµ (1-h)) 

( P +Ti T2) ( wk
2
/kµ) 

2 
- p(T1 +T2) wk

2
/kµ + (p-1) T1 T2 = O, ( 2. 3) 

Bk = (l -T2kµ/wk
2

) co sh {kp( 1-h)} ~ = ( ikµ/wk) sinh {kµh} elk (2.4) 

·- ( ikµ/wk )D
2

k = ( ikµ/~) (wk 
2 

/kµ - T2) I ( 1 - T2(u/ /kµ) c
2
k. 

Equation (2.3) is the dispersion relation, with the solution 

(JJ 2 
k 

kµ 
(2.5) 

where the larger root will be denoted wAk, and the smaller root wBk. When 

p = 1 + /Jp, /Jp <{ 1, as in the present application, the two roots reduce to 

w 2 = kµ tanh k]J ( 1 + 0 (lip) ) ' 
Ak 

ll]3~ = lip '1'1 T2 /(T1 +T2)(l + O(L:ip)). 

The fast wave mode with frequency wAk is the free surface wave mode with 

propertj.es almost independent of the presence of the interface. The slow 

wave mode with frequency ~k is dependent on the reduced gravity gl\p at the 

interface, with a free surface displacement that is small compared with the 
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interface displacement. 

The linear solution in equations ( 2. 3) and ( 2. 4) may now be used in 

the calculation of the next approximation, that is, in the subs ti tut ion of 

equations (2.2) in equations (2.1) including the evaluation of the 0(€) 

terms. When the velocity potential amplitudes elk' c
2
k, D

2
k are eliminated, 

two differential equations emerge from lengthy calculation, namely 

(with D = d/ dt) , 

D(D-2iU},.)(~+(p-l)(l-Tzkµ/w 1 /) cosh {kµ(l-h)} Bk) 

k-1 

-- ~ £ .f.~l Pk,-l B,e. Bk-l exp - i(w,e_ +wk-l-wk)t 

co 

k""l,2, ....• , 

( D - i ( ~ - w Ak wBk IL\) ) ( D - i (wk + w Ak wBk I wk) ) (Bk -

(l-'r2 kµ/wk
2

) cosh {kµ(l-h)} Ak) 

k-1 

- ~ £ ) ~ -l B,e, Bk-f exp - i(w.e. + uJk-l - (J.lk)t 
.c=l ' 

k=l,2, ..... 

(2.6a) 

(2.6b) 

The freq_uencies w_e, defined for positive wavenumbers by equation (2.5) 

are continued to negative wavenumbers by w_.e. = -w.e. (l > 0). The coefficients 

Pk,l , Qk,l are stated in the Appendix. Note that Pk,-l = Pk,-(k-l)' 

~.-..e. = ~,-(k-l)' 0 < ..e. < k. 

Equation ( 2. 6a) has a complementary ftmction which when substituted 

into equations (2.2a) or (2.2b) yields wave harmonics with exponents 

kµx ± wk t. F'or a given initial displacement, this equation describes 

waves of one mode (either fast or slow) propagating in the positive a,nd 

negative x-directions, modified as they propagate by the nonlinea.r right 

hand side. '11he complementary function of equation (2.6b), when s1ibstituted 
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into equations (2.2a) or (2.2b), yields wave modes with exponents 

kllx ± wAk wBk/wk t. The frequency wk is equal either to wAk for a fast mode 

or wBk for a slow mode. Hence, for a given initial displacement, equation 

(2.6b) describes waves of the mode other than that in equation (2.6a) 

propagating in the positive and negative x-directions. 

If equation (2.6a) is integrated as it stands, the right hand side of 

the resulting equation would contain the denominators - i ( W,e + wk-l - wk) 

and - i (wk+£. -wt -wk). When all three frequencies in either of these 

denominators are of the slow mode, the expressions are 0(µ 2
) as µ -> 0 

interface 
(equation 1.1). Since the equations will be applied to long/waves for which 

s/µ 2 = 0(1), this integration is not permissible. When equation (2.6a) is 

multiplied by exp(-2iwk t) , no such difficulty occurs and the equation 

integrates to 

D(Ak + (p-1)(1 - Tz kµfw/) cosh {kµ(l-h)} Bk) 

k-1 

-- ~ iE l 
l=l 

00 

+ i E l 
l=l 

+ 0(£ 2
), k = 1, 2, ..... 

When equation (2.6b) is multiplied by the integrating factor 

exp - i (wk+ wAk wm/l\.)t and integrated, it becomes 

(D-i(wk-WAk WBk/wk))(Bk-(l-T2 kµ/wk
2

) cosh {kµ(l-h)} ~) 

k-1 

= ~ iE l 
l=l 

co 

+ i E l 
L=l 

+ O(t:
2
), k = 1, 2, 

If this equation is now multiplied by the integrating factor 

(2.7a) 

( 2. '7b) 

exp ~ i (wk~ wAk luBk/wk) and integrated, the right hand side of the resulting 

equation contains the denominators - i ( W,e + wk-l - wAk ~k/wk) and 

- i ( wk+l - W.e_ - wAk wBk/wk). Either or both of these denominators may ha,ve a 
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magnitude small compared with 1 when k and l are such that the triad 

describes the near-resonant interaction of equation (1.2). If attention 

is restricted to those k and l for which these denominators have a magnitude 

comparable with 1, equation ( 2. 7b) may be multiplied by the integrating 

factor and integrated to leave 

k-1 
=-~E: l 

:t=1 

00 

-€ l 
l=l 

Benney [ 8] derived equations for the time evolution of long nonlinear 

waves, that is, waves for which µ 2 
"'E: ~ 1. His analysis, applied to the 

( 2. 8) 

present problem, predicts that for a long nonlinear wave on the free surface 

£;, satisfies a Korteweg and de Vries equation, while for a long nonlinear 

wave on the interface n satisfies a Korteweg and de Vries equation. '.rhe 

latter equation is now derived by taking the long wave limits of equations 

(2.7a) and (2.8) with wk, W,e_, U\t-.t and wk+i all referring to the slow 

interface wave mode. 

The linear long wave velocity on the interface is 

Co = lim wBk/kµ, 
µ->O 

and, from equation (2.3), is the smaller positive root of 

Co
4 

-Co
2 

+h(l-h)(p-1)/p = o. 

The coefficients Pk,l/(wk+i-W.e. +wk) in equation (2.7a) reduce to 

Co
4 

+(3h-2)C 0
2 + l-2h 

(1+0(µ 2
)) 

Co
2 

- (1-h) 

and the coefficients Q.k,.t in equation (2.8) are 0(µ 2
) •. On substitution 

from equation (2.8), equation (2.7a) reduces to 



k-1 

= - ~ iEr l kµ B,e Bk-l exp - i (w.e. + wk-l -U\) t 
.e. =l 

00 

+ O(E 2
), k = 1, 2, ..... 

3Co Co
4 

+(3h-2)Co
2 

+ l-2h 
where r = -

4h (2Co
2 

-l)(Co
2 

- (1-h)) 

(1+0(µ 2
)). 

9, 

(2.10) 

Equation (2.10) may be summed over .e. and k, using equation (2.2b), to give 

where, from equation (2.3), 

wk/kµ = C0 - k
2µ 2 s + 0(µ 4

), 

c 0 ( 1 + ( 3/ p - 2) h ( 1 - h) ) c 0 
2 

- h ( 1 - h) 
and s "" --

6 2 
2Co -1 

(2.11) 

Equation (2.11) is a Korteweg and de Vries equation, as predicted by Benney 

[ 8] . 

3, Permanent waves on the interface 

Permanent periodic waves of (nondimensional) velocity c on the inter-

face have the Fourier expansion 

00 

n(x,t):::: l bk cos kµ(x-ct) 
k=l 

where from equation (2.2b) 

(3.1) 

( 3, 2) 

When l\ is eliminated between equations (2.7a) and (2.8), and Bk is replaced 

from equation (3.2), then 

where the coefficients ~,.e. are given in terms of Pk,,t' ~,l in the Appendix. 



If the wave height, trough to crest, is denoted by 2b, where 

E: = b/(h1 +h2), then 

00 

l b2k-l = -1 
k=l 

where the origin in x - ct is taken at the trough of the wave. 

The properties and method of solution of equations (3.3) have been 

described previously [6] for permanent waves on a single layer fluid, and 
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( 3. 4) 

apply again here. For waves of length small or comparable with the lesser 

of the layer depths, the permanent waves are Stokes' waves on the interface 

for which bi = -1, bz = 0( E:). For longer waves, as µ decreases, the nonlinear 

interactions between the wave harmonics lie closer to resonance, and the 

permanent waves therefore contain more harmonics. Starting from large values 

ofµ, equations ( 3.3) may be solved numerically for successively smaller values 

of µ to any required numerical accuracy, with the neglect of the 0( E:
2

) 

remainder. One wavelength of the solution for p = 1.05, h = 0.9, E: = 0.05, 

and µ = 2 is sketched in figure 1. This periodic permanent wave is closely 

approximated by the cnoidal wave solutions of the Kortewel:S and de Vries 

equation (2.11), since for a small upper layer (h = 0.9), the coefficients 

rands in equation (2.11) are of comparable magnitude when (l-h) 2 µ 2 ~ £, 

As equations (3.3) are solved for smaller values ofµ at constant p, h~ and£, 

the solutions tend towards periodically spaced solitary waves, and the number 

of harmonics increases. The solution in figure 1 for µ = 2 contains 11 

harmonics exceeding 10-
3 

in magnitude, while that forµ= o. 2 contains '71 

harmonics exceeding l0-
3 

in magnitude. 

The present calculations have been checked analytically against two 

previous investigations of the long wave limit. Long permanent waves at 

the interface of a two layer fluid were investigated by Peters & Stoke:c [ 71 ~ 

who developed perturbation expansions for the streamline displacements in the 

corresponding steady flow problem. Their solutions agree exactly with the 

cnoidal and solitary wave solutions of equation (2.11). Benjamin [9] showed 

that long permanent wave solutions exist for a wide class of fluids whose 
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density and velocity are arbitrary functions of height. When his method is 

applied to the particular case of a two layer open fluid, agreement is obtained 

again with the cnoidal and solitary wave solutions of equation (2.11). 

The coefficient r in equation (2.11) is negative when the interface is 

high, positive when the interface is low, and r = O for /J.p ~ 1 when 

( 3. 5) 

When r < 0, the cnoidal wave solutions of equation (2.11) are peaked towards 

the troughs, as in figure 1. As the upper layer is increased in depth and r 

approaches zero, the periodic solutions tend towards the sinusoidal solution 

of equation (2.11) for r = o. When r > O, the cnoidal wave solutions of 

equation (2.11) are peaked towards the crests, as in figure 1 inverted. The 

same properties are true of the solitary wave solutions of equation ( 2, 11), 

although as was noticed 'by Peters and Stoker, there is no solitary wave 

solution for which µ 2 = 0( E:) when r = o. In this case, following Benney [ 8] , 

equation ( 2 .11) may be rewritten 

n +Con + 3E 2
An

2 n + µ2 sn = o(s 3
, sµ 2

, µ 4
), 

t x x xxx 
( 3. 6) 

where )1 - O(s) and A is an 0(1) coefficient, and this equation does have 

solitary wave solutions. 

4. Permanent wave structures 

Periodic permanent wave structures containing both the fast free surface 

wave mode and the slow interface wave mode are now investigated. Solutions 

to the governing equations are sought of the form 

n 

n = l bk cos kµ(x-ct) 
k=l 

m2 

~ = l ~ cos {kµ( x-ct) - at} 
k=m

1 

(4.la) 

where bk ( 1 < k < n), ~ (m 1 < k < m2 ), c and a are to be determinecL The 

form of these solutions is such that the interface wave and the envelope 

of the surface wave group are in phase~ and the surface wave itself moves 
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with a constant frequency a relative to the group envelope. The corresponding 

complex amplitudes, from equations (2.2)
1 
are 

Bk(t) = bk exp i( wk - kµc)t 1 <k < n, 

~(t) = ak exp i( wk - kµc - a)t m1<k <m2. 

The significant nonlinear interactions are divided into three types: 

( 4. 2a) 

(4.2b) 

I. Two interface wave modes interacting to modify a third interface wave mode, 

1 < ltl, k-t, k <n. 

Equation (2.8) is valid for this interaction, since ~,k-l + ~l - u)Ak is 

comparable with 1. 

( 4. 3a) 

II. Two free surface wave modes interacting to modify an interface wave mode, 

w - w :!!: w 
A,l._+,e Ai Bk 

( 4. 3b) 

Equation (2.8) is valid for this interaction also since wA,k+l - wAl - WAk 

is comparable with 1. 

III. An interface wave mode and a free surface wave mode interacting to 

modify a free surface wave mode, 

U) o+Wo~WAk 
A,k--t.. B{, 

( 4. 3c) 

Equation (2.8) is valid here also because wA,k-l + wBl - wBk is comparable 

with 1. 

These three types of quadratic interaction dominate all other nonlinear 

interactions because of their nearness to resonance. For this reason, they 

are the only nonlinear interactions included in the calculations. 

The governing equations are formulated in terms of the Fourier amplitudes 

defined in equations ( 4. 2), for otherwise exponentially large coefficients 

are multiplied by exponentially small amplitudes. The free surface amplitudes 

Ak (m1 ~ k ~ m2) have associated with them exponentially small interface 

amplitudes Bk (m1 < k < m2), so it is possible in principle to use equations 

( 2. ~(a), ( 2. 8) throughout the calculations. This is not desfrable in practice 

because of the errors caused in the numerical calculations. When equations 

(2."{a), (2.8) are reformulated with the complex amplitudes replaced from 



equations (4.2), the governing equations become 

k-1 n-k 

(wBk -kµc)bk = ~ E .e.I1 (R1)k,-l blbk-l + E .e.I1 (R1)k,l blbk+l 

m2-k 

+ E l (R2)k,l at8k+t 
l=m1 

Min(n,k-mi) 

( wAk - kµc - a) ak = E l 
l=l 

The coefficients RI, R2, R 3 associated with the three types of nonlinear 

interaction are defined in the Appendix. 
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(4.4a) 

(4.4b) 

Equation (3.4) measuring the height of the interface wave is still valid, 

namely 

l bk = -1 
k odd 

(4.5a) 

Since the height of the wave group on the free surface is independent of the 

height of the interface wave, then 

k ~dd 8k 
= ;\ 

1*1ere A is a prescribed constant. The maximum height of the envelope of the 

wave group above the mean free surface is denoted by a, where a/(h 1 +h 2 ) = £ 1
• 

It is to be noted that if ~ (m 1 .;;;;; k.;;;;; m2) is one solution for the free surface 

harmonics, then -ak (m 1 .;;;;; k .;;;;; m2) is another solution with the same envelope. 

The n+m2-m1+3 equations (4.4), (4.5) are now solved for the n+m2-~m1+3 

variables bk (l .;;;;;k .;;;;;n), 8k (m 1 .;;;;;k .;;;;;m2), c and a. 

_5_. __ R_ermanent wave structures of short wavelength. 

The simpler solutions of equations (4.4) and (4.5) include those of short 

wavelength, when the wave on the interface is almost sinusoidal because the 

first type of interaction is far from resonance. For a free surface wave 

group of sufficiently small amplitude, equations (4.4a), (lt.5a) are then 

satisfied by b I = -1, b2 = 0( E) , c = wB/ll, and equations ( 4, 4b) become 
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(5.1) 

This set of m2 - m1 + 1 linear algebraic equations has in general m2 - m1 + 1 sets 

of solutions, each set containing an eigenvalue a and the corresponding 

eigenvector~ (m1 < k <m2) of the matrix of coefficients. Each eigenvector 

may be scaled to satisfy equation (4.5b). 

It is a straightforward numerical calculation [10] to find the eigenvalues 

and eigenvectors of the set of equations (5.1) for any given external parameters. 

These parameters were taken to be p = 1.05, h = 0.9, µ = 20, £ = £ 1 = 0.005, 

for which the equality ~l = dwAk/dk occurs at about k = l0.5. The interval 

m1 ~k <m2 was chosen to be sufficiently large that sets of solutions were 

reproducible to within the desired numerical accuracy (10-
4

) when the size o:f 

the interval was increased further. Each set of solutions was then used as 

the starting estimate for a Newton-Raphson solution of equations (4.4) and 

( 4. 5) to the same numerical accuracy. The first five sets of solutions are 

drawn in figure 2( a), and the corresponding free surface wave groups (equation 

4.1b) a.re drawn in figure 2(b). 

In order to understand the sets of solutions in figure 2(a), equations 

(5.1) are written as the set of difference equations 

where (R3\,-l ~ (R3)k',
1

, and f(k) is approximately a quadratic form in 

A comparison of these difference equations with the differential equation 

d2 
~ + f(x)y = 0 , 

-~ k. 

(5.2) 

shows that solutions for ak are oscillatory in k when f(k) > O, and are 

convergent or divergent in k when f(k) < O. The only stationary value of f( k) 

k · t · d ( k ) th t · ,,,. I 1 ma es 1 a maximum near dk wAk - wBl - a = 0, a is, near wBl "' Ul.!lAk a L 

Hence acceptable solutions for ak (m1 < k < m2) consist of' a range in the 

neighbourhood of resonance where ak is an oscillatory function of k 9 enclosed 

by ranges at each end where ak decreases monotonically in magnitude towards 

zero. Further, as a decreases, f(k) increases, which means that the extent 



15. 

of the range of oscillation and the number of oscillations of ak as a function 

of k both increase when a decreases. These properties are all present in the 

five solutions sketched in figure 2(a). 

The structures of the free surface wave groups in figure 2(b) may be 

interpreted in terms of their interaction with the horizontal velocity field 

caused at the free surface by the wave on the interface. Since the wave on 

the interface is sinusoidal, the horizontal velocity u at the free surface is 

also sinusoidal with a positive maximum at the centre of the group and a 

negative minimum at the two ends of the group. The resonance equation (1.2) 

is modified now to 

( 5. 3) 

where c = 0.035 and -0.001::;;; u e;;;; 0.001 (from equations 2.2d, 2.4) for the wave 

groups in figure 2(b). Hence the wavenumber of the free surface wave within 

the group varies from 10.8 at the centre of the group to 9.6 where the group 

extends to the ends of the fundamental wavelength. Measurements in figure 2(b) 

confirm the accuracy of this interpretation. 

6. Permanent wave structures of long wavelength. 

When the fundamental wavelength increases, the first type of interaction, 

namely that 'between harmonics on the interface, moves closer to resonance. 

The number of interface harmonics therefore increases, and since each interface 

harmonic interacts near resonance with a range of pairs of free surface 

harmonics, the number of free surface harmonics also increases. 'l~e latter 

effect may be seen alternatively as a consequence of a longer interface wave 

causing a stronger horizontal velocity gradient at the free surface. 

Two methods have been developed for calculating numerically the solutions 

of equations (4.4), (4.5) for long wavelengths. The harmonics of a permanent 

interface wave of given wavelength in the absence of a free surface wave group, 

bk ( 1 < k e;;;; n) , may be calculated as in § 3 and then substituted into eque,tions 

(tr.4b). 'l~e resulting linear algebraic equations for ak (m 1 ~k ~m2) and a 

may then be solved as in §5 for a free surface wave group of small amplitude, 
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and the solution used as a starting estimate for a Newton-Raphson solution 

of equations (4.4), (4.5) at the given wavelength. Alternatively, the 

solutions in §5 at short wavelengths may be continued step by step inµ to 

long wavelengths, using the Newton-Raphson method of solution at each step. 

The first two sets of solutions for the harmonics at p = 1.05, h =0.9, 

µ = 2, £ = £ 1 = 0.01 are shown in figure 3(a), and the corresponding 

permanent wave structures are sketched in figure 3(b). It can be seen that 

the shape of the spectra of the free surface harmonics in figure 3(a) is the 

same as that of the first two fo:i;-ms in figure 2( a). This similarity of shape 

was found for all five forms in figure 2(a) as µ decreased from 20 to 2. The 

free surface wave groups in all five forms of permanent wave structure also 

retained similarity of shape as µ decreased. 

The horizontal velocity at the centre of the free surface wave group is 

0.008, 0.009 respectively in the two examples in figure 3(b), and the phase 

velocity is 0.066, 0.067 respectively. Equation (5.3) therefore predicts that 

the wavenumber at the centre of the free surface group should be about 37 

in both examples. The validity of this interpretation is confirmed by figure 

3( a), where k = 37 lies near the centre of the spectrum in both examples, and 

by figure 3(b), where measurement of the wavelength within the free surface 

wave group agrees with this estimate. 

The interface wave spectrum is broader in the presence of a wave group 

than in its absence. The interface spectrum for the first form of permanent 

wave structure in figure 3 contains 15 harmonics exceeding 10- 3 in magnitude, 

while the interface permanent wave spectrum in the absence of a surface wave 

group contains only 6 harmonics exceeding 10- 3 in magnitude. The free surface 

wave group, through the second type of nonlinear interaction identified in §4, 

broadens the interface wave spectrum and hence sharpens the interface wave, 

The amplitude of the free surface wave group (measured by £ 1
) may be 

increased step by step so that the second type of nonlinear interaction causes 

a greater change to the shape of the wave on the interface. One such example 

is illustrated in figure 4, which shows the second form of permanent wave 



17. 

structure at p = l.05, h = 0.9, µ = 2, e: = 0.01, e:' = 0.05. 

The spectrum of the free surface harmonics in figure 4(a) displays the 

characteristic shape of the second form of permanent wave structure, but the 

spectrum of the interface harmonics, instead of decreasing monotonically in 

magnitude as previously, now displays a small overshoot. It can be seen in 

figure 4(b) that the shape of the envelope of the free surface wave group has 

been impressed onto the interface wave, which is a property that also occurs 

for the other forms of permanent wave structure in this limit. The phase 

velocity of the structure has increased from 0.067 at e: = e:' = 0.01 to 

0.124 at e: = 0.01, e:' = 0.05 because the structure is now dominated by the 

fast free surface wave mode. The horizontal velocity at the centre of the 

free surface wave group due to the interface wave is now 0.010, so equation 

( 5. 3) predicts that the wavenumber at the centre of the free surface wave 

group should be about 10. This is in agreement with figures 4(a) and 4(b). 

The wavenumber is smaller than in the examples of figure 3 because the phase 

velocity of the structure is larger, requiring from equation (5.3) a larger 

free surface group velocity. 

The amplitude of the interface wave (measured by e:) in the examples of 

figure 3 may be increased step by step while the amplitude of the free surface 

wave group is held constant. Figure 5 shows the first form of permanent wave 

structure at p = 1.05, h = 0.9, p = 2, e: = 0.05, e:' = 0.01. The phase velocity 

of the structure is o. 074, which is the same (to this accuracy) as the phase 

velocity of the permanent interface wave in the absence of a free surface wave 

group. 1.rhe horizontal velocity at the centre of the free surface wave group 

due to the interface wave is 0.045, and from equation (5.3) the wavenumber at 

the centre of the free surface wave group is therefore about 150. This is 

consistent with figures 5(a) and 5(b). The central wavenumber is much larger 

than in the examples of figure 3 because the horizontal velocity at the free 

surface is much larger, requiring a smaller group velocity in equation (5.3). 

When the fundamental wavelength is increased while all other parameters 

are held constant, the periodic permanent wave structure tends towards a train 
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of solitary permanent wave structures. ·.fue central quarter of one wavelength 

of the first form of permanent wave structure at P = 1.05, h = 0.9, µ = 0.5, 

£ = £ 1 = 0.01 is drawn in figure 6(b). The remainder of the wavelength consists 

of a level free surface and a level interface. The spectra of harmonics of the 

interface and free surface waves are drawn in figure 6(a) as continuous curves 

for convenience and because they approximate to the Fourier transforms of a 

solitary permanent wave structure. 

In all the calculations above, the depth of the lower layer is fixed at 

0.9 of the total depth (h = 0.9). As this ratio is decreased with all other 

parameters held constant, the horizontal velocity field at the free surface 

due to the interface wave also decreases, since the interface moves further 

from the free surface. Beginning from the example of figure 3, as h is 

decreased at constant p, µ, £, and E 1
, the spectra of the interface wave and 

free surface wave tend towards those of the example in figure 2. The number 

of harmonics in the interface wave decreases as h decreases until about 

h = 0.35, when the second harmonic passes through zero. When his decreased 

further, the number of harmonics in the interface wave increases again, but 

the number of harmonics in the free surface wave remains small because the 

horizontal velocity field at the free surface is also small. 

7. Discussion 

The permanent wave structures described here consist of a wave of permanent 

shape at the interface and a wave group of permanent envelope at the free 

surface. An interface wave has permanent shape when the linear dispersion and 

the nonlinear steepening or flattening of inclined surfaces is in balance 

([9], §1). There is a similar explanation for the permanent shape of the free 

surface wave envelope. The horizontal velocity field at the free surface due 

to the interface wave has a forward maximum above the wave trough, decreasing 

on either side of the trough. Hence a free surface wave behind the trough is 

stretched and therefore moves faster, since the phase velocity is an increasing 

function of wavelength. On the other hand, a free surface wave ahead of the trough 
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is compressed and therefore moves slower. The net effect for the free 

surface waves is one of balance between the linear dispersion and the nonlinear 

interaction with the interface wave. 

This physical argument mEcy" be applied also to wave groups of permanent 

envelope on deep water ([11), §17.8). In this case, there is a balance between 

linear dispersion and the mean quadratic velocity field caused at the free 

surface by the wave group itself. 

On comparing the different forms of permanent wave structure in figures 

2 or 3, for example, it can be seen that the higher the form, the more complex 

is the shape of the free surface wave group, although the interface wave 

remains almost unchanged. Hence, when all other parameters are held constant, 

the energy of the permanent wave structure is expected to be greater, the higher 

the form of structure. This in turn implies that the higher forms are less 

stable, and that the first form of permanent wave structure is most likely 

to occur in practice. A stability analysis will be made to test this argument. 

The unsteady solutions of equations (2.7) will also be investigated. The 

second type of nonlinear interaction identified in §4, for example, generates 

interface waves whenever there is a spectrum of free surface waves. When the 

free surface waves are forced by the wind, this interaction provides a near­

resonant mechanism for the generation and growth of interface waves. The 

permanent wave structures described here may in some sense represent an 

asymptotic state for waves on a two layer fluid. 
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Appendix. 

Define Fk = ~ cosh µk(l-h) -µk sinh µk(l-h), 

Gk = w~ sinh µk(l-h) - µk cosh µk(l-h). 

Then 

21. 

Pk ,.t = l@k [( P-1 )( w} - w .t"'k+l + <{+,el 
p( ~+l - w l) [ wk+l . w l l - + _ __.,;;.._ 

tanh µkh tanh µ(k+l)h tahh µlh 

PW.e_ ~+l 

2 2 
Wo Wk+o [ U2 £(k+.f.) 

+ .c.. .c.. w2 
( w2 

- w w + w2 
-

2F p Flr+P. k l l k+l k+l W.e_ Wk+l 

2 k+l l ] 
- (~+£. - w.ehJ k(-w- + w ) ; 

k+l l 

_ µ 2 k 2 tanh µkh tanh µk(l-h) 

~,l - 2w~( p + tanh µkh tanh µk( 1-h)) 

p(wk+l - wl) [ ~+£. + 

tanh µkh . tanh µ(k+l)h 

- tanh µlh tanh µ(k+l)h 
+ 

+ ( ) ( p - ( P-:p µk ) ( w Gk+l + w o GFl ) 
wk+l - wl tanh µk(l-h) wk k+l Fk+l ,(.. .e 



(Both (R2)k,l and (Rs)k,l may be approximated by simpler expressions 

when k ~ 1 or l ~ 1. ) 
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P2 = 1 

pl = 1. 05 

h1 = o.9(h1 + h2) 

Figure 1. One wavelength of a permanent interface wave 
(vertical magnification 2TI). 
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Figure 3(a). Wave spectra for the first two: forms of permanent wave 

structure at long wavelength with E = £ 1 = 0.01. 
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Figure 3(b). One wavelength of the first two forms of permanent wave 

structure at long wavelength with E = E 1 = 0.01 (vertical magnification 

2·rr). 
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Figure 4(a). Wave ~pectra for the second form of permanent wave structure 

at long wavelength with e: = 0.01, e:' = 0.05. 

Figure 4(b). One wavelength of the above form of ;r:iermanent wave structure 

(vertical magnification 2TI). 
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Figure 5(a). Wave spectra for the first form of permanent 

wave structure at long wavelength with 8 = 0.05, € 1 = 0.01. 

The discrete points have been replaced by a continuous curve. 

p ' 

Figure 5(b). One wavelength of the above form of permanent wave 

structure (vertical magnification 2n). 
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Figure 6(a). Wave spectra for the first form of permanent 

wave structure at very long wavelength. 
•/ 

The discrete points·have been replaced by a continuous curve. 

Figure 6(b). The central quarter of one wavelength of the above 

form of permanent wave structure (vertical magnification 2·rr). 

30. 


