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ABSTRACT

The presence of damage in the form of microcracks can increase the permeability of salt.
In this paper, an analytical formulation of the permeability of damaged rock salt is presented for
both initially intact and porous conditions. The analysis shows that permeability is related to the
connected (i.e., gas accessible) volumetric strain and porosity according to two different power-
laws, which may be summed to’ give the overall behavior of a porous salt with damage. This
relationship was incorporated into a constitutive model, known as the Multimechanism
Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the
inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended
model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant
(WIPP) site under conditions where damage evolved with stress over a time period. Permeability
changes resulting from both damage development under deviatoric stresses and damage healing
under hydrostatic pressures were considered. The calculated results were compared against
experimental data from the literature, which indicated that permeability in damaged intact WIPP
salt depends on the magnitude of the gas accessible volumetric strain and not on the total
volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the
kinetics of crack closure, but shows little dependence on the k1net1cs of crack removal by
sintering,
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INTRODUCTION
The Waste Isolation Pilot Plant (WIPP) is an underground storage facility located in the salt
formations of southeastern New Mexico, which is proposed for use as a permanent repository for
transuranic nuclear waste provided it is in compliance with the applicable regulations. Some of
the properties that make rock salt attractive as a nuclear waste storage medium include favorable
creep -cha;actgistics and low gas permeability. It is presumed that creep of salt would
encap,sulaté t}Ie%aste, while the low gas permeability of salt, coupled with an effective seal

system for shafts, would prevent release of the radioactive or hazardous waste to the

environment.

Creep of salt, however, can induce the formation of microcracks with time under low
confinement conditions. These creep-induced microcracks are located in disturbed rock zones
(DRZ) around the underground rooms and in the shafts connected to the underground rooms [1].
The formation of microcracks can accelerate the damage process and affect adversely the
structural integrity of the repositories. Furthermore, the microcracks can increase the
permeability of salt, thereby reducing the effectiveness of the seal systems and increasing the
likelihood of radioactive nuclide release to the environment. Consequently, an accurate
prediction of creep-induced damage and the corresponding change in sa‘lt permeability is required
for assessing the performance of the repositories. The analytical tools necessary for achieving
this goal include, among other things, a constitutive model that treats creep, damage, and damage

healing in salt and an established functional relationship between permeability and damage.
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Constitutive equations for creep of salt are fairly well established and compare favorably with
field measurements. Some of the constitutive.models for salt include those formulated by
Cristescu [2], Munson and Dawson [3], Aubertin et al. [4-6], Chan et al. [’}-14], and Desai and
Zhang [15]. Imitial, significant steps have also been taken in the ‘simulation of fracture and
healing. The constitutive model developed by Chan et al. [7-14], treats coupled creep, fracture,
and healing in rock salt. This model was first developed as a set of constitutive equations,
referred to as the Multimechanism Deformation (M-D) model, for treating transient and steady-
state creep due to dislocation flow mechanisms [3, 16]. Tertiary creep was represented by
extending the M-D ‘model to include the evolution of damage during deformation [7, 8]. The
extended model, referred to as the Multimechanism Deformation Coupled Fracture (MDCF)
model, was forrm(llated by incorporating continuum, iéotropic damage as a fully coupled variable
that enhances the stress influence by reduction of the effective area and contributes directly to
the inelastic strain rate [7-9]. Despite utilizing a scalar damage pararneter, the model is capable
of indicating the nonisotropic dependence of inelastic straining on the stress state and the
confining pressure because the subsidiary equations include the effect of pressure to suppress
damage development. Damage healing by a hydrostatic pressure was formulated and
incorporated in the latest model develépment [12-14]. The model, however, did not have a

provision for predicting the -permeability of rock salt because an explicit relation between

permeability and damage had not been developed.

- Compacted crushed salt is considered for use as a long-term shaft seal material. In such a
seal désign, the permeability of the compacted crushed salt in the shait seal and the permeability
of damaged salt in the DRZ near the shaft are important factors which determine, in part, the
effectiveness of the seal system. The permeability. of intact salt, damaged intact salt, and
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compacted crushed salt has been measured in a number of investigations [17-23]. Experimental
evidence indicates that the permeability of laboratory test specimens of intact salt generally show
large variability because of pre-existing damage in individual specimens [17]. Recent
permeability measurements performed on WIPP salt that was predamaged by creep show
increased permeability with increasing volumetric strain due to creep damage [20, 23]. Large
variations in the permeability of compacted crushed salt were also reported [21, 22]. A
comparison of the permeability of damaged intact salt and compacted crushed salt from the WIPP
site is presented in Figure 1, which shows a semi-log plot of fractional density versus
permeability. The results indicate that the permeability in salt increases with decreasing
fractional density. The damaged intact salt exhibits a considerably higher permeability when
compared to the compacted crushed salt at equivalent fractional density. Correlation of
experimental data from various investigations shows a large variability in the permeability at a
given fractional density. Because of the variability, a precise, simple relationship between
permeability and fractional density is not initially apparent. The increase in permeability of
damaged intact salt over undamaged salt underscores the importance of establishing the proper

dependence of permeability on damage.

The objective of this paper is to present a theoretical analysis whose goal is to establish a
functional relationship between permeability and damage for WIPP salt. The paper is organized
into two parts. In the first, relationships are formulated between permeability and damage in
three different types of salt: porous salt, damaged intact salt, and porous salt with damage. The
formulations lead to explicit functional relationships between permeability, volumnetric strain, and
porosity. These relations are compared to experimental laboratory data of WIPP salt from the

literature. In the second part of the paper, incorporation of the salt permeability equation into
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the MDCF model is described, followed by comparisons of médel calculations against
experimental results of WIPP salt subjected to either damaging or healing conditions.
s
MODELING OF SALT PERMEABILITY

Permeability models in the literature can be divided into those of the phénomenological origin
[24-26] and those developed based on percolation theory [19, 27-31]. The former models are
suitable for porous materials, while the latter models are usually more suitable for materials
containing fractures or cracks. A combination of these two approaches has been used to develop
a permeability model for porous salt with damage. Figure 2 shows the sequence in which the
permeability model has been developed. First, the permeability of porous salt has been
considered as a function of porosity, Figure 2(a). Here, the Carman-Kozeny model [24, 25] is
applicable and has been used to establish relationships between permeability and porosity.
Second, the permeability of intact rock salt with microcracks is treated by focusing on fluid flow
through open microcracks, Figure 2(b). In this case the formulation is based on the one proposed
by Peach [19], and it leads to a relation between permeability and volu;xleuic strain. Third, the
permeability of a porous salt with microcracks is considered, Figure 2(c), by considering the total

flow as the sum of those through pores and microcracks, which leads to a nonlinear relationship

between permeability, porosity, and volumetric strain due to damage (i.e., opening of

microcracks).

(1) Porous Salt

Fluid flow through a porous medium is typically modeled by averaging the microscale
interstitial flow velocities associated with the microscale pressure gradient across an assemblage
of idealized elementary pores. A well-known model for flow in a porous medium with conﬁccted
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porosity is that due to Carman and Kozeny [24, 25]. This model can be derived by assuming
Hagen-Poiseville flow through a network of tubular pores. The average interstitial flow velocity

<v;> is then expressed in terms of the Hagen-Poiseville equation [19, 26]

2

D AP
<vi> = - i 0 )

* * Le
166 p

where AP/L, represents the macroscopic pressure gradient with respect to the average network
length, L,; Dy is the average hydraulic (channel) diameter; p* is the fluid viscosity; 6% is a
geometric shape factor. The average interstitial velocity, <vy, is related to the macroscopic

velocity, v, according to

where ¢ is fully connected porosity, and L is the direct macroscopic distance. The ratio of L /L
represents the tortuosity parameter, T,, of the flow path. An expression for permeability is then
obtained by inserting the macroscopic velocity, v, into Darcy's law for macroscopic flow.

According to the Carman-Kozeny model [24, 25], the permeability of a porous salt can be

described by [19]

¢3
K. =C_, |——— 3)
CK CK
(1 - )

where K is permeability, C is a constant, and the subscript CK denotes Carman-Kozeny

parameters. The Carman-Kozeny constant, C, is given by [19]
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Cox = T @

where T, is the tortuosity parameter, and S, is the specific pore surface area. In the present
investigation, C.x was treated as a material constant whose value was evaluated from

permeability data.

The permeability of compacted crushed WIPP salt was determined earlier by Brodsky et
al. [22]. This result, shown in Figure 3, was used to test the validity of the Carman-Kozeny
model, Eq. (3). The porosity, ¢, of crushed salt was taken to be 1 — D,, where D is the final

' dry fractional density. The value of C¢ was evaluated by fitting Eq. (3) to the experimental data
of the permeability of compacted crushed WIPP salt and C = 1 x 107* m® was obtained. The
result is compared against experimental data in Figure 3. It is apparent that the calculated curve
is representative of these experimental data. Figure 3 shows that the calculated permeability,

Kk, decreases rapidly with decreasing porosity and K¢y goes to zero as ¢ approaches zero.

'(2) Damaged Intact Salt

The permeability of a cracked medium is customarily analyzed by establishing a description
of the fluid flow properties of an isotropic assemblage of connected cracks in terms of their
average dimensions and number density. The degree of conduction between cracks is then
addressed through a statistical treatment of connectivit}} between randomly placed microcracks
in the medium. Such a treatment provides a description of the critical threshold of percolation
and the development of conductivity of connected cracks immediately above this threshold. This
approach was taken by Peach [19] to obtain post-critical permeability expressions for two
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idealized situations of the damage process: (1) growth in the density of microcracks at constant
average crack dimensions, and (2) growth in dilatation by crack opening at a constant microcrack
density. The permeability of damaged intact salt was treated in terms of Peach's percolation
model for the case of constant crack density by assuming that the fluid flow through the
connected network of microcracks in salt is solely accommodated by opening of the microcracks.
Figure 1(c) shows this configuration. This particular model relates permeability to volumetric

strain according to [19]

K, = Cyley)’ 5)

where e,, is the volumetric strain, C, is a constant, and the subscript P denotes parameters

corresponding to the Peach model. The model constant C, is given by [19]

2,52
c, = Or”<c>" 6)
480aP

where O is the hydraulic shape and drag factor, <c> is the mean crack radius, and «, is a crack
shape parameter. The parameter C, was treated as an empirical constant whose value was
evaluated from the permeability data for damaged intact WIPP salt [23], and the value of C,, was
determined to be 3 x 10 m®. Comparison of calculated and measured permeability as a
function of volumetric strain for damaged intact WIPP salt is shown in Figure 4. The model
calculation is an excellent representation of the permeability data because that set of data was
used to evaluate the model constant, C,. The agreement indicates that the power-law relation
with an exponent of three in the Peach model, Eq. (5), is essentially correct.
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(3) Porous Salt With Damage
The permeability of a porous salt with damage is derived by relating the total macroscopic

flow velocity, v, to the macroscopic pressure gradient, AP/L, according to [19, 26]

v=K| — ()]

where K is the permeability of the damaged porous medium. The total macroscopic flow

velocity is the sum of the flow through cracks, v,.,, and pores, Vpore @S €Xpressed by

v = vcrack + Vporc 8)
with
AP
vcrack = Kcrack ( _) (9)
L
AP
v =K —_— 10)
pore pore L

where K., and K, are the permeabilities of the cracks and pores, respectively. Egs. (8), (9),

and (10) can be combined with Eq. (7) to obtain

K=K,+K_, (11)
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when the permeability of the pores and cracks are represented by the Carman-Kozeny and the
Peach models, respectively. Upon substituting Eqgs. (3) and (5) into (11), the permeability for

a damaged porous material is obtained as

K = C-€,)° + Cop 0’ (1- )2 (12)

where the first term in the right hand side treats the microcracks, and the second term treats the

porosity. If Dy is the fractional density of the damaged porous material, then

1-D,= ¢ - ¢, 13)

since both the porosity, ¢, and the volume strain, e w» due to damage contribute to the density

change. If one defines y as the ratio given by

P
y = 14)
¢ - ekk
then
1oy =% (15)
¢ - ekk

which may be combined with Egs. (12) and (13), leading to
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3.2
K = (1--*1)3c1p(1—DJ)3 + [ L - CCK(I-DJ)"‘D;z (16)
[(1 ~y+D)
as the permeability for a damaged porous medium. Eg. (16) reduces to the Carman-Kozeny
relation when y = 1, but gives the Peach relation when y = 0. Figure 5 shows the permeability,
K, as a function of the fractional density, Dy, for various values of the y parameter. From
Figure 5 it is clear that the permeability at a given fractional density increases rapidly with
decreasing values of the y parameter because the contribution of volumetric strain to permeability
increases with 1 —~ y. Permeability is also more sensitive to the volumetric strain than to the
porosity because the value of C; is several orders of magnitude higher than Co. As a
consequence, the presence of a small volumetric strain due to damage causes a relatively large
increase in the permeability of a porous material. For exarflple, the permeability of a porous salt
with a fractional density of 0.95 is increased by two orders of magnitude over that of the
Carman-Kozeny model if 5% of the density change is due to the volumetric strain associated with

damage (i.e., 1 — y = 0.05) and the remaining density change arises from porosity (y = 0.95).

A comparison of model calculations and experimental results of permeability of WIPP salt
as a function of fractional density is presented in Figure 5. For a given fracﬁoﬁd density, the
Carman-Kozeny model is in agreement with the brine permeability data from Brodsky et al. [22],
while the Peach model is in agreement with the experimental data of damaged intact salt from
Pfeifle [23]. The lower bound of measured permeability is delineated i)y the Carman-Kozeny
model, and the upper bound is delineated by the Peach model. All other permeability data
[18, 20, 21] lie between these two bounds and ;an be described by y values of 0.75 and 0.95.
The implications of the results shown in Figure 5 are that (1) the permeability of compacted
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crushed WIPP salt in the experiment of Brodsky et al. [22] was controlled by the porosity in the
salt; (2) the permeability in damaged intact salt in Pfeifle's experiment [23] was controlled by
microcracks in the salt; (3) the permeability attributed to microcracks was much greater than that
attributed to porosity; (4) the intermediate levels of permeability observed in other conditions
may be explained on the basis of the presence of small amounts (5-25%) of crack-like defects

in the material that behaved like microcracks as far as permeability is concerned.

The developments given above have some very important implications in treating
permeability. Since the effect of damage on permeability is several orders of magnitude stronger
than that due to porosity, volumetric strain due to damage and porosity cannot be mixed when
the permeability of a damaged porous salt is considered. Even though the contributions of
porosity and volume strain (due to damage) to density change are linearly additive, Eq. (13), their
effects on permeability cannot be obtained by summing porosity and volume strain as an effective

porosity and using the Carman-Kozeny model, Eq. (3). Instead, Eq. (12) or (16) must be used.

INCORPORATING PERMEABILITY FUNCTION INTO THE MDCF MODEL

In this section, the permeability model is incorporated into the MDCF constitutive model for
the case of damaged intact salt. As‘a result, only the incorporation of the Peach relation into the
MDCF model is considered. In the MDCF formulation [1, 2, 14], the total strain rate, é:,, for
a solid deformed under isothermal conditions is given as the sum of the elastic strain rate, é:j,
and the inelastic strain rate, éfj. The inelastic strain rate is further decomposed into four
components corresponding to contributions from dislocation creep, shear damage, tensile damage,
and damage healing. The overall flow law is described in terms of a generalized kinetic equation
[32] that contains the creep, damage, and healing terms, as given by [14]

FAMATENGKSCQ\SANDIA\PAPER69.WP6 1 2




do° da." da. " do"
oI .c eq +® eq - @ eq *h
i'= = e + . ee;+ ! 8qu+ qecq (17)
7 80, “? oe - 9o, oo .
ij /) j i
» ©, & . . . .
where o; , O ‘q' , o‘q' » 0,, are the power conjugate equivalent stress measures for dislocation

creep, shear damage, tensile damage, and damage healing, respectively. The corresponding
effective strain rate measures are é:q, é:q', é:;‘ , and é:q. In Eq. (17), the conjugate equivalent
stress plays the role of a flow potential for individual deformation mechanisms, and the derivative
with stress gives the direction of inelastic strain rate. The magnitude of the inelastic strain rate
is given by the kinetic equation that relates the equivalent strain rate to the corresponding power-
conjugate equivalent stress measure and tine internal variables representing the current states of

deformation and damage. A summary of the conjugate equivalent stress and strain rate measures

for individual deformation mechanisms is presented next.

(1) Conjugate Equivalent Stress Measures

Inelastic flow due to dislocation creep is isochoric and pressure-independent. These features

c

lead to a conjugate equivalent stress measure for dislocation creep, O gr

which is formulated

based on the stress difference as given by [3, 16]

(18)
where o, and ¢, are the maximum and minimum principal stresses, with compression being
positive. The Tresca equivalent stress measure is preferred over that of von Mises because

experimental measurements of the flow surface and inelastic strain rate vector are in better

agreement with the Tresca formulation [16]. .
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Damage development in compression is considered to arise from microcrack sliding due to
shear and the opening of wing-tip cleavage cracks that develop on some of the shear cracks. The
resulting inelastic flow includes deviatoric and dilatational components which are pressure
dependent. These characteristics have been accounted for in a nonassociated flow formulation
by using two conjugate equivalent stress measures, one for the flow law and another for the

kinetic equation. These stress measures are [7, 8, 14]

[ofj] = lo, - o] - xx, [I, - ©,}/3 a9)
f

© I - o
[o SL = lo, - 6,] - xx,.sgn(l, - o)) — 1 j (20)
sgn, - o))
for the kinetic equation; where I1 is the first invariant of Cauchy stress; the x 1'5 are material
constants; sgn( ) is the signum function. The first terms on the right-hand side of Egs. (19) and
(20) represent shear-induced damage, which manifests as slip-induced shear microcracks. Some
of these microcracks develop wing tips that generate inelastic strains that add to those originating
from dislocation flow mechanisms. Opening of these wing cracks, which are aligned parallel to
the maximum principal stress (°1)’ occurs in directions normal to the o, direction and is
resisted by compressive stresses of ¢, and o,. The second terms in the right-hand side of
Egs. (19) and (20), which are in the form of f(1, - o,), model the effects of stress state on

aiding or suppressing the opening of wing cracks.

Tensile creep damage in salt occurs in the form of cleavage microcracks aligned normal to
the tensile stress. The kinetics of tensile damage in salt is substantially faster than shear damage
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and is therefore treated as a separate term. The conjugate equivalent stress measure for tensile

damage-induced flow is [11]

s

6. = -x,03H(-0,) e

where H( ') denotes the Heaviside step function. This stress measure is intended to represent the

opening of microcracks by a tensile stress, o,.

Reduction of damage in rock salt can occur by the closure of open microcracks and the
sintering of microcracks. Both processes can be considered to be driven by an identical
thermodynamic driving force represented by a pertinent power-co;ljugate equivalent stress
measure. If the healing process is isotropic, the appropriate power-conjugate equivalent stress
measure would be the first invariant, I,, of the Cauchy stress. On the other hand, damage healing
might be nonisotropic or exhibit induced anisotropy. For this situation, a second stress term in
addition to I, is required. For describing stress-induced healing anisotropy, the conjugate

equivalent stress measure for damage healing may be taken as [12, 13, 14]

1
oh = T %00 22)

where x,, is a material constant. One of the characteristics of this conjugate equivalent stress
measure is that when used in conjunction with Eq. (17), the healing term is the only nonzero

term under hydrostatic compression. In addition, healing may also occur under nonhydrostatic

compression.
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(2) Equivalent Strain Rate Measures

[4

eq’ due to dislocation flow mechanisms was

The kinetic equation representing the creep rate, €

formulated by Munson and Dawson [3] and is given by
RN (23)
e =F E €,

where F is the transient function representing transient creep behavior, and é,‘is the ste?dy-state
strain rate for the i™ independent dislocation flow mechanism. The mechanisms inciude
dislocation climb (i = 1), dislocation glide (i =3), and one that has .not been identified
mechanistically, but which is fully characterized experimentally (i = 2). The steady-state strain

rates are [3]

. c 7
) o,
¢ =de Q/RT g 4
: pl - o)
fori=1, and 2, and
2, -Q/RT o, 25
e = |H| | Y Be 2™ |sinn|L| —2 - o, (25)
3 i=1 p\ l-o

for i = 3, where the 4,'s and B,'s are constants, Q,'s are activation energies, T is absolute
temperature, R is the universal gas consfant, M is shear modulus, n,'s are the stress exponents,
q'is the stress constant, H is the Heaviside function with [o;/(l-m) - o,] as the argument, o
is the stress limit of the dislocation glide mechanism, and  is the Kachanov [33] isotropic

damage variable.
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The kinetic equation of damage-induced inelastic flow was developed on the basis that wing
cracks developed at the tips of sliding shear cracks or slipbands. As a result, the kinetic equation
for shear-induced damage followed closely to that for dislocation glide. The same form of
expression was also used for the kinetic equation for tensile damage-induced flow and is given

by [8, 10, 11]
e, =F ‘e (26)

where i = s or t for shear or tensile damage, respectively; F ' is the transient function for the
[A]
i" mode of damage. The kinetic equations for damage-induced flow, €, !, during steady-state

creep are expressed by

@ » R
o 2 . o ¢ oc'H(o,') ?
e ' = c, EBie Q‘IRT)moe 3¢ lsinh | 24—~ "°4” @n
=1 (1-0)p

where ¢ ,'s and n, are material constants, and ois the .initial value of the damage variable, ® .
o

The kinetic equation in Eq. (27) allows éeq' to exhibit a transient behavior by virtue of the

transient function, F 1 , which is directly related to the transient function, F, for creep. The

expressions for the transient functions can be found in earlier publications [8, 10, 11].

Experimental evidence indicated that two healing mechanisms might be present in WIPP salt.
Each of the two healing mechanisms may be described by a first-order kinetic equation. The first
mechanism, which is closure of microcracks, has a smaller time constant, T, than the time
constant, T,, for the second mechanism, which is healing of microcracks. The kinetic equation

for damage healing in WIPP salt is taken to be [13, 14]
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h
) ekk(“eq_ob)H(oeq— ob) (28)

with

(29)

where €, is the volumetric strain, H ( ) is the Heaviside function with its argument in
parenthesis, and t is the characteristic time for damage healing. The parameter o, which
represents the stress threshold for healing, is assumed to coincide with the dilatancy boundary
‘ and is obtained by setting c:; = 0 in Eq. (20) [11] and by using o, = %(l1 - o). The expression
for o:q is given in Eq. (22), which indicates that a:q depends on the parameter x,, Earlier
work has established that damage healing in WIPP salt occurs by two different healing
mechanisms (crack closure and sintering) with different characterisitic times, degrees of healing
anisotropy, and X,, values [13]. Based on the strain anisotropy observed during damage healing,
the value of x,, was taken to be 1.14 in the flow law, which is the average of the x,, values for
the healing mechanisms. On the other hand, the value of x,, was taken to be 1.0 in the kinetic
equation, which is the x,, value determined for healing by crack sintering. This choice of the
Xjo value was also motivated by the consideration of the damage and healing boundaries in the
stress space. The damage and healing boundaries coincide when x,, = 1. In general, damage

hedling tends to reduce €, to zero. To account for two characteristic times, T is taken to be a

function of the volumetric strain according to the relation given by [13, 14]

T =1, eXp (k1 ekk)+ T, for £, <0 (30)
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where k; is a material constant, and t, and T, are characteristic time constants. Additionally,

T=T,t T, for e,, <0 31

According to Eq. (30), the characteristic time, T, takes on a limiting value of t, when the
volumetric strain has a large negative value and the exponential term becomes zero. This
characteristic time corresponds to damage healing by closure of microcracks. When the
volumetric strain is small (small negative value), the value of the characteristic time, <, is
increased from 7, to a larger value that approaches t, + t, which comesponds to the

characteristic time constant for crack sintering or removal.

(3) Damage Evolution Equations
An internal variable in the context of Kachanov's isotropic damage parameter [33], w, was
used as a measure of current damage in the deformed solid. Damage development in the MDCF

mode] is described in terms of an evolution equation that contains both damage growth and

healing terms, as given by [12-14]
. ©f A
mz g(m,T’ ogq’ xi)- h(m, T, oeq) (32)

where g(w,7, oc;, x,) describes the growth of damage, and (o, T, utq) describes the healing

of damage. The damage growth function, g, is given by [8, 11]

x,+1 0, O Xs ©; ©y Xy
g=ﬁo[ln( i) ‘ w412 | 19 C0) G3)
t () i X, X,

o
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where x;;, x,, X; (With i = s or t for shear or tensile damage, respectively) are material constants,
and t, is a reference time. Motivated by the experimental observations [34] the healing function

is taken to be a first-order kinetic equation given by [13, 14]

h h
- ® (oeq-ob)H(oeq-ob) 34)
TH

which has the same form as the kinetic equation for damage healing, Eq. (28) and x,,= 1 in the
calculation of o:'q, Eq. (22). The overall evolution equation for damage with healing is obtained

by combining Eq. (32) with Egs. (33) and (34).

(4) Permeability and Volumetric Strains

The coupling between permeability and damage is through the volumetric strain term. It is
envisioned that the volumetric strain resulting from damage would increase permeability by
providing a gas accessible path. During damage healing, the volumetric strain is reduced first
by crack closure and then by crack sintering. Closure of cracks is expected to vary along the gas
path and result in local blockages. Once blocked, the gas path becomes inaccessible and less
permeable. In this circumstance, the important parameter that controls permeability is the gas

accessible volumetric strain. Because of this, the Peach relation is incorporated into the MDCF

mode] as
K, = C,(-e5)’ (35)

where eik is the gas accessible (i.e., connected) volumetric strain which is obtained by

integrating the volumetric strain rate over time, as given by
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g _ .€ L9 L9 .8

[~} w
where ¢}, is the elastic volume strain rate, and ¢,;, &,’, and &%, are the inelastic volumetric
Kk ke €x - €q

strain rates due to shear damage, tensile damage, and healing by crack closure, respectively. The

last term is given by

g h h
.& __ .k — €kk(oeq- ob)H(ceq_ ob)

&)
eq T p

which is obtained from Eq. (28) by replacing the actual volumetric strain, € x> DY the connected
(gas accessible) volumetric strain, eik. It isrnoted that the gas accessible volumetric strain would
decrease by the crack closure healing mechanism but is not significantly influenced by the
sintering mechanism. Therefore, th-e characteristic time, t, in Eq. (37) would be essentially t,
but is also considered to vary with the stress state such that t is given by Eq. (30) for o:'q < Oy
but T = T, for o:q > oy, where g, is the hydrostatic pressure below which the characteristic

time changes from T, to 7. As discussed later, o, = 3.5 MPa for WIPP salt.
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EVALUATION OF MODEL CALCULATIONS AGAINST EXPERIMENTAL RESULTS

(a) During Damage Healing

Stormont [20, 35] had reported the permeability of WIPP salt that was initially damaged and
then subjected to healing under hydrostatic pressure. Measurements of permeability were
determined as a function of time for hydrostatic healing pressures initially at about 2.41 MPa.
The hydrostatic pressure was then increased up to 14.48 MPa. Results for several specimens
were reported. These results were used to compare with the permeability calculated using the
MDCF model. The same loading history was used in the MDCF model simulation calculations.
To simulate identical initial damage, triaxial creep was used in the initial part of the model
calculation to generate a damage condition that gave the same permeability as observed in the
experiment. Subsequently, the hydrostatic pressure was imposed according to those used in the

experiment. The model constants used in these calculations are shown in Tables 1 and 2.

In the tests conducted on specimens TUA9 and TUA6, permeability was measured initially
at a hydrostatic pressure of 2.41 MPa, which was subsequently increased to 14.48 MPa.
Permeability was then measured as a function of time. Comparison of the calculated and
measured values of permeability for specimens TUA9 and TUA6 is shown as a function of
confining pressure in Figure 6, which indicates that the decrease in permeability with increasing
hydrostatic pressures is accurately predicted by the model. The corresponding results of
permeability as a function of time of healing are shown in Figure 7. Permeability measurements
for nine other specimens reported by Stormont [20] are also included in Figure 7. The very short
time response (less than 1 hour) in Figure 7 perhaps indicates that the actual response is not

linear as the model would suggest. However, the model does predict something of an average

behavior for the other ten specimens.
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The results in Figure 7 indicate that reduction of permeability occurs fairly rapidly with time
when the hydrostatic pressure was 14.48 MPa. This finding was consistent with the small value
of the characteristic time of crack closure. The implication is that permeability reduction in
WIPP salt is controlled by closure and not by sintering of microcracks. Such a finding is
consistent with the prevailing view that a continuous, gas accessible path is required for achieving
a high permeability [19, 20, 24-31, 35].. Conversely, a blocked path is all that is required for
attaining a low permeability. Since £he characteristic time for crack closure is very small, the

kinetics of permeability reduction is consequently fairly rapid.

The calculation involved damage healing of specimen TUA10 at a hydrostatic pressure of
2.41 MPa is presented in Figure 8, which shows comparison of the calculated and measured
values of permeability as a function of time of healing. Figure 8 indicates that at 2.41 MPa
pressure the permeability of WIPP salt does not vary significantly with time, at least for the time
period considered. This experimental observation is consistent with the need for using two

different characteristic healing times depending upon whether the applied hydrostatic pressure is

below or above 3.5 MPa.

(b) During Damage Generation

After hydrostatic healing, Stormont deformed the WIPP salt specimens under triaxial
compression at an approximately constant rate in the range of 1 x 107 to 3 x 107° sec™ [20].
Permeability was then measured at various strain levels under strain hold conditions. These
experiments were conducted at confining pressures of 2.41, 4.14, 5.86, and 7.59 MPa. The
MDCF model was used again in these permeability calculations. The calculated and measured

values of permeability are presented in Figures 9 and 10 for the case of triaxial compression
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under confining pressures of 2.41 and 7.59 MPa, respectively. The permeability for undamaged
salt is generally reported to be about 1 x 107m?, [20], which is shown as dashed lines in
Figures 9 and 10. This permeability value for undamaged salt should be considered an
approximate value since experimental determination of such a low permeability is difficult and
might be limited by the sensitivity of the instrumentation. With this limitation in mind, Figures 9
and 10 indicate that the permeability of salt damaged during triaxial compression is considerably
higher than that of the undamaged salt. The agreement between model calculations and
experimental data is within an order of magnitude in permeability for the case of triaxial
compression under 2.41 MPa confining pressures, as shown in Figure 9. On the other hand,
Figure 10 shows that there is some discrepancy between the calculation and the experimental data
for triaxial compression under 7.59 MPa confining pressure. The calculated permeability was
substantially lower than the experimental data for strain levels less than 0.05, as shown in
Figure 10. The lower permeability in the calculation was the result of damage suppression by
a relatively high confining pressure (7.58 MPa). However, the permeability data of Stormont did
not show such a pressure effect. —To understand this discrepancy between model and experiment,
the calculated and measured inelastic volumetric strains for individual specimens are compared
in Figures 11 and 12. The comparison indicates that the calculated and measured inelastic
volumetric strains were in agreement (to the degree of within experimental scatter) for triaxial
compression under a confining pressure of 2.41 MPa, as shown in Figure 11. In contrast,
Figure 12 shows that for triaxial compression at 7.59 MPa confining pressure, the calculated
volumetric strain is in agreement with that for TUA1S and to a lesser extent with specimen
TUAS. The predicted volumetric strain is considerably less than that observed in specimen
TUA16. In TUADY, the inelastic volumetric strain was essentially zero at axial strains less than
0.07. The reported permeability for this region was in the range of 1 x 107°to 1 x 107 m?
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which appeared to be quite high for zero volumetric strain. It is probable that this discrepancy
is the result of the normal inability of the experimental apparatus to measure permeabilities below
some level of detectability. As a result the high values of permeability reported are not actual

permeability, and will not correspond to the calculated values.

CONCLUSIONS

An analytical treatment of permeability in porous salt with damage was formulated to
establish a functional relationship between permeability, porosity, and damage. It is shown that
the, volilmetljic strain is an appropriate measure of damage in salt, but porosity should not be
mixed with the volumetric strain in considering permeability because volumetric strain due to
damage exerts a greater effect on permeability than does porosity. An analytical relationship
between permeability, porosity, and volumetric strain due to damage was obtained and
incorporated into the MDCF constitutive model. The model was used to calculate the
permeability of WIPP salt subjected to either damaging or healing conditions. The dependence
of permeability on hydrostatic pressure, time of healing, and gas accessible volumetric strain was
predicted within reasonable correctness, although discrepancies still exist. Comparisons of model
calculations against experimental data from the literature also indicated that the permeability of
WIPP salt was primarily cbntrolled by the kinetics of crack closure. The proposed methods show

some promise as a predicted tool but its accuracy remains to be tested against field data, which

was not possible in this paper.
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Table 1. Material Constants for WIPP Clean Salt

Elastic Properties
p o 124 GPa
E 31.0GPa

v 025

A, (sec™®
0, (J/mol)
n;

B, (sech)
A, (sec ™)
@, (J/mol)
n,

B, (sec™)
g, (MPa)
q

R (J/mol °K)
m

K

0

c (K1
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M-D Model Constants

8.386 E22
1.045 x 10°
5.5
6.086 E6
9.672 E12
4.18 x 10
5.0
3.03 E-2
20.57
5.335 E3
8.3143
3.0
6.275 ES
0.009198
-17.37
-7.738
0.58

32

Damage Model Constants

=6

£=231.0 MPa for ¢ > o,
g, = 351.1 MPa for ¢ < o,
g, = 15.15 MPa

xs = 0.75

x; =1 MPa

xg = 0.1

co=5x10

c, = 850

p; = 28 (linear approximation)



Table 2. Material Constants in the Damage Healing Model for WIPP Clean Salt

Temperature
Parameter (Unit)
20°C 46°C 70°C
T, (sec) 2.326 x 10° 1.628 x 10 697.7
T, (sec) 11.628 11.628 11.628
k, 5000 4000 1500
X0 (flow law) 1.14 1.14 1.14
X)o (kinetic equation) 1.0 1.0 1.0
o4 (MPa) 35 — —_
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Damaged Intact Salt Crushed/Compacted Salt

m Pfeifle A Gas (Brodsky)
¢  Stormont ® Brine (Brodsky)

v German Data (Butcher)
10-10 —

10-11 e
1012 (A "
10718 |- i

1074 - A Y v

10-15 —
10-16 -
10717 - °
10-18 —
10-19 -
10-20 —

102 |-
10-22 ! 1 1 | i 1 1 1 3 | 1 1 1 1 3
0.85 0.90 0.95 1.00

FRACTIONAL DENSITY

PERMEABILITY, m?

Figure 1. Summary of measured values of permeability in damaged intact salt (Stormont [20],

Pfeifle [23]) and compacted crushed salt (Butcher et al. [18], Brodsky [21], Brodsky
et al. [22]).
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PERMEABILITY, m?

1022 Carman-Kozeny Model

1023 ® Experimental Data (Brodsky et al.)

1 0-24 1 { 1 1 | I 1 1 1 ] 1 ! 1 1 1 $ 1 1 | ]
0.00 0.05 0.10 0.15 0.20

POROSITY

Figure 3. The Carman-Kozeny model fitted to the experimental data of compacted crushed salt
from Brodsky et al. [22].
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1016
10717
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PERMEABILITY, m?

0.00

Peach Model
Experimental Data
O Pfeifle

1 1 1 1] l 1 ] 1 1 ' 1 1 1 ] ' 1 1 1 ] ' 1 1 i ] 3 l

0.01 0.02 0.03 0.04 0.05
VOLUMETRIC STRAIN

Figure 4. The Peach model [19] fitted to the experimental data of damaged intact salt from
Pfeifle [23].
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Experimental Data Model

B Damaged Intact Salt — — Mixed
(Pfeifle)

® Crushed/Compacted Salt Peach
(Brodsky etal) = T Carman-Kozeny

10° -
10710
107"
10712
1013
1014
10718
10716
1017
1018
1019
1020
102!
1022

0.85 0.90 0.95 1.00

FRACTIONAL DENSITY

PERMEABILITY, m?

Figure 5. Calculations based on the proposed model for damaged porous materials show
different dependence of permeability on porosity and volumetric strain, resulting in

a dependence of permeability on the y parameter. Experimental data are from
Brodsky et al. [22] and Pfeifle [23].
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10°16
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HYDROSTATIC PRESSURE, MPa

Figure 6. Comparison of calculated and measured values of permeability of WIPP salt as a
function of hydrostatic pressures. The experimental data are from Stormont [20].
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Figure 7. Comparison of calculated and measured values of permeability of WIPP salt as a
function of time for healing under a hydrostatic stress, o, of 14.48 MPa. The
experimental data are from Stormont [20].
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Figure 8. Comparison of calculated and measured values of permeability of WIPP salt as a
function of time for healing under a hydrostatic stress, gy, of 241 MPa. The
experimental data are from Stormont [201].
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Figure 9. Calculated and ineasured values of permeability of WIPP salt subjected to triaxial

compression under a confining pressure of 2.41 MPa. The experimental data are from
Stormont [20].
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Figure 10. Calculated and measured values of permeability of WIPP salt subjected to triaxial

compression under a confining pressures of 7.59 MPa. The experimental data are
from Stormont [20].
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Figure 11. Comparison of calculated and measured inelastic volume strains during triaxial

compression of WIPP under a confining pressures of 2.41 MPa. Experimental data
are from Stormont [20].
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Figure 12. Comparison of calculated and measured inelastic volume strains during triaxial

compression of WIPP under confining pressures of 7.59 MPa. Experimental data
are from Stormont [20].
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