
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, MARCH 2013 ISSN 2277-8616

228
IJSTR©2013

www.ijstr.org

Permission-Based Android Malware Detection

Zarni Aung, Win Zaw

Abstract: - Mobile devices have become popular in our lives since they offer almost the same functionality as personal computers. Among them,
Android-based mobile devices had appeared lately and, they were now an ideal target for attackers. Android-based smartphone users can get free
applications from Android Application Market. But, these applications were not certified by legitimate organizations and they may contain malware

applications that can steal privacy information for users. In this paper, a framework that can detect android malware applications is propos ed to help
organizing Android Market. The proposed framework intends to develop a machine learning-based malware detection system on Android to detect
malware applications and to enhance security and privacy of smartphone users. This system monitors various permissionbased features and events

obtained from the android applications, and analyses these features by using machine learning classifiers to classify whether the application is goodware
or malware.

Index Terms: - Smartphones , Android, Malware detection , Machine Learning,

————————————————————

1 INTRODUCTION
N the last years, mobile devices, such as smartphones,
tablets and PDAS, have become popular by increasing the
number and complexity of their capabilities. Current mobile
devices offer a large amount of services and applications
than those offered by personal computers. At the same
time, the increasing number of security threats that target
mobile devices has emerged. In fact, malicious users and
hackers are taking advantage of both the limited capabilities
of mobile devices and the lack of standard security
mechanisms to design mobile-specific malware that access
sensitive data, steal the user’s phone credit, or deny access
to some device functionalities. In 2011, malware attacks
increased by 155 percent across all platforms [1]: in
particular, Android is the platform with the highest malware
growth rate by the end of 2011. To mitigate these security
threats, various mobilespecific Intrusion Detection Systems
(IDSes) have been recently proposed. Most of these IDSes
are behavior-based, i.e. they don’t rely on a database of
malicious code patterns, as in the case of signature-based
IDSes. In this paper, we describe a machine learning based
malware detection system for android based smartphones
users. This system exploits machine learning techniques to
distinguish between normal and malware applications.

Summarising, our main findings in this paper are:

1. We describe the process of extracting features
from the Android .apk files

2. We create a dataset from extracted features of
Android applications in order to develop android
malware detection framework

3. We perform an empirical validation of machine
learning approaches and show that they can
achieve high accuracy rates.

The remainder of the paper is organized as follows. Section
2 lists some related work. Section 3 discusses the malware
detection techniques and Section 4 describes the
implementation of overview system design. Section 5
experiments malware detection architecture step by step
and concludes the system and proposes future work in
Section 6.

2 RELATED WORK
Crowdroid[2] is a machine learning-based framework that
recognizes Trojan-like malware on Android smartphones,
by analyzing the number of times each system call has
been issused by an application during the execution of an
action that requires user interaction. A genuine application
differs from its trojanized version, since it issues different
types and a different number of system calls. Crowdroid
builds a vector of m features (the Android system calls).
Another IDS that relies on machine learning techniques is
Andromaly [3] which monitors both the smartphone and
user’s behaviors by observing several parameters,
spanning from sensors activities to CPU usage. 88 features
are used to describe these behaviors; the features are then
pre-processed by feature selection algorithms. The authors
developed four malicious applications to evaluate the ability
to detect anomalies. MADAM: a Multi-Level Anomaly
Detector for Android Malware [5] uses 13 features to detect
android malware for both kernal level and user level.
MADAM has been tested on real malware found in the wild
and uses a global-monitoring approach that is able to detect
malware contained in unknown applications, i.e. not
previously classified. [7] monitors smartphones to extract
features that can be used in a machine learning algorithm
to detect anomalies. The framework includes a monitoring
client, a Remote Anomaly Detection System (RADS) and a
visualization component. RADS is a web service that
receives, from the monitoring client, the monitored features
and exploits this information, stored in a database, to
implement a machine learning algorithm.[8] proposes a
behavior-based malware detection system (pBMDS) that
correlates user’s inputs with system calls to detect
anomalous activities related to SMS/MMS sending. [9] and
[10] propose Kirin security service for Android, which
performs lightweight certification of applications to mitigate
malware at install time. Kirin certification uses security rules
that match undesirable properties in security configuration
bundled with applications. [11] performs static analysis on
the executables to extract functions calls usage using

————————————————

 Zarni Aung is currently pursuing Ph.D degree program
in Information Technology in University of Technology
(Yatanarpon Cyber City),Myanmar,
Email: zarniaung.utycc@gmail.com

 Win Zaw is currently working as Head of Department
of Information Technology in Technological University
(Thanlynn), Myanmar, Email: winzaw@gmail.com

mailto:zarniaung.utycc@gmail.com
mailto:winzaw@gmail.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, MARCH 2013 ISSN 2277-8616

229
IJSTR©2013

www.ijstr.org

readelf command. Hence, these calls are compared with
malware executables for classification. Finally, [12] surveys
some security solutions for mobile devices.

3 MALWARE DETECTION APPROACHES
There are three different types of malware detection
techniques: attack or invasion detection, misuse detection
(signature-based) and anomaly detection (behavior-based)
[6]. Attack or Invasion detection tries to detect unauthorized
access by outsiders. But, misuse detection (signature-
based) tries to detect misuse by insiders and describes very
good detection results for specified, well-known attacks.
The advantages of misuse detection are: it has no false
positives and can quickly detect intrusion. Disadvantage is
not capable of detecting new unfamiliar intrusions, even if
they are built as minimum variants of already known
attacks. Anomaly detection (behavior-based) refers to
detecting patterns in a given dataset that do not conform to
an established normal behavior. It also attempts to estimate
the abnormal behavior of the system to be protected and
generate anomaly alarm whenever the deviation between a
given observation at an instance and normal behavior
exceeds a predefined threshold. Advantage is potential to
detect previously unseen intrusion events and disadvantage
is many false positives and requires a large set of training
data to construct normal behavior profile. For removing
these shortcomings of misuse detection and anomaly
detection profiles should be updated with large amount the
datasets at regular interval of time [16].But a large amount
of the datasets also increases the problem of inconsistency,
redundancy and ambiguity. Several data mining techniques
have been applied for intrusion detection. K-Mean
Clustering is an unsupervised data mining technique for
intrusion detection and it is easy to implement. Three major
drawback of K-mean clustering are: 1. class dominance
problem, 2.force assignment problem, and 3. no class
Problem. It has been observed that single model cannot
give better result in terms of recall and precision.

4 IMPLEMENTATION
For removing all these mentioned problems are proposing a
new model which is based on feature selection as a first
phase, K-Mean clustering model generation as a second
phase, classification of this new dataset which is generated
by second phase as third phase, and finally evaluating the
performance of this proposed model in terms of accuracy,
precision and recall. The overview design of proposed
architecture is shown in Figure 4.

4.1 Features
For each Android application, we retrieved several selected
features from the corresponding application package (APK)
file. In addition, we identified real permissions required by
he application, and adopted the features for malware
detection. The values of selected features are stored as a
binary number (0 or 1), which is represented as a sequence
of comma separated values. We enumerate all selected
features in the following items. Each item includes the
name of a feature, the data type of the feature, and data of
the feature. The few sample features are described in the
following:

1. android.permission.INTERNET-the application request
INTERNET permission when it is installed. The user can
allow this permission request because he/she does not
know this permission request is important. Every application
does not require this permission request. If an application
does not require INTERNET permission but it request the
permission, this application can not be defined as normal
application. INTERNET permission request is one of the
dangerous features because the malware application can
send user privacy information to their websites.

2. android.permission.CHANGE_CONFIGURATION- the
application can request to change configuration files of the
mobile devices. The users can be blocked from the
available services and functionalities of their mobile
devices. The application can change the stored data files so
that the storage data can be lost by allowing this permission
request.

3. android.permission.WRITE_SMS- the application can
write SMS message without user notification by allowing
this permission request.

4. android.permission.SEND_SMS- the application can
send SMS message so that the money can be lost by
installing similar applications with this permission request.

5. android.permission.CALL_PHONE- some applications
can request CALL_PHONE permission without necessary
for them. If the user allows this permission request, the
application will call phone itself without user notification.
The users do not know why their money was lost without
their usage. The other permission features are not
described in this paper.

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
,0,1,0,0,0,0,0,0,0,0,
0,0
,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,1,0
,5.673513,goodware

Figure1. An example feature vector for the good ware application

retrieved from its Android application package file

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0
,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,0,0,
0,0,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0
,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,
6.156783,malware

Figure2. An example feature vector for malware application
retrieved from its Android application package file

4.2 Feature Extraction
In this section, we describe the process we followed to
obtain data from the android application file. The general
steps we have followed for each application are:

1. We downloaded and collected malware and good
ware applications from application market.

2. We decompress applications to extract the content.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, MARCH 2013 ISSN 2277-8616

230
IJSTR©2013

www.ijstr.org

3. We extract the permission request features from
each application.

4. We build a dataset in an ARFF [4] file format with

the extracted data.

First, we decompress the android application package file
to extract the content. During the first three steps we
retrieve the information from this source. We process the
AndroidManifest.xml file to extract these data.

4.3 Feature Selection
In Machine Learning applications, a large number of
extracted features, some of which redundant or irrelevant,
present several problems such as—misleading the learning
algorithm, over-fitting, reducing generality, and increasing
model complexity and run-time. These adverse effects are
even more crucial when applying Machine Learning
methods on mobile devices, since they are often restricted
by processing and storage-capabilities, as well as battery
power. Applying fine feature selection in a preparatory
stage enabled to use our malware detector more efficiently,
with a faster detection cycle. Nevertheless, reducing the
amount of features should be performed while preserving a
high level of accuracy. In this section we select the k best
features from the extracted features of android application
package files by using feature selection method:
Information Gain. This method depends on entropy of the
attributes and it selects the largest value of gain as the best
feature. Gain of an attribute A on a collection of examples S
is given by

Gain (S, A)= Entropy (S) - Σ |SV| Entropy(SV)

V€Values(A) |S|

4.4 Machine Learning and Malware Detection
The selected features are collected into the signature
database and divided into training data and test data and
used by standard machine learning techniques to detect the
android malware applications. We choose K-means
clustering (i) it is data driven method relatively few
assumptions on the distributions of the underlying data and
(ii) it guarantees at least a local minimum of the criterion
function, thereby accelerating the convergence of clusters
on large datasets. First stage: clustering is performed on
training instances to obtain k disjoint clusters. Each cluster
represents a region of similar instances in terms of
Euclidean distances between the instances and their cluster
centroids. Second stage: K-means method is cascaded with
decision tree learning by using the instances in each K-
means cluster. Disadvantage of K-means:

1. very sensitive to noise, mixed pixels and outliers

2. limit the application to only numerical variables

3. anomaly type of data is not eliminated if the
overlapping is found

If the overlapping is found in k-means cluster, decision tree
classifiers are used to classify each cluster

K-Means Algorithm
1. Select k centroids arbitrarily (called as seed) for

each cluster Ci , i ε [1, k]

2. Assign each data point to the cluster whose
centroid is closest to the data point.

3. Calculate the centroid Ci of cluster Ci, i ε [1, k].

4. Repeat steps 2 and 3 until no points change

between clusters.

Figure 3. K-Means Clustering Algorithm

Decision tree technology is a common, intuitionist and fast
classification method [15]. Its construction process is top-
down, divide-and rule. Essentially it is a greedy algorithm.
Starting from root node, for each non-leaf node, firstly
choose an attribute to test the sample set; Secondly divide
training sample set into several sub-sample sets according
to testing results, each sub-sample set constitutes a new
leaf node; Thirdly repeat the above division process, until
having reached specific end conditions. In the process of
constructing decision tree, selecting testing attribute and
how to divide sample set are very crucial. Different decision
tree algorithm uses different technology. In practice,
because the size of training sample set is usually large, the
branches and layers of generated tree are also more. In
addition, abnormity and noise existed in training sample set
will also cause some abnormal branches, so we need to
prune decision tree. One of the greatest advantages of
decision tree classification algorithm is that: It does not
require users to know a lot of background knowledge in the
learning process.

J48 Decision Tree Algorithm
Generate a decision tree from the given training data

1. Select k random instances from the training data
subset as the centroids of the clusters C1; C2; ...Ck.

2. For each training instance X:
a. Compute the Euclidean distance D(Ci,X), i=1...

k:Find cluster Cq that is closest to X.
b. Assign X to Cq. Update the centroid of Cq.(The

centroid of a cluster is the arithmetic mean of
the instances in the cluster.)

3. Repeat Step 2 until the centroids of clusters C1;C2;

...Ck stabilize in terms of mean-squared- error
criterion.

4. For each test instance Z:

a. Compute the Euclidean distance D(Ci,Z), i=1...
k. Find cluster Cr that is closest to Z.

b. Classify Z as an anomaly or a normal instance
using the Threshold rule

The Threshold rule for classifying a test instance Z that
belongs to cluster Cr is:

Assign Z-->1 if P(w|Z)> Threshold;
Otherwise Z 0 where ―0‖ and ―1‖ represent normal

and malware classes [6]

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, MARCH 2013 ISSN 2277-8616

231
IJSTR©2013

www.ijstr.org

Input: training sample set T, the collection of candidate
attribute attribute_list

Output: a decision tree.

1. Create a root node N;

2. If T belongs to the same category C, then return N
as a leaf node, and mark it as class C;

3. If attribute_list is empty or the remainder samples

of T is less than a given value, then return N as a
leaf node, and mark it as the category which
appears most frequently in attribute_list, for each
attribute, calculate its information gain ratio

4. Suppose test_attribute is the testing attribute of N,

then test_attribute= the attribute which has the
highest information gain ratio in attribute list:

5. If testing attribute is continuous, then find its

division threshold;

6. For each new leaf node grown by node N

{

a. Suppose T is the sample subset
corresponding to the leaf node.

b. If T has only a decision category, then mark
the leaf node as this category;

c. Else continue to implement J48_Tree

(T’,T’_attributelist)

}

7. Calculate the classification error rate of each node
and then prune the tree.

Random forests (RF) are a combination of tree predictors
such that each tree depends on the values of a random
vector sampled independently and with the same
distribution for all trees in the forest. The generalization
error of a forest of tree classifiers depends on the strength
of the individual trees in the forest and the correalation
between them. Using a random selection of features to split
each node yields error rates that compare favorably to
Adaboost, and are more robust with respect to noise.

Random forest Algorithm (A variant of bagging)

1. Select ntree, the number of trees to grow, and
mtry, a number no larger than number of variables.

2. For i = 1 to ntree:

3. Draw a bootstrap sample from the data. Call those

not in the bootstrap sample the "out-of-bag" data.

4. Grow a "random" tree, where at each node, the
best split is chosen among mtry randomly selected
variables. The tree is grown to maximum size and
not pruned back.

5. Use the tree to predict out-of-bag data.

6. In the end, use the predictions on out-of-bag data

to form majority votes.

7. Prediction of test data is done by majority votes
from predictions from the ensemble of trees.

Classification and Regression Tree (CART)

Splitting rule:
Choose the split that maximizes the decrease in impurity.
Impurity:

1. Gini Index

2. Entropy

Split stopping rule:
A large tree is grown and procedures are implemented to
prune the tree up-ward.

Class assignment:
Normally simply assign the majority class in the node
unless a strong prior of the class probability is available.

5 EXPERIMENTS
We tested our system against a collection of 500 sample
Android applications. We created two datasets from 200
and 500 android applications by extracting features and
used Weka tool to analyse the evaluation of the proposed
framework.

5.1 Performance Evaluation Criteria
We used the machine learning techniques to classify the
malware applications. Firstly, we built ARFF file from the
extracted features and train the dataset by using K-means
clustering algorithm. Once the training model has been
developed, we used decision tree learning algorithms for
each cluster to classify the malware applications. From the
response of classifiers, relevant confusion matrices were
created. The following four metrics define the members of
the matrix.

True Positive (TP): Number of correctly identified
goodware applications.

False Positive (FP): Number of wrongly identified malware
applications.

True Negative (TN): Number of correctly identified malware
applications.

False Negative (FN): Number of wrongly identified
goodware applications.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, MARCH 2013 ISSN 2277-8616

232
IJSTR©2013

www.ijstr.org

True Positive Rate (TPR): Percentage of correctly
identified goodware applications

(TP / TP+FN)

False Positive Rate (FPR): Percentage of wrongly
identified malware applications

(FP / TN+FP)

Overall Accuracy (ACC): Percentage of correctly identified
applications

(TP+TN / TP+TN+FP+FN)

The performances of machine learning techniques were
evaluated using the true positive rate, false positive rate
and overall accuracy which are defined above.

5.2 Experimental Results
Firstly, we extracted the necessary features to analyze from
sample applications (goodware and malware). Then, we
built dataset in (.arff) file format from the extracted features.
We used these two datasets to distinguish malware and
goodware applications by machine learning approaches.
Table 1 shows the details of two datasets used in android
malware detection framework and the experimental results
of different machine learning approaches from two datasets
is shown in Table 2.

6 CONCLUSION
In this paper, we implement a framework for classifying
Android applications using machine-learning techniques
whether they are malware or normal applications. To
generate the models, we have extracted several permission
features from several downloaded applications from android
markets. Some of the malware applications are used from
malware sample database and both malware and normal
applications are classified by using machine learning
techniques. In order to validate our methods, we have
collected 200 samples of Android applications and we have
extracted the aforementioned features for each application
and we have trained the models which have been
evaluated using the Area Under ROC Curve (AUC).
Regarding future work, we will train models with larger
dataset as soon as we obtain enough samples of malicious
applications and we will extract more features from sample
applications. We will even classify the types of malware
applications (Trojan, Infosteal, etc).

ACKNOWLEDGMENT
I would like to thank my supervisor, Dr. Win Zaw, Associate
Professor and Head of Department of Information
Technology, for his excellent guidance, where the initial
scope of the thesis was defined, and throughout the
process of writing this thesis.

REFERENCES
[1]. Juniper Networks: 2011 Mobile Threats

Report(February 2012)

[2]. I. Burguera, U.Z., Nadijm-Tehrani, S.: Crowdroid:
Behavior- Based Malware Detection System for
Android. In: SPSM’11, ACM(October 2011)

[3]. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y.

Weiss: Andromaly: a behavioral malware
detection framework for android devices. Journal
of Intelligent Information Systems 38(1) (January
2011) 161-190

[4]. G. Holmes, A. Donkin, and I.H. Witten, ―Weka: a

machine learning workbench,‖ August 1994, pp.
357-361.

[5]. G. Dini, F.Martinelli, A. Saracino, D. Sgandurra:

MADAM: a Multi-Level Anomaly Detector for
Android Malware

[6]. K. Hanumantha Rao, G. Srinivas, A. Damodhar,

M. Vikas Krishna: Implementation of Anomaly
Detection Technique Using Machine Learning
Algorithms: Internatinal Journal of Computer
Science and Telecommunications (Volume2,
Issue3, June 2011)

[7]. Schmidt, A.D., Peters, F., Lamour, F., Scheel, C.,

Camtepe, s.A., Albayrak, S.: Monitoring
smartphones for anomaly detection. Mob. Netw.
Appl. 14(1)(2009) 92-106

[8]. Xie,L.,Zhang,X.,Seifert, J.P.,Zhu, S.: pBMDS: a

behavior-based malware detection system for
cellphone devices. In: Proceedings of the Third
ACM Conference on Wireless Network Security,
WISEC 2010, Hoboken, New Jersey, USA, March
22-24 2010, ACM(2010) 37-48

[9]. Enck, W., Ongtang, M., McDaniel, P.: On

lightweight mobile phone application certification.
In: CCS ’09: Proceedings of the 16th ACM
conference on Computer and Communication
Security, New York, NY, USA, ACM (2009) 235-
245

[10]. Ongtang, M., McLaughlin, S., Enck, W., McDaniel,

P.: Semantically Rich Application-Centric Security
in Android. In: Computer Security Applications
Conference, 2009. ACSAC ’09. Annual.(Dec
2009) 340-349

[11]. Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen,

J.H., Kiraz, O., Yuksel, K.A., Camtepe, S.A.,
Albayrak, S.: Static Analysis of Executables for
Collaborative Malware Detection on Android. In:
Proceedings of IEEE International Conference on
Communications, ICC 2009, Dresden, Germany,
14-18 June 2009, IEEE (2009) 1-5

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, MARCH 2013 ISSN 2277-8616

233
IJSTR©2013

www.ijstr.org

[12]. La Polla, M., Martinelli, F., Sgandurra, D.: A
survey on security for mobile devices.
Communications Surveys Tutorials, IEEE PP(99)
(2012) 1-26

[13]. Freke, J.: smali - an assembler/disassembler for

android’s dex format. Google Project Hosting
[online] http://code.google.com/p/smali/

[14]. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner,

D.: Android permissions demystified. In:
Proceedings of the 18th ACM conference on

Computer and communications security. (2011)
627–638

[15]. Juan Wang, Qiren Yang, Dasen Ren, ―An

intrusion detection algorithm based on decision
tree Technology‖, Asia-Pacific Conference on
Information Processing, APCIP 2009, Shenzhen,
IEEE 18-19 July 2009. pp. 333-335

[16]. Mark A. Hall, Lloyd A. Smith, ―Feature Subset

Selection: A Correlation Based Filter Approach
1997

Table 1. Datasets for Malware Detection Framework

Dataset Name Number of Samples Number of Features

Dataset #1 200 160

Dataset #2 500 160

Table 2. Experimental Results of Two Datasets

Dataset
Name

Method
Name

TP Rate FP Rate Precision Recall ROC Area
Correctly
Classified

Instances(%)

Incorrectly
Classified

Instances(%)

Dataset#1 J48 0.907 0.086 0.916 0.907 0.918 90.72% 9.28%

Dataset #1
Random
Forest

0.918 0.081 0.918 0.918 0.954 91.75% 8.25%

Dataset#1 CART 0.978 0.157 0.849 0.978 0.87 90.72% 9.27%

Dataset #2 J48 0.88 0.121 0.88 0.88 0.915 88% 12%

Dataset #2
Random
Forest

0.916 0.084 0.916 0.916 0.969 91.58% 8.42%

Dataset#2 CART 0.851 0.151 0.851 0.851 0.878 85.05% 14.94%

http://code.google.com/p/smali/

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, MARCH 2013 ISSN 2277-8616

234
IJSTR©2013

www.ijstr.org

Figure 4. Android Malware Detection Framework

Application Preprocessing

Machine Learning & Malware Detection

Feature Selection

Feature Extraction

APK File
List

APK File
(.apk)

DEX File
(.dex)

Extracted
Features

Selected
Features

Information
Gain

Features
Set

Clusters
(K-means)

Classification
(J48, RF, CART)

Cluster

Malware &
Goodware
DB(arff)

