
Vol.:(0123456789)1 3

Journal of Petroleum Exploration and Production Technology (2019) 9:297–305 

https://doi.org/10.1007/s13202-018-0459-y

ORIGINAL PAPER - PRODUCTION GEOPHYSICS

Permeability prediction from wireline logging and core data: a case 
study from Assam‑Arakan basin

N. P. Singh1 

Received: 22 August 2017 / Accepted: 3 April 2018 / Published online: 4 June 2018 

© The Author(s) 2018

Abstract

Permeability is an important petrophysical parameter of hydrocarbon reservoirs for oil and gas production. Formation perme-

ability is often measured in the laboratory test using core samples. However, when few core samples are available to calculate 

the permeability in the field, estimation of permeability becomes a challenging task. In study area, the Chandmari field of 

upper Assam-Arakan basin with the availability of only seven core samples and conventional logs such as density, porosity, 

resistivity and gamma ray data from few wells, the estimation of permeability becomes a difficult task. Therefore, in the 

present study an attempt is made to estimate the permeability from well log and core data using Buckles’ method approach 

in Langpar and Lakadong + Therria sanstone reservoir of Eocene–Paleocene geologic age in the field under the assumption 

and geological support that reservoirs in the study area are clean sand having very less shale control and are homogenous 

reservoir with little/no heterogeneity. In this study, petrophysical evaluation from log data and that from core data are 

integrated for the analysis of the reservoir characteristics. The relationship between porosity and water saturation which is 

required to distinguish mobile from capillary bound water or irreducible water saturation is used to estimate the irreducible 

water saturation. The estimated irreducible water saturation which is an essential parameter for water cut and permeability 

estimation is used for estimating the permeability in the field. The estimated permeability in the reservoirs using Buckles’ 

method ranging from 1500 to 4554.38 mD is well matched with the permeability estimated from core sample. The estimated 

permeability results suggest that the oil reservoir has the higher permeability than the gas reservoir. The permeability esti-

mation relationship can further be used for the estimation of permeability in the inter-well region of Chandmari oil field.
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Introduction

An oil/gas reservoir is a heterogeneous geological structure 

having large inherent complexity properties (Verma et al. 

2012). Basic reservoir properties such as porosity, perme-

ability and hydrocarbon saturation are directly linked to 

the storage capacity, fluid flow capacity, type of rock and 

amount of hydrocarbon in pore volume, respectively (Verma 

et al. 2012; Singha and Chatterjee 2014; Chatterjee and 

Mukhopadhyay 2002). The permeability is an important and 

primary rock property to access the fluid movement within 

the reservoir. It is the most difficult property to determine 

and predict. The permeability value for a single-fluid flow 

can be predicted using empirical relationships, capillary 

models and hydraulic radius theories (e.g. Scheidegger 

1953, 1954, 1974; Bear 1972; Houpeurt 1974). It usually 

increases with the size of pores in sandstone reservoirs, but 

it is complicated for carbonate reservoirs (Abdideh et al. 

2013). Both the permeability and porosity of a rock is result 

of depositional and diagenetic factors that combine grain 

size, pore geometry and grain distribution (Mortensen et al. 

1998). Sometimes, sand or/and sandstone reservoir contains 

the high permeability for the coarser grain at a low poros-

ity and the presence of fine grain causes the low perme-

ability at the high porosity (Mortensen et al. 1998; Nelson 

1994; Beard and Weyl 1973; Holmes et al. 2009). Many 

investigators (Archie 1942; Tixier 1949; Wyllie and Rose 

1950; Pirson 1963; Timur 1968; Coats and Dumanoir 1974; 

Schlumberger Ltd 1987; Kapadia and Menzie 1985; Bloch 

1991; Ahmad et al. 1991) attempted to capture the relation 

of permeability function with model. However, these studies 
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only contributed to the better understanding of the factor 

controlling permeability but not the actual relationship. They 

demonstrated that it is only an illusion that a ‘universal’ rela-

tion between permeability and variables from wireline logs 

can be found (Mohaghegh et al. 1997). The permeability 

value of the rock is frequently measured by core data in the 

laboratory experiment considering various apparatuses and 

different pressure and time conditions (Behnoud far et al. 

2017; Tadayoni and Valadkhani 2012; Holmes et al. 2012). 

The empirical method which uses certain core data such 

as effective porosity and water saturation to predict perme-

ability values in the entire wells is somewhat realistic in 

the sense that it makes calibration/comparison/matching of 

the predicted and core data values and is categorized as a 

direct method of permeability prediction. Artificial neural 

networks have been widely applied to estimate the reser-

voir permeability from the petrophysical data and well logs 

(Jamshidian et al. 2015; Aminian and Ameri 2005). A com-

parison of nonparametric approaches, namely the alternat-

ing conditional expectations (ACE), generalized additive 

method (GAM) and neural network (NNET), have shown 

that ACE is better than other two (Rafik and Kamel 2016). 

There are various indirect methods for determining perme-

ability using geophysical well log data, but their results are 

often unsatisfactory (Mohaghegh et al. 1997; Molnar et al. 

1994). The regression method which is based on statisti-

cal method of deterministic formulation tries to predict a 

conditional average or expectation of permeability (Draper 

and Smith 1981; Wendt et al. 1986; Yao and Holditch 1993; 

Doveton 1994). The newest method, called virtual meas-

urement (McCormak 1991; Wiener 1991; Osborne 1992; 

Mohaghegh et al. 1994a, b), makes use of artificial neural 

and fuzzy logic as model-free function estimator and flexible 

tool that can learn the pattern of permeability distribution in 

a particular field. These methods which solely use data for 

the permeability calculation do not perform adequately once 

new data are used (Mohaghegh et al. 1997). The ability of 

virtual measurement to predict permeability values for entire 

wells without prior exposure to log/core data and ability to 

learn from external and then generalize the learning to solve 

new problem set it apart from all methods using solely log 

data for this purpose.

The Assam-Arakan basin in India is one of the most 

petroliferous basins producing oil and gas commercially. In 

the present study, an attempt is made to predict the permea-

bility in the inter-well region of Chandmari oil field of upper 

Assam-Arakan basin using few well log and core sample 

data. Buckles’ equation with the help of Willy-Rose relation 

and Timur’s constant has been used to predict permeabil-

ity values using two well log data (Well-A and Well-B) for 

Langpar and Lakadong + Therria (Lk + Th) sandstone reser-

voir of Eocene–Paleocene age in the upper part of the basin 

(Fig. 1). The predicted permeability of the two wells is vali-

dated by the few core samples for selected depth intervals, 

Fig. 1  Geological map of upper Assam-Arakan; study area is marked by black circle near Chandmari region. (After Mandal and Dasgupta 2013)
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and on basis of that a relation has been established with 

the porosity data derived from the core sample. The prime 

importance of this study is that once the basic porosity, 

water saturation and permeability relations are established 

using the core data, the same relations can further be used 

in other wells from the same reservoir where core data are 

not available. 

Geological setting

This upper part of Assam-Arakan basin is bounded by 

Himalayan orogenic belt in the north, a thrust belt in 

the southern side, Mishimi hills in northeastern side and 

the shield of Mikir hills in the west (Pahari et al. 2008; 

Sekhar Deb and Barua 2010). A Basement High trends 

found parallel to River Brahmaputra where thirteen wells 

have been drilled by national oil companies. Sedimentary 

sequences ranging in age from Late Mesozoic to Cenozoic 

are exposed in the Assam-Arakan basin (Balan et al. 1995; 

Mandal and Dasgupta 2013). The study area, Chandmari 

oil field is located in the crested part of Basement high and 

bounded by two NE-SW-trending major faults in the north-

ern and southern sides of the structure (Sekhar Deb and 

Barua 2010). The structure is composed by few numbers 

of minor faults dipping in both the north and south direc-

tions and trending almost parallel to the main fault. These 

minor faults are trending nearly parallel to the main fault.

The generalized stratigraphic succession in the study 

area is given in Fig. 2. The main reservoir rocks are the 

Sylhet formation (Eocene), Kopili formation inter-bedded 

sandstones (Late Eocene–Oligocene), Tura (basal) marine 

sandstones and Surma Group alluvial sandstone reservoirs 

(Mandal and Dasgupta 2013). The most productive reser-

voirs in the upper basin are the Barail (Oligocene–Mio-

cene) sands and the Tipam group (Miocene) massive sand-

stones. Other formations are Girujan (Miocene), Namsang 

(Pliocene) and Siwalik/Dhekiajuli (Recent) (Balan et al. 

1995; Mandal and Dasgupta 2013). Langpar formation 

(Paleocene) is followed by the basement at Pre-Cambrian 

age. Lakadong + Therria sand reservoir of Sylhet forma-

tion and Langpar formation have been found in the area. 

The main hydrocarbon potential is confined to the Langpar 

formation and the lower part of Sylhet formation (Laka-

dong + Therria units). These formations constitute fine- to 

coarser-grained sandstone and occasionally coal deposit 

and limestone/calcareous band with thickness varying 

from 140 to 170 m (Sekhar Deb and Barua 2010).

Fig. 2  Generalized stratigraphic formation of the upper Assam-Arakan basin. (After Sekhar Deb and Barua 2010)
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Methodology

The several empirical methods have been constructed based 

on the correlation between porosity, irreducible water satu-

ration, and permeability (Tixier 1949; Timur 1968; Coats 

and Dumanoir 1974; Coates and Denoo 1981). However, the 

relationships between porosity and irreducible water satu-

ration are best described by Buckles 1965, Chilingar et al. 

1972 and Doveton 1994. Buckles’ proposed that porosity 

and irreducible water saturation are hyperbolically related 

as follows (Buckles 1965).

The above relation (Eq. 1) can be linearized to

where ∅ is the porosity, S
wi

 is irreducible water saturation, 

and C is a constant whose magnitude is related to the rock 

type.

The simplest quantitative method of permeability pre-

diction from logs with the support of core studies has been 

keyed to empirical equations of the type

where P and Q are constants determined from core meas-

urements and applied to log measurements of porosity to 

generate predictions of permeability (K).

Wyllie and Rose (1950) proposed an empirical equation 

which is modification of the Carman–Kozeny (1937) equa-

tion that substituted irreducible water saturation for the spe-

cific area term. As the specific surface area is quite difficult 

to measure directly by conventional methods and therefore it 

is linked with pore size, this in turn controls the irreducible 

water saturation.

The equation functions as a powerful surrogate variable 

for specific surface area, and this accounts for the improve-

ment in permeability estimates when incorporated with 

porosity. The constants R and Q are measured from core 

measurements and then applied to well log data. This is one 

of the oldest permeability estimation methods available and 

is reliable when calibrated to core data.

In hydrocarbon zones above the transition zone, irreducible 

water saturation is taken equal to water saturation ( S
w
 ) values 

from any shale-corrected method. Below the hydrocarbon 

zone (i.e. in the water and transition zone), we calculate the 

irreducible water saturation using the following formula.

(1)Φ × S
wi

= C

(2)log Swi = log C − log�

(3)K = PΦQ

(4)K = P
Φ

Q

SR
wir

(5)
S

wir
=

C

�
/

(

1 − V
cl

)

where Vcl is the volume of clay and C is Buckles’ constant.

If irreducible water saturation is fixed, the permeabil-

ity is calculated using the formula (Eq. 4) given by Wyllie 

and Rose (1950). Since the reservoir is Lanpor and Laka-

dong + Therria sandstone formation, we used Timur (1968) 

values of constants for sandstone in the generalized equation 

of Wyllie and Rose (1950) which is also known as Timur’s 

parameters, as follows.

P = 3400 (For Oil), 340 (For Gas), Q = 4.4, R = 2.0

Results and discussion

The well log data for this study are shown in Figs. 3 and 4. 

The curve on track 4 depicts the intergranular porosity (pur-

ple color) calculated from the ELAN Plus volumetric analysis 

(using Techlog (GeoFrame) ELANPlus modules of Schlum-

berger) and core data (blue color), respectively. ELAN Plus 

gives the quantitative petrophysical analysis of multi-mineral 

lithology using a number of optimized simultaneous equations 

and models. It is different from the traditional petrophysical 

analysis because it solves a set of equations to estimate the 

volume of each formation component first. Then, it measures 

the properties such as porosity, water saturation, volume of 

shale from the derived volumes and does not compute the for-

mation properties from a number of fixed formulas step by 

step (Schlumberger 2013). The intergranular porosity curve 

(PIGN), water saturation and clay volume (VCL) have been 

determined by carrying out petrophysical interpretation of 

wireline log data. The default values of Timur’s parameters 

recommended for sandstones are modified after calibrating 

it with the available core data in both the wells individually. 

Following good match of porosity curve with the core data, 

Buckles’ constant has been determined corresponding to both 

the Langpar and Lk + Th reservoirs separately. The Lk + Th 

formation is having the finer sandstone, whereas the deeper 

Langpar sandstone reservoir is relatively coarser. The esti-

mated values of Buckles’ number in both reservoirs support 

the fact that Buckles’ number increases for finer-grained rocks. 

The log curve on track 5 shows the derived permeability using 

Wyllie and Rose (1950) formula and core data, respectively, 

whereas the ELAN Plus volume is presented on the last track 

6 (Figs. 3, 4). The crossplot between porosities values derived 

from density log (on X-axis) and ELAN interpretation (Y-axis) 

are analyzed, and a straight line curve is drawn to fit the data 

points. The crossplot between the porosities estimated from 

two different inputs show a very good correlation coefficient, 

91% in Well-A (Fig. 5) and 73% in Well-B (Fig. 6). A liner 

relationship between porosity derived from density log and 

effective porosity obtained from ELAN interpretation using 

conventional petrophysical software (Techlog, Schlumberger) 

which is also calibrated with the core data, is established and 

is shown in Figs. 5 and 6 for both the Well-A and Well-B, 
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respectively. This relationship can further be utilized for pre-

dicting the permeability in another well in the same area where 

core data are not available. The sets of equations used for per-

meability calculation in both the wells are as follows.    

Well-A

The reservoir sand interval in Well-A is 3900–3921 m with the 

shale break and volume of shale average (< 10%) in the ranges 

3915–3915.3 m and 3918.8–3919.2 m. Hence, it is considered 

as a clean sand reservoir. Well-A produces oil from Langpar 

formation of Eocene age. The following sets of equation and 

parameters are used for the permeability calculation in Well-A.

C = 0.02, P = 3400, Q = 3.2, R = 2.2

Here, few changes in abbreviations, PIGN.IN = ∅ , VCL.

IN = VCL and KINT = K

(6)S
wir

= C

/(

PIGN

(1 − V
CL

)

Well-B

The reservoir sand interval in Well-B is 3820–3830  m 

(Lk + Th reservoir) and 3872–3892 m (Langpar reservoir), 

respectively. The well is producing gas from Langpar as well 

as LK + Th reservoirs of Eocene age, and having volume 

of shale less than 10% is treated as a clean reservoir. The 

following sets of equation and parameters are used for the 

permeability calculation in Well-B.

C = 0.03 (for Lk + Th reservoir), 0.02 (for Langpar 

formation)

P = 3400, Q = 3.2, R = 2.4

(7)KINT = 3400 ∗
(PIGN)3.2

S
2.2

wir

(8)KINT = 3400 ∗
(PIGN)3.2

S
2.4

wir

Fig. 3  ELAN interpretation and permeability prediction in Well-A
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Fig. 4  ELAN interpretation 

and permeability prediction in 

Well-B

Fig. 5  Crossplot between porosities derived from density and ELAN interpretation in Well-A
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Permeability relation

The permeability measured from core data and that pre-

dicted from Buckles’ method approach for Langpar res-

ervoir and Lk + Th reservoir in both the wells at selected 

depth intervals are shown in Fig. 7, which are found to be 

in good agreement with each other. The goodness of fit 

(R2) shows a significant value of 0.70. On basis of this, an 

equation has been established which can be further applied 

to calculate permeability of the reservoir where enough 

well data are not available. As both the permeability and 

porosity of a rock is result of depositional and diagenetic 

factors that combine grain size, pore geometry and grain 

distribution (Mortensen et al. 1998), sometimes reservoir 

contains high permeability for coarser grain at low poros-

ity and fine grain causes low permeability at high porosity 

(Mortensen et al. 1998; Beard and Weyl 1973). The gas 

sands have the lower permeability and higher porosity, 

whereas the oil sands have the higher permeability and 

lower porosity as shown in Fig. 8. The gas sands in Well-A 

are located at the depth interval of 3872–3892 m followed 

by the oil sand at depth of 3900 m. The Langpar reservoir 

is relatively coarser in grain size than the Lk + Th reservoir 

causing its higher permeability and comparatively lower 

porosity than Lk + Th reservoir.  

Conclusion

This paper presents a case study of permeability predic-

tion from wireline logging and core data from Assam-

Arakan basin. Applicability and suitability of empirical 

methods for permeability prediction using wireline log 

and core data are tested, and the suitable one is applied 

for the purpose. The empirical relationship has allowed 

Fig. 6  Crossplot between poros-

ity derived from density and 

ELAN interpretation in Well-B

Fig. 7  Crossplot between predicted permeability from Buckles’ 

approach and core permeability for the Well-A and Well-B at selected 

depth intervals
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estimation of Buckles’ number using wireline and core 

measurements. The formation porosity/irreducible water 

saturation and permeability from digital well log and core 

data are estimated using Buckles’ method approach. The 

Buckles’ number estimated from empirical relationship 

using wireline and core measurements can be further uti-

lized to predict permeability in the wells from the same 

reservoir in which only well log data are available. Hence, 

from this study it can be concluded that once the basic 

porosity/water saturation/permeability relations are estab-

lished using the core data, these relations can be further 

used in the other wells from the same reservoir where core 

data are not available. The porosity crossplots indicate a 

good agreement between log data determined porosity and 

ELAN interpreted porosity. The predicted permeability 

from empirical equation and core derived permeability are 

in good agreement with each other. The estimated values 

of Buckles’ number for both the reservoirs support the fact 

that Buckles’ number increases with the finer-grained rock. 

Well-A produces oil from Langpar reservoir, whereas the 

Well-B is producing gas from Langpar as well as LK + Th 

reservoir of Eocene age. The oil sand in the Langpar res-

ervoir has the higher permeability than the gas sands in 

Langpar and Lk + Th reservoirs.
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