
DAVID MAKINSON and LEENDERT VAN DER TORRE

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE

Received 10 December 2002

ABSTRACT. Input/output logics are abstract structures designed to represent conditional
obligations and goals. In this paper we use them to study conditional permission. This
perspective provides a clear separation of the familiar notion of negative permission from
the more elusive one of positive permission. Moreover, it reveals that there are at least
two kinds of positive permission. Although indistinguishable in the unconditional case,
they are quite different in conditional contexts. One of them, which we call static positive
permission, guides the citizen and law enforcement authorities in the assessment of specific
actions under current norms, and it behaves like a weakened obligation. Another, which
we call dynamic positive permission, guides the legislator. It describes the limits on the
prohibitions that may be introduced into a code, and under suitable conditions behaves like
a strengthened negative permission.

KEY WORDS: conditional norms, deontic logic, input/output logics, permission

1. INTRODUCTION

In formal deontic logic, permission is studied less frequently than obliga-
tion. For a long time, it was naively assumed that it can simply be taken as
a dual of obligation, just as possibility is the dual of necessity in modal
logic. As time passed, more and more researchers realized how subtle
and multi-faceted the concept is. Nevertheless, they continued focussing
on obligation because there it is easier to make progress within existing
paradigms. Consequently the understanding of permission is still in a less
satisfactory state.

Nevertheless, in more philosophical discussions it is common to distin-
guish between two kinds of permission, negative and positive.1 The former
is straightforward to describe: something is permitted by a code iff it is not
prohibited by that code. That is, understanding prohibition in the usual
way, iff there is no obligation to the contrary.

Positive permission is more elusive. As a first approximation, one may
say that something is positively permitted by a code iff the code explicitly
presents it as such. But this leaves a central logical question unanswered.
As well as the items that a code explicitly pronounces to be permitted, there

Journal of Philosophical Logic 32: 391–416, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

392 DAVID MAKINSON AND LEENDERT VAN DER TORRE

are others that in some sense follow from the explicit ones. The problem is
to clarify the inference from one to the other.

An informal example illustrates this problem, at the same time bringing
out the need to distinguish different kinds of permission. Suppose that a
normative code contains just one explicit obligation and one explicit per-
mission, both conditional. The obligation tells us that filling in an annual
income-tax form is required, on the condition of being in gainful employ-
ment. The permission tells us that voting in elections is permitted, on the
condition of being at least 18 years of age. We ask some questions.

• Does it follow from our mini-code that voting is permitted on condi-
tion of being employed?

In one sense yes, for there is nothing in the code that forbids it. This is
negative permission. In another sense no, for a person may be employed at
the age of 17 and not covered by the explicit permission. This is one kind
of positive permission. But in another sense, yes again. For if we were to
forbid a person to vote on the condition of being employed we would be
creating an incoherence in the code, in its application to people who are
both employed and 18 or over. This is another kind of positive permission.

But is that second kind of positive permission any different from nega-
tive permission? Another question brings out the difference.

• Does it follow from our code that drinking alcohol is permitted on
condition of being 18 or over?

As far as negative permission is concerned, the answer is again yes: there
is nothing in the code that forbids it. But from the positive point of view,
the answer is no, whichever of the two kinds of positive permission we
have in mind. In the first place, the mini-code does not mention alcohol,
and contains no explicit permission that would cover those 18 or over who
drink it. In the second place, we can add to the code by prohibiting those
18 or over from drinking alcohol without rendering the code incoherent.

To deal with examples such as this we make use of input/output op-
erations. These operations make use of classical consequence, but do so
passing through a set of so-called generators representing an explicitly
given normative code. They were introduced in (Makinson and van der
Torre, 2000) to analyse conditional obligations; we now use them to throw
light on permissions.

We begin by examining negative permission from an input/output per-
spective. We then show how there are at least two quite different kinds
of positive permission in conditional contexts, which we call ‘static’ and
‘dynamic’ operations. The properties of each are studied in some detail.
Roughly speaking, static positive permission inherits many properties from

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 393

the underlying input/output operation, and behaves like a diminished oblig-
ation. On the other hand, dynamic positive permission behaves like an
amplified negative permission.

To keep the presentation to a reasonable length we must assume some
familiarity with input/output operations, but to help the reader the ba-
sic concepts are set out in Appendix 1. For further background, see the
overview (Makinson and van der Torre, 2003) or the detailed study
(Makinson and van der Torre, 2000).2

2. NEGATIVE CONDITIONAL PERMISSION

We begin by analysing negative conditional permission from the stand-
point of input/output logic. Although its definition is trivial, its conse-
quences are sometimes surprising and they provide a useful point of com-
parison with the positive operations to be defined later.

Recall again the intuitive idea: something is permitted by a code iff
it is not forbidden by that code. In two little words: iff nihil obstat. For
conditional norms, this becomes: a code permits something with respect
to a condition iff it does not forbid it under that same condition, i.e. iff the
code does not require the contrary under that condition.3

To express this concept in terms of input/output operations, let G be
a set of ordered pairs (a, x) of Boolean propositions, representing a code
of obligations. We put (a, x) ∈ negperm(G) iff (a,¬x) /∈ out(G). Here
out = outi for i ∈ {1, 2, 3, 4} is any one of the four input/output oper-
ations without throughput that are defined in Appendix 1 and studied in
(Makinson and van der Torre, 2000).

Negative permission is not always implied by obligation. In other
words, we do not always have out(G) ⊆ negperm(G). This can fail in two
distinct ways. It fails whenever G is internally incoherent, in the sense that
there is a classically consistent proposition a with both (a, x) ∈ out(G)

and (a,¬x) ∈ out(G), for the latter tells us that (a, x) /∈ negperm(G). It
can also sometimes fail for internally coherent codes, considering pairs
of the form (f, x) where f is a contradiction. For example, let G =
{(a, x), (¬a,¬x)}. This tells us that x should hold in the case a, and that
¬x should hold in the case that ¬a, and the code is perfectly coherent, both
by our definition above and under any intuitive point of view. But clearly
by SI (Strengthening the Input – see Appendix 1), we have both (f, x) ∈
out(G) and (f,¬x) ∈ out(G), the latter telling that (f, x) /∈ negperm(G).

The relationship between out(G) and negperm(G) may be expressed as
follows. When A,B are sets of pairs, we say that A is almost included in B,
and write A ⊆c B, iff whenever (a, x) ∈ A and a is classically consistent

394 DAVID MAKINSON AND LEENDERT VAN DER TORRE

then (a, x) ∈ B. Then immediately we have: out(G) ⊆c negperm(G) iff
G is internally coherent in the sense defined above.

Whereas the input/output operations outi for i ∈ {1, 2, 3, 4} are all clo-
sure operations, negperm is not. It is easy to check that monotony
in G is replaced by antitony and that idempotence fails outright. Inclu-
sion does not hold in general, but since G ⊆ out(G) and as just noted
out(G) ⊆c negperm(G) whenever G is internally coherent we do have
G ⊆c negperm(G) under that same condition.

Again, all of our input/output operations satisfy the rule SI (strength-
ening the input), i.e. the rule (a, x) ∈ out(G) & a ∈ Cn(b) ⇒ (b, x) ∈
out(G) where Cn, we recall, is classical consequence. On the other hand,
negative permission does not.4

Indeed, one might imagine that the operation satisfies few if any Horn
rules, but this is not the case. For example, for any output operation includ-
ing out1, the corresponding negperm operation satisfies the very opposite
of SI:

WI (weakening the input): (a, x) ∈ negperm(G) & b ∈ Cn(a)

⇒ (b, x) ∈ negperm(G).

For if (a,¬x) /∈ out(G) and b ∈ Cn(a) then by the rule SI (strengthening
the input) for the underlying output operation, (b,¬x) /∈ out(G).

Also, like the underlying input/output operation, negperm satisfies the
following one-premise Horn rule:

WO (weakening the output): (a, x) ∈ negperm(G) & y ∈ Cn(x)

⇒ (a, y) ∈ negperm(G).

For if (a,¬x) /∈ out(G) and y ∈ Cn(x) so that ¬x ∈ Cn(¬y) then by WO
for out, (a,¬y) /∈ out(G).

For quite different reasons, negperm satisfies the rule:

TRIV (trivialization): (t, f) ∈ negperm(G) ⇒ (a, x) ∈ negperm(G).

Here t is any tautology and f any contradiction. For (t, t) ∈ out(G), so
(t, f) /∈ negperm(G), making TRIV vacuously true for negperm.

A common pattern underlies these three rules, and extends to multi-
premise rules. Consider any Horn rule for output of the following form:

(HR): (αi, ϕi) ∈ out(G)(0 ≤ i ≤ n) & θj ∈ Cn(γj)(0 ≤ j ≤ m)

⇒ (β,ψ) ∈ out(G).

We call (αi, ϕi) ∈ out(G) the substantive premises, and θj ∈ Cn(γj) the
auxiliary ones. Each of the rules used in (Makinson and van der Torre,

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 395

2000) to characterise the four output operations outi with i ∈ {1, 2, 3, 4}
and their extensions by throughput, is of this form, indeed with n ≤ 2 and
m ≤ 1. Now consider the following rule for the corresponding negative
permission operation:

(HR)−1: (αi, ϕi) ∈ out(G)(i < n) & (β,¬ψ) ∈ negperm(G) & θj

∈ Cn(γj)(j ≤ m) ⇒ (αn,¬ϕn) ∈ negperm(G).

In other words, the conclusion of (HR) is swapped with one of the sub-
stantive premises, negating both their heads in the process and rewriting
their out as negperm, while all the other premises are left unchanged. In
the limiting case that the output rule has no substantive premises, i.e. when
n = 0, (HR)−1 is understood to have an arbitrary pair as conclusion.

We call (HR)−1 the inverse of (HR). Then immediately from the defin-
ition of negperm we have:

OBSERVATION 1. Let out be any output operation. If out satisfies a
rule of the form (HR), then the corresponding negperm operation satis-
fies (HR)−1.

As particular cases with n = 1 (and eliminating surplus negation signs)
WI is the inverse of SI, and WO is its own inverse. With n = 0, TRIV is
the inverse of the rule TAUT: ∅ ⇒ (t, t) ∈ out(G) that holds of all our
four underlying input/output operations.

When n ≥ 2, i.e. when (HR) has more than one substantive premise,
(HR)−1 will be a Horn rule of a rather unusual kind. It will be ‘mixed’, in
the sense that one premise is of the form (β,¬ψ) ∈ negperm(G) while
others are of the form (αi, ϕi) ∈ out(G). Moreover, in this case there will
be more than one inverse; in fact n of them, according to which of the
n substantive premises (αi, ϕi) of the initial rule is selected for swapping. If
the rule for output is symmetric, as are AND, OR, then its inverses will be
merely notational variants of each other. But we get quite different inverses
when the output rule is asymmetric, as in the case of cumulative transitivity
CT: (a, x) ∈ out(G) & (a ∧ x, y) ∈ out(G) ⇒ (a, y) ∈ out(G).

Spelling these remarks out in detail: in the case of AND, the initial rule
for output is:

(a, x) ∈ out(G) & (a, y) ∈ out(G) ⇒ (a, x ∧ y) ∈ out(G)

so that its inverse is:

(a, x) ∈ out(G) & (a,¬(x ∧ y)) ∈ negperm(G)

⇒ (a,¬y) ∈ negperm(G).

396 DAVID MAKINSON AND LEENDERT VAN DER TORRE

For OR the initial rule is:

(a, x) ∈ out(G) & (b, x) ∈ out(G) ⇒ (a ∨ b, x) ∈ out(G)

with inverse:

(a, x) ∈ out(G) & (a ∨ b,¬x) ∈ negperm(G)

⇒ (b,¬x) ∈ negperm(G).

For CT the initial rule is asymmetric:

(a, x) ∈ out(G) & (a ∧ x, y) ∈ out(G) ⇒ (a, y) ∈ out(G)

and its two inverses are:

(a, x) ∈ out(G) & (a,¬y) ∈ negperm(G)

⇒ (a ∧ x,¬y) ∈ negperm(G),

(a ∧ x, y) ∈ out(G) & (a,¬y) ∈ negperm(G)

⇒ (a,¬x) ∈ negperm(G).

On the other hand, it is not clear how these Horn rules could lead to a
characterization of negperm as the closure of some basis under the rules,
for it is not clear what the basis could be.5 We will see that with positive
permission, the situation is quite different in this respect.

3. POSITIVE PERMISSION: A TALE OF TWO DEFINITIONS

How can we define positive permission for conditional norms? A natural
idea is to begin by considering the unconditional case and see whether it
offers an answer that can be adapted to the conditional one.

When all norms under consideration are unconditional, we may apply
classical consequence in a quite straightforward way. Suppose that our
code consists of a set A of Boolean propositions, representing the items
that are explicitly obligated, and another set Z of Boolean propositions
representing those explicitly permitted. We may take a proposition x to be
positively permitted by the code iff there is a z ∈ Z with x ∈ Cn(A∪ {z}),
where Cn is classical consequence. In this definition, the elements of A

may be used jointly, while the elements of Z can only be used one by one,
so that even when x, x′ are both permitted their conjunction x ∧ x′ need
not be so.6

This definition can be put in another form, which is trivially equivalent
but will provide a quite different perspective when we consider conditional

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 397

norms. A proposition x is positively permitted by the code iff there is a
z ∈ Z with ¬z ∈ Cn(A ∪ {¬x}). The two formulations are equivalent by
contraposition for classical consequence.

But when we pass to conditional norms, then the situation becomes
less straightforward, as classical consequence cannot be applied directly.
It is not meaningful to talk of the classical consequences of a conditional
obligation with condition a and obligated x, unless that is identified with
a formula of classical logic, say the material implication a → x. But,
as is well known, this identification gives highly counterintuitive results,
notably validation of contraposition and the identity principle for condi-
tional norms. Of course, one could try representing conditional obligation
by means of a non-classical connective and applying some kind of non-
classical logic. Indeed, that is the standard approach, but in this paper we
follow another one, using input/output operations.

Let G,P be sets of ordered pairs of propositions, where G represents
the explicitly given conditional obligations of a code and P its explicitly
given conditional permissions. For example, P could include all those
items that the code explicitly declares to be ‘rights’. The new element P is
a vital component of all concepts that we now introduce.

For static positive permission, the idea is to treat (a, x) as permitted iff
there is some explicitly given permission (c, z) such that when we join it
with the obligations in G and apply the output operation to the union, then
we get (a, x). To be precise, in the principal case that P is non-empty we
put:

(a, x) ∈ statperm(P,G) iff (a, x) ∈ out(G ∪ {(c, z)})
for some pair (c, z) ∈ P.

In the limiting case that P = ∅, we simply set (a, x) ∈ statperm(P,G)

iff (a, x) ∈ out(G).
Of course, these two cases could be expressed as one, by saying:

(a, x) ∈ statperm(P,G) iff (a, x) ∈ out(G ∪ Q)

for some singleton or empty Q ⊆ P,

or equivalently, given the properties of the input/output operation:

(a, x) ∈ statperm(P,G) iff (a, x) ∈ out(G ∪ {(c, z)})
for some pair(c, z) ∈ P ∪ {(t, t)}.

Static permissions are thus treated like weak obligations, the basic differ-
ence being that while the latter may be used jointly, the former may only
be applied one by one.

398 DAVID MAKINSON AND LEENDERT VAN DER TORRE

The operation of dynamic positive permission is considerably more
complex. It is based on an idea of Alchourrón, and was given a crude for-
mulation in (Makinson, 1999). Whereas the definition of static permission
corresponds to the first of the two formulations for the unconditional case,
given at the beginning of this section, the definition of dynamic permission
corresponds to the second. But they are no longer equivalent, essentially
because unlike plain classical consequence, input/output operations do not
in general satisfy contraposition.

The idea is to see (a, x) as permitted whenever, given the obligations al-
ready present in G, we can’t forbid x under the condition a without thereby
committing ourselves to forbid, under a condition c that could possibly be
fulfilled, something z that is implicit in what has been explicitly permitted.
The precise definition makes use of statperm as well as out:

(a, x) ∈ dynperm(P,G) iff (c,¬z) ∈ out(G ∪ {(a,¬x)})
for some pair (c, z) ∈ statperm(P,G) with c consistent.

How far do these two concepts correspond to what we do in ordinary life?
Static permission seems to answer to the needs of the citizen, who needs to
anticipate the deontic status of his actions. He needs, first of all, to assure
himself that the action that he is entertaining is not forbidden, in other
words, that it is negatively permitted. But given the practical difficulties
of establishing a negative fact of this kind, which are multiplied by any
ambiguities or vagueness in the code of obligations, he would also be glad
to learn that his action is ‘covered’ by some explicit permission. Once the
action is performed, the same questions need to be asked by authorities if
they are called upon to assess it.

On the other hand, dynamic permission corresponds to the needs of the
legislator, who needs to anticipate the effect of changing an existing corpus
of norms by adding a prohibition. If prohibiting x in condition a would
commit us to forbidding something that has been positively permitted in a
certain realizable situation, then adding the prohibition would give rise to
a certain kind of incoherence.

It is important to be clear about the kind of coherence at issue here,
and not to confuse it with the internal coherence of out(G) taken alone.
We recall from Section 2 that G is called internally coherent iff there is no
pair (c, z), with c classically consistent and both (c, z), (c,¬z) ∈ out(G).
When dealing with dynamic permission, on the other hand, we need to
consider coherence between G and P . We say that G is cross-coherent
with P iff there is no pair (c, z), with c classically consistent and (c,¬z) ∈
out(G) while (c, z) ∈ statperm(P,G). The definition of dynperm may

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 399

thus be equivalently expressed as follows:7

(a, x) ∈ dynperm(P,G) iff G ∪ {(a,¬x)}
is not cross-coherent with P .

EXAMPLE. To illustrate the concepts of negative, static and dynamic
permission, we take the same example as in Section 1 and work it out
formally.

Let G = {(work, tax)} and P = {(18, vote)}, where work = John is
engaged in gainful employment, tax = John fills in an annual income-tax
form, 18 = John is at least 18 years old, votes = John votes in elections.
Put also male = John is male, drink = John drinks alcohol. Then we
have the following pattern, irrespective of the choice of our background
input/output operation outi for i ∈ {1, 2, 3, 4}.

Pair out(G) statperm(P,G) dynperm(P,G) negperm(P,G)

(work ∧ male, tax) yes yes yes yes

(work ∧ 18, vote) no yes yes yes

(work, vote) no no yes yes

(18, drink) no no no yes

(work ∧ male,¬tax) no no no no

Some explanations may help clarify the individual entries.

• (work ∧ male, tax) is in out(G) because (work, tax) is in G and out
satisfies SI.

• (work∧18, vote) is not in out(G). But it is in statperm(P,G) because
statperm(P,G) = out({(work, tax), (18, vote)}) and out satisfies SI,
which can be applied to the second element.

• On the other hand, (work, vote) is not in out({(work, tax), (18, vote)})
and so is not in statperm(P,G). It is however in dynperm(P,G),
because when we add its ‘opposite’ (work,¬vote) to G we enter into
conflict with the existing static permissions. To be precise, (work ∧
18,¬vote) ∈ out(G ∪ {(work,¬vote)} while as we have just seen
(work ∧ 18, vote) ∈ statperm(P,G).

• Next, (18, drink) is not in dynperm(P,G), because we can add its
‘opposite’ (18,¬drink) to G without conflict with the existing
static permissions. In other words, out({(work, tax), (18,¬drink)})
does not contain any pair conflicting with one in statperm(P,G) =
out({(work, tax), (18, vote)}). However (18, drink) is in negperm(G)

because (18,¬drink) /∈ out(G).

400 DAVID MAKINSON AND LEENDERT VAN DER TORRE

• Finally, (work ∧ male,¬tax) is not even in negperm(G) because, as
we have noted, (work ∧ male, tax) is in out(G).

This analysis is in full accord with the intuitive assessment of the exam-
ple made at the end of Section 1. We note that in this example we have
a chain of inclusions out(G) ⊆ statperm(P,G) ⊆ dynperm(P,G) ⊆
negperm(P,G), indeed with all inclusions proper.

In what follows we study the behaviour of static and dynamic permis-
sion in detail, comparing them to each other and to negative permission.
For instance, we show that the inclusions just noted for the above example
hold or ‘almost hold’, either in general or under suitable conditions. We
also show how static and dynamic permission contrast in many respects.
While, as we have remarked, the former resembles a diminished oblig-
ation, the latter is, for certain codes, a strengthened negative permission.
Sections 4 and 5 focus on the static operation and Section 6 on the dynamic
one.8

4. PROPERTIES OF STATIC POSITIVE PERMISSION

It is immediate from the definition of static permission that out(G) ⊆
statperm(P,G) no matter what the value of P . For out is monotone
in G and thus when (a, x) ∈ out(G) then (a, x) ∈ out(G ∪ {(c, z)}) for
any (c, z).

Its relations with negative permission are more complex. On the one
hand, simple examples show that neither statperm(P,G) nor negperm(G)

is always included in the other.9 However, we do have a connection. It is
immediate from the definitions that statperm(P,G) ⊆c negperm(G) iff G
is cross-coherent with P . Here cross-coherence is as defined in Section 3,
and the ‘almost inclusion’ ⊆c is as defined in Section 2.

Turning now to the properties of statperm itself, it is easy to verify that
since out(G) is a closure operation, statperm(P,G) is a closure operation
in its argument P . That is, P ⊆ statperm(P,G) = statperm(statperm
(P,G),G), and P ⊆ Q implies statperm(P,G) ⊆ statperm(Q,G).

Statperm also satisfies inclusion and monotony in its auxiliary argu-
ment G, i.e. G ⊆ statperm(P,G), and G ⊆ H implies statperm(P,G) ⊆
statperm(P,H). But it is not a closure operation in the argument G, since
it does not satisfy idempotence in that argument.10

Statperm is like out (and unlike negperm) in that it satisfies SI. In-
deed, it inherits this property directly from out. For suppose (a, x) ∈
statperm(P,G). Then (a, x) ∈ out(G ∪ Q) for some singleton or empty

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 401

Q ⊆ P , so using SI for out we have (a ∧ b, x) ∈ out(G ∪ Q) and thus
(a ∧ b, x) ∈ statperm(P,G).

This is an example of a very general pattern. Satisfaction of a Horn
rule passes not to the inverse rule (as it does for negperm), but to what we
may call the subverse rule. To be precise, consider again any Horn rule for
output, of the form:

(HR): (αi, ϕi) ∈ out(G)(i ≤ n) & θj ∈ Cn(γj)(j ≤ m)

⇒ (β,ψ) ∈ out(G).

We define its subverse to be the rule:

(HR)↓: (αi, ϕi) ∈ out(G)(i < n) & (αn, ϕn) ∈ statperm(P,G)

& θj ∈ Cn(γj)(j ≤ m) ⇒ (β,ψ) ∈ statperm(P,G).

In other words, the subverse rule is obtained by downgrading to permission
status one of the substantive premises and also the conclusion of the rule.
In the limiting case that there are no substantive premises, the conclusion
alone is downgraded. As before, when n ≥ 2 strictly speaking there are n

subverses, depending on which of the n substantive premises of the initial
rule is selected for downgrading.

OBSERVATION 2. Let out be any output operation. If out satisfies a rule
of the form (HR), then the corresponding statperm operation satisfies the
subverse(s) (HR)↓.

Proof. In the limiting case that P = ∅, statperm(P,G) = out(G) and
so the two rules are the same. For the principal case, suppose that statperm
fails the subverse rule for the values P,G. Then there is a (c, z) ∈ P with
(αn, ϕn) ∈ out(G ∪ {(c, z)}), while (αi, ϕi) ∈ out(G) ⊆ out(G ∪ {(c, z)})
for all i < n, and θj ∈ Cn(γj) for all j ≤ m, but (β,ψ) /∈ out(G∪{(c, z)}).
Hence out fails the initial rule for the value G′ = G ∪ {(c, z)}. ✷
In the case that n = m = 1, the observation tells us that if out satisfies the
rule:

(α, ϕ) ∈ out(G) & θ ∈ Cn(γ) ⇒ (β,ψ) ∈ out(G)

then statperm satisfies the rule:

(α, ϕ) ∈ statperm(P,G) & θ ∈ Cn(γ)

⇒ (β,ψ) ∈ statperm(P,G),

i.e. satisfies the same rule with statperm written in place of out. This covers
the case of SI mentioned above, as well as of WO. In the case that n = 0,

402 DAVID MAKINSON AND LEENDERT VAN DER TORRE

the observation implies that if out satisfies the rule TAUT, then so does
statperm.

On the other hand, it does not seem that there are any non-trivial Horn
rules with two or more substantive premises, i.e. in which n ≥ 2, satisfied
by both out and statperm. The reason is apparent from the example of the
rule AND, which fails for statperm. Suppose we have (a, x) ∈ out(G ∪
{(c, z)}) and (a, y) ∈ out(G∪ {(c′, z′)}) for some pairs (c, z), (c′, z′) ∈ P ,
so that (a, x ∧ y) ∈ out(G ∪ {(c, z), (c′, z′)}). It does not follow that there
is a single pair (d,w) ∈ P with (a, x ∧ y) ∈ out(G ∪ {(d,w)}). Similar
arguments show the same for OR and CT.

This feature raises an interesting issue. On the one hand, the failure of
AND corresponds to intuition: two actions may separately be permitted
under a common condition without being jointly so. On the other hand, the
failure of OR appears to be contrary to intuition, if we are working with an
underlying input/output operation out that is itself assumed to satisfy OR.
If x is permitted under condition a, and also under condition b, then why
not under condition a ∨ b?

For this reason, it may be preferable to strengthen the definition of
statperm in its principal case, to ensure satisfaction of OR. This can be
done by building into the definition of positive permission the same device
that is used when defining basic output – intersect maximal supersets.

Recall that the principal case of our definition of static positive permis-
sion was:

(a, x) ∈ statperm(P,G) iff (a, x) ∈ out(G ∪ {(c, z)})
for some pair (c, z) ∈ P .

If we want statperm to satisfy OR, we should reformulate this. We know
from (Makinson and van der Torre, 2000) or Appendix 1 of this paper
that input/output operations are well-defined for pairs (A, x) where A is
a set of propositions, as well as for pairs (a, x) where a is an individual
proposition. Put:

(a, x) ∈ statperm∨(P,G) iff for every complete set V

with a ∈ V there is some pair (c, z) ∈ P such that

(V , x) ∈ out(G ∪ (c, z)).

This operation satisfies OR. For suppose that (a∨b, x) /∈ statperm∨(P,G).
Then there is a complete set V with a ∨ b ∈ V such that for all pairs
(c, z) ∈ P we have (V , x) /∈ out(G ∪ (c, z)). But since V is complete,
either a ∈ V or b ∈ V , so either (a, x) /∈ statperm∨(P,G) or (b, x) /∈
statperm∨(P,G).

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 403

Thus we have two versions of the corresponding static positive permis-
sion operation, statperm failing OR and statperm∨ satisfying it. When the
underlying input/output operation itself satisfies OR, it may be preferable
to select the latter.

The failure of CT for statperm is more difficult to assess in intuitive
terms. We suggest that it may deserve to fail, because its introduction
can transform a code that would otherwise be cross-coherent (in the sense
defined at the end of Section 3) into one that is cross-incoherent. Consider
the example where P = {(a, x), (a ∧ x, y)} and G = {(a ∧ ¬x,¬y)}.
Intuitively, this code appears to be coherent, and with statperm defined
above, it is cross-coherent. But if we amplify the definition of statperm
to ensure satisfaction of CT, we get (a, y) ∈ statperm(P,G) and so by
SI, (a ∧ ¬x, y) ∈ statperm(P,G), which is cross-incoherent with (a ∧
¬x,¬y) ∈ out(G).

Admittedly, this is not a very conclusive argument against CT, and the
situation deserves further analysis. In general terms we can thus say that
the notion of statperm is not quite as single-valued as first appeared. As
well as our basic definition, one can consider a variant satisfying OR, and
may possibly wish to seek one satisfying CT.

5. AXIOMATIZING STATIC POSITIVE PERMISSION WITH THE

SUBVERSE RULES

Observation 2 suggests a question. Given an output operation characterized
by a set of Horn rules, do the subverses of those rules suffice to characterize
the corresponding operation of static permission, taking P and G as bases
for their application?

It will be convenient to follow the convention that in a tree serving as
a derivation, only the premises that we called substantive (Section 2) are
attached to nodes, while auxiliary premises θ ∈ Cn(γ) are attached to
transitions. Thus, for example, a derivation of (a, x ∨ y) from (a, x) and
x∨y ∈ Cn(x) by a single application of WO will have only one leaf node,
labelled by the substantive premise (a, x), and a root node, decorated by
(a, x ∨ y). The auxiliary premise x ∨ y ∈ Cn(x) of the rule will not be
attached to a second leaf but to the transition.

With this convention in mind, and given the definition of the subverse of
a Horn rule for output, the question above may be reformulated as follows.
Is it the case that whenever (a, x) ∈ out(G ∪ Q) where Q is a singleton
or empty subset of P , there is a derivation of (a, x) from G ∪ Q using
the derivation rules characterizing out, in which we label each node with
out(G) or perm(P,G) so that the following holds: (1) for every leaf, if it

404 DAVID MAKINSON AND LEENDERT VAN DER TORRE

carries a pair in Q\G then it is labelled statperm(P,G), (2) for every non-
leaf, if it has a parent labelled statperm(P,G) then it is also so labelled,
(3) no node has more than one parent labelled statperm(P,G)?

Clearly, when Q is empty, the three conditions are always satisfied.
But what when Q is a singleton? The answer is negative, at least in the
case of the output operation out3 and the rules TAUT, SI, WO, AND, CT
characterizing it (Makinson and van der Torre, 2000). For a counterexam-
ple, put P = {(a, x))} and G = {(a ∧ x, y)}. On the one hand we have
(a, x ∧ y) ∈ out3(G ∪ {(a, x)}), as witnessed by the following derivation:

(a, x) (a ∧ x, y) (a, x)

.................................... CT
(a, y)
.. AND

(a, x ∧ y)

On the other hand, if we try to effect a labelling of the above kind,
we run into a difficulty arising from the fact that (a, x) is used twice.
By condition (1), the two leaf nodes carrying (a, x) must both be labeled
statperm(P,G), so by (2) the node carrying (a, y) must get the same label,
so the node carrying (a, x ∧ y) violates condition (3).

To be sure, this does not show that there is no other derivation using
the same rules, of the same root from the same leaves, that does satisfy the
three conditions, but it appears most unlikely.

It is easy to see that a derivation of (a, x) from G ∪ {(c, z)}, where
(c, z) /∈ G, satisfies the three conditions iff at most one leaf node carries
the pair (c, z). Our question about characterization by subverse rules may
thus be put as follows. Under what conditions does a set of rules for an
input/output operation satisfy the non-repetition property, that whenever
(a, x) ∈ out(G ∪ {(c, z)}) then there is a derivation of (a, x) from G ∪
{(c, z)}, using those rules, such that (c, z) is attached to at most one leaf
node? The example above shows that the non-repetition property does not
always hold; the observation below shows that it very often does.

OBSERVATION 3. The non-repetition property holds for:

(a) out1 with its usual rules TAUT, SI, WO, AND,
(b) out2 with its usual rules, i.e. the above plus OR,
(c) out3 with the rules TAUT, SI, WO, CTA.

Here CTA is the rule (a, x) ∈ out(G) & (a ∧ x, y) ∈ out(G) ⇒
(a, x ∧ y) ∈ out(G). This is not the usual set of rules for out3, which
consists of TAUT, SI, AND,WO plus CT: (a, x) ∈ out(G) & (a ∧ x, y) ∈

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 405

out(G) ⇒ (a, y) ∈ out(G). The rule CTA in effect combines CT with
AND into a single rule. The observation does not appear to hold for out3

under its usual set of rules. In Appendix 2 we give proofs for out1, out2,
out3 (under the rules specified) and also a conjectured counterexample for
out4 (under the rules here used for out3 plus OR).

From Observation 3 we thus have:

COROLLARY 4. For each of the rule-sets mentioned in Observation 3,
the subverse set suffices to characterize the corresponding static permis-
sion operation.

6. PROPERTIES OF DYNAMIC POSITIVE PERMISSION

We recall from Section 3 the definition of dynamic positive permission:

(a, x) ∈ dynperm(P,G) iff (c,¬z) ∈ out(G ∪ {(a,¬x)})
for some pair (c, z) ∈ statperm(P,G) where c is consistent.

Immediately from the definition, statperm(P,G) ⊆c dynperm(P,G),
where the relation ⊆c of ‘almost inclusion’ is as defined in Section 2. Since
as already noted, out(G) ⊆ statperm(P,G) we thus also have out(G) ⊆c

dynperm(P,G).
The dynperm operation is monotone in its argument P . The verifica-

tion is immediate from the definition, using the monotony of out and the
monotony of statperm in its argument P , noted in Section 4. Dynperm
almost satisfies inclusion: we have P ⊆c dynperm(P,G) but not full in-
clusion. Idempotence in P fails.11 Thus, unlike statperm, it is not a closure
operation in its argument P .

It is also a very different operation in its interaction with classical con-
nectives. Whereas, as we have seen, statperm satisfies SI, dynperm (like
negperm) satisfies WI. For suppose (a, x) ∈ dynperm(P,G). Then (c,¬z)

∈ out(G∪{(a,¬x)}) for some pair (c, z) ∈ statperm(P,G) with c consis-
tent. But by SI for out, (a,¬x) ∈ out(a∨b,¬x) ⊆ out(G∪{(a∨b,¬x)})
so since out is a closure operation, (c,¬z) ∈ out(G ∪ {(a ∨ b,¬x)}) and
thus (a ∨ b, x) ∈ dynperm(P,G).

Thus in some respects, dynperm is surprisingly similar to negative per-
mission. Its definition can be reformulated in a way that brings this out.
Recall from Section 3 the definition of cross-coherence: we say that G is
cross-coherent with P iff there is no classically consistent proposition c

with both (c,¬z) ∈ out(G) and (c, z) ∈ statperm(P,G). Then, refining
an idea of (Makinson, 1999), we have the following characterization.

406 DAVID MAKINSON AND LEENDERT VAN DER TORRE

OBSERVATION 5. The following three conditions are equivalent:

(1) (a, x) ∈ dynperm(P,G).
(2) (G ∪ {(a,¬x)} is not cross-coherent with P .
(3) (a, x) ∈ negperm(H) for every H ⊇ G that is cross-coherent with P .

Proof. The equivalence of (1) and (2) is immediate from the definitions
and was noted in Section 3 (just before the example). To complete the
verification we check (1) ⇒ (3) and (3) ⇒ (2).

For (1) ⇒ (3), suppose (a, x) ∈ dynperm(P,G). Then there is a
pair (c, z) ∈ statperm(P,G) with c consistent and (c,¬z) ∈ out(G ∪
{(a,¬x)}). Let H ⊇ G be cross-coherent with P . Then (c,¬z) /∈ out(H),
so since out is a closure operation, (a,¬x) /∈ out(H), i.e. (a, x) ∈
negperm(H).

For (3) ⇒ (2), suppose (a, x) ∈ negperm(H) for every H ⊇ G that is
cross-coherent with P . Trivially (a,¬x) ∈ out(G∪ {(a,¬x)}) so (a, x) /∈
negperm(G ∪ {(a,¬x)}, so putting H = G ∪ {(a,¬x)} we have that H is
not cross-coherent with P . ✷
COROLLARY 6. Dynperm(P,G) ⊆ negperm(G) iff G is cross-coherent
with P .

Proof. For right to left: suppose G is cross-coherent with P . Apply
(1) ⇒ (3) of Observation 5, putting H = G.

For left to right: suppose G is not cross-coherent with P . Then by def-
inition, there is a (c, z) ∈ statperm(P,G) with c consistent and (c,¬z) ∈
out(G). But we have already noted at the beginning of this section that
statperm(P,G) ⊆c dynperm(P,G), so (c, z) ∈ dynperm(P,G) while
(c,¬z) ∈ out(G) tells us that (c, z) /∈ negperm(G) and we are done. ✷

Thus, in a cross-coherent code, dynamic permission is a strengthened
negative permission. Moreover, it behaves like negative permission as far
as Horn rules are concerned. We have the following:

OBSERVATION 7. Let out be any output operation. Every Horn rule of
the kind (HR)−1 satisfied by the corresponding negperm operation is also
satisfied by dynperm.

Proof. Consider any such rule, formulated for dynperm:

(αi, ϕi) ∈ out(G)(i < n) & (β,¬ψ) ∈ dynperm(P,G)

& θj ∈ Cn(γj)(j ≤ m) ⇒ (αn,¬ϕn) ∈ dynperm(P,G).

Suppose that the rule fails at the values P,G. We want to show that the
corresponding rule for negperm fails at suitable values.

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 407

Since (β,¬ψ)∈ dynperm(P,G), there is a pair (c, z)∈ statperm(P,G)

with c consistent and (c,¬z) ∈ out(G∪{(β,ψ)}). On the other hand, since
(αn,¬ϕn) /∈ dynperm(P,G), we have (c,¬z) /∈ out(G ∪ {(αn, ϕn)}).
Put H = G ∪ {(αn, ϕn)}. To show that the rule fails for negperm at the
value H , it suffices to show that (αn,¬ϕn) /∈ negperm(H)while (β,¬ψ) ∈
negperm(H). The former is immediate since (αn, ϕn) ∈ out(H) by the
definition of H . For the latter, suppose that (β,¬ψ) /∈ negperm(H). Then
(β,ψ) ∈ out(H) = out(G∪{(αn, ϕn)}) so since out is a closure operation,
(c,¬z) ∈ out(G ∪ {(αn, ϕn)}) giving us a contradiction. ✷
Thus dynperm has all the Horn properties of the form (HR)−1 that are pos-
sessed by negperm. At the same time it is a much more restricted operation,
as shown by Corollary 6 and the example at the end of Section 3. It differs
from negperm in certain formal properties in which G is allowed to vary;
in particular, it is monotonic in G whereas negperm is antitonic in G.

This has implications for the way in which the logic of conditional
permission is presented. The usual presentations leave unmentioned the
sets G,P of explicit obligations and permissions. It then becomes very
difficult to distinguish negative from dynamic permission on the basis of
the Horn rules that they satisfy. They agree on those in which G is held
fixed, and differ only on those in which G is allowed to vary, and if G

is not represented then the effects of its variation become invisible. An
adequate understanding of the different kinds of permission can only be
effected if the sets of explicit obligations and permissions are also made
explicit in the analysis.

Combining Observations 1 and 7 we immediately obtain the following:

OBSERVATION 8. Let out be any output operation. If out satisfies a rule
of the form (HR), then the corresponding dynperm operation satisfies the
inverse(s) (HR)−1.

Thus in particular, for any output operation the corresponding dynperm
operation satisfies the rules TRIV, WI, WO and the inverse of AND. If
out satisfies OR or CT then the dynperm satisfies their respective inverses,
written out in Section 2.

The results that we established in Section 5 on the characterization of
static positive permission using only subverse rules, carry over mutatis mu-
tandis to the problem of axiomatizing dynamic positive permission using
only inverse rules. In particular, the problem reduces to the same one of
the existence of a suitable labelling, and thus again to the presence of the
non-repetition property. Thus, by parallel arguments we obtain:

408 DAVID MAKINSON AND LEENDERT VAN DER TORRE

COROLLARY 9. For each of the rule-sets mentioned in Observation 3,
the inverse set suffices to characterize the corresponding dynamic permis-
sion operation.

7. SUMMARY AND CHARTS

We have shown how input/output operations provide a useful framework
for the formal analysis of different kinds of permission. They permit a
clear separation of the familiar notion of negative permission from the
more elusive one of positive permission. Moreover, they reveal that there
are at least two species of positive permission, static and dynamic. Static
positive permission guides the citizen in the deontic assessment of spe-
cific actions, and behaves like a weakened obligation. Dynamic positive
permission guides the legislator by describing the limits on what may be
prohibited without violating static permissions. It behaves like a strength-
ened negative permission in may respects, but differs in those in which the
set G of explicit obligations is allowed to vary.

The investigation also brings out the importance, when studying nor-
mative codes, of representing openly both the explicit obligations and the
explicit permissions. If this is not done, it becomes difficult to separate
negative from positive permission in any more than intuitive terms; im-
possible to articulate the difference between the two different kinds of
positive permission, static and dynamic; and equally impossible to describe
in formal terms the difference between dynamic and negative permission.

The conceptual relationships between these kinds of permission are
shown in Figure 1, as a tree of types and subtypes of permission. The for-

permission

--

negative positive

---------------- -------------------------

negperm [negperm∗] dynamic static

(WI) (SI)
---------------- -------------

dynperm [dynperm#] statperm [statperm∨]
(WI) (WI) (SI) (SI,OR)

Figure 1.

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 409

TABLE I

out(G) ⊆ statperm(P,G)

out(G) ⊆c dynperm(P,G)

out(G) ⊆c negperm(P,G) iff G is internally coherent

statperm(P,G) ⊆c dynperm(P,G)

statperm(P,G) ⊆c negperm(P,G) iff G is cross-coherent with P

dynperm(P,G) ⊆ negperm(P,G) iff G is cross-coherent with P

mally defined operations are in italics at the leaves; intuitive concepts are
in roman at the non-leaf nodes. Below each formal operation we recall its
satisfaction of the rules SI, WI, OR. The three operations between braces
were defined en passant without further study – statperm∨ at the end of
Section 4, negperm∗ in note 5, dynperm# in note 7.

In Table I we recall the inclusion relations (full, partial, conditional)
between the output operation and the three permission operations stud-
ied, which were noted section by section in the paper. The three impor-
tant inclusions are those of lines 1, 4, 6. The others follow from them
immediately, but we list them for memory.

ACKNOWLEDGEMENTS

An earlier version of this paper was presented at the conference DEON’02
held in Imperial College London 22–24 May 2002. The authors would like
to thank a referee of the DEON’02 conference for vigorous comments, and
a referee of the JPL for further suggestions. Jan Broersen, Andrew Jones
and Henry Prakken also made valuable remarks.

The work for the paper was carried out while the second author was
at the Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
The Netherlands.

APPENDIX 1: INPUT/OUTPUT OPERATIONS

We briefly recall the central concepts of the theory of input/output operations. We work in
a Boolean context, that is, a propositional language closed under the usual truth-functional
connectives. The central objects of attention are ordered pairs (a, x) of formulae, which we
read forwards. Intuitively, we think of each pair (a, x) as a rule, with body a representing

410 DAVID MAKINSON AND LEENDERT VAN DER TORRE

a possible input, and head x for a corresponding output. We call a set G of such pairs a
generating set. The letter G also serves as a reminder of the interpretation (among others)
of the pairs as conditional goals or obligations. When A is a set of formulae, we write G(A)

for its image under G, i.e. G(A) = {x : (a, x) ∈ G for some a ∈ A}.
The operation out(G,A) takes as argument a generating set G, and an input set A of

formulae, delivering as value an output set of formulae. We focus on four operations, which
we define explicitly by equations. In so far as the definitions make no appeal to derivations
or inductive processes, they may be thought of as semantic in a broad sense of the term.

• Simple-minded output: out1(G,A) = Cn(G(Cn(A))).
• Basic output: out2(G,A) = ⋂{Cn(G(V)) : A ⊆ V, V complete}.
• Reusable simple-minded output: out3(G,A) = ⋂{Cn(G(B)) : A ⊆ B = Cn(B) ⊇

G(B)}.
• Reusable basic output: out4(G,A)= ⋂{Cn(G(V)) : A⊆V ⊇G(V), V complete}.

Here, Cn is classical consequence. A complete set is one that is either maxiconsistent
or equal to the set of all formulae of the language. When A is a singleton {a}, we write
outi (G, a) for outi (G, {a}).

We have the inclusions out1(G,A) ⊆ {out2(G,A), out3(G,A)} ⊆ out4(G,A) ⊆
Cn(A ∪ m(G)), but not in general conversely. Here m(G) is the set of all materialisations
of elements of G, i.e. the set of all formulae b → y with (b, y) ∈ G. In none of these four
systems are inputs automatically outputs, that is, we do not in general have A ⊆ out(G,A).
Nor do the systems validate contraposition: we may have x ∈ out(G, a) without ¬a ∈
out(G,¬x).

For each of these four principal operations, we may also consider a throughput version
that also allows inputs to reappear as outputs. These are the operations out+

i
(G, A) =

outi (G
+, A), where G+ = G ∪ I and I is the set of all pairs (a, a) for formulae a.

It turns out that out+4 = Cn(A∪m(G)), thus collapsing into classical logic. Out+3 (G,A)

does not collapse in this way, but may be expressed more simply as
⋂{B : A ⊆ B =

Cn(B) ⊇ G(B)}.
These operations are distinct, with the exception that out+2 = out+4 . This identity may

be verified as follows. The left-in-right inclusion is immediate. To show the converse, sup-
pose x /∈ out+2 (G,A). Then there is a complete set V with A ⊆ V and x /∈ Cn(G+(V)).

To prove that x /∈ out+4 (G,A) we need only show that G+(V) ⊆ V . But V ⊆ G+(V) so
if the converse fails then G+(V) is classically inconsistent so that Cn(G+(V)) contains all
propositions of the language, contradicting x /∈ Cn(G+(V)).

We write out without a subscript to cover indifferently all these seven distinct in-
put/output operations. We move freely between the notations x ∈ out(G,A) and (A, x) ∈
out(G). The former is more useful when working directly with the above explicit defini-
tions of the various kinds of output; the latter is more convenient when considering their
characterizations using derivations, to which we now turn.

In derivations, we work with singleton inputs, defining derivability from an input set
A as derivability from the conjunction of finitely many elements of A. For any set of
derivation rules, we say that a pair (a, x) of formulae is derivable from G using those
rules, and write (a, x) ∈ deriv(G), iff (a, x) is in the least set that includes G and is closed
under the rules. The specific rules considered are:

TAUT (tautologies): From no premises to (t, t) for any tautology t

SI (strengthening the input): From (a, x) to (b, x) whenever a ∈ Cn(b)
AND (conjunction of output): From (a, x), (a, y) to (a, x ∧ y)

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 411

WO (weakening output): From (a, x) to (a, y) whenever y ∈ Cn(x)
OR (disjunction of input): From (a, x), (b, x) to (a ∨ b, x)

CT (cumulative transitivity): From (a, x), (a ∧ x, y) to (a, y).

Here again, we emphasize, Cn is classical consequence. The rule TAUT is merely a
technical one, to cover a limiting case. For when t is a tautology, the semantic definition
gives us t ∈ out(G, a) even when G is empty. To derive (a, t) from G it suffices to apply
TAUT and SI.

As shown in (Makinson and van der Torre, 2000), simple-minded output coincides
with derivability using TAUT, SI, AND, WO; basic output to those plus OR; simple-
minded reusable output to the first four plus CT; and reusable basic output to all six. In
other words, x ∈ out(G, a) iff (a, x) ∈ deriv(G), where the rules defining deriv are those
mentioned as corresponding to out. For the augmented throughput versions, authorising
inputs to reappear as outputs, add the zero-premise rule:

ID: From no premises to (a, a).

All of our systems of derivation admit the rules SI and WO, and so satisfy replacement of
input, and of output, by classically equivalent propositions. That is, if (a, x) ∈ deriv(G)

then (a′, x′) ∈ deriv(G) whenever Cn(a) = Cn(a′) and Cn(x) = Cn(x′). In derivations, it
is convenient to treat replacement of logically equivalent propositions as a ‘silent rule’ that
may be applied at any step without explicit justification.

APPENDIX 2: PROOF OF OBSERVATION 3

We prove that the non-repetition property holds for out1, out2, out3 (under the rules spec-
ified), and conjecture a counterexample for out4.

We need several lemmas. In each of them it is important to distinguish between a node
n : (a, x) of a derivation and the pair (a, x) that it carries, since distinct nodes may carry
the same pair. We also recall from Appendix 1 that in derivation systems for input/output
operations, replacement of classically equivalent propositions is treated as a ‘silent rule’
that may be used at any stage in a derivation without explicit mention. For example, in the
proof below of part (c) of Observation 3, when w ∈ Cn(z) we may replace z ∧ w by z in
the head of a pair (c, z ∧ w), getting (c, z). We use the sign ≈ for classical equivalence.

The first lemma is needed for the cases out1, out2. It tells us that in a derivation using
at most TAUT, SI, WO, AND, we can eliminate all the leaves carrying a given pair (a, x)
provided we disjoin ¬x with the head of each of its nodes.

LEMMA 3.1.1. Let D be any derivation using at most TAUT, SI, WO, AND with root
r: (b, y) and leaf-set L. Let n: (a, x) ∈ L. Then there is a derivation D′ with root r ′:
(b,¬x ∨ y), using the same rules, from a subset of the same leaves plus possibly a leaf
carrying (t, t), such that (a, x) does not decorate any leaf of D′.

Proof sketch. Straightforward induction on the derivation. ✷
The second lemma is also needed for the cases out1, out2. It tells us that a derivation using
at most TAUT, SI, WO, AND never diminishes the power of a body.

LEMMA 3.1.2. Let D be any derivation using at most TAUT, SI, WO, AND. Then the
body of the root classically implies the body of each leaf.

Proof sketch. Straightforward induction on the derivation. ✷

412 DAVID MAKINSON AND LEENDERT VAN DER TORRE

The next lemma is needed for the case out2. It is a ‘phasing lemma’ for OR.

LEMMA 3.2. Let D be any derivation using at most TAUT, SI, WO, AND, OR. Then
there is a derivation D′ of the same root from a subset of the same leaves, that applies OR
only at the end (i.e. no application of OR is followed by any application of the other rules).

Proof sketch. Straightforward induction on the derivation. Also follows immediately
from the more powerful phasing Theorem 19(b) of (Makinson and van der Torre, 2000). ✷
Our last three lemmas are needed for the case of out3. The first is another phasing lemma,
for the rule CTA. This is the rule authorizing passage from (a, x) and (a ∧ x, y) to
(a, x ∧ y). Conceptually, it is just CT and AND put together; proof-theoretically it behaves
quite differently.

LEMMA 3.3.1. Let D be any derivation using at most TAUT, SI, WO, CTA. Then there
is a derivation D′ of the same root from a subset of the same leaves, in which rules are
applied in the order TAUT, SI, CTA, WO.

Proof sketch. By induction on the derivation. In the induction step, note that the rule
CTA is under consideration, rather than the two rules CT and AND. We remark that this
lemma is closely related to Theorem 19(c) of (Makinson and van der Torre, 2000). ✷
The next lemma puts the rule CTA under the microscope. We distinguish between the
asymmetric premises by calling (a, x) the minor premise and (a∧x, y) the major premise.

LEMMA 3.3.2. Any succession of applications of CTA may be replaced by a succession in
which no major premise of an application of CTA is the conclusion of another application
of CTA.

Proof sketch. Suppose we have two applications of CTA violating the desired pattern:

(a, x) (a ∧ x, y) (a ∧ x ∧ y, z)

- CTA

(a ∧ x, y ∧ z)

- CTA
(a, x ∧ y ∧ z)

We may replace this by the permuted applications:

(a, x) (a ∧ x, y) (a ∧ x ∧ y, z)

- CTA

(a, x ∧ y)

- CTA
(a, x ∧ y ∧ z)

Finally, we need a lemma telling us that a derivation using at most TAUT, SI, AND, CTA
never diminishes the power of a head. The same is also true for OR, so we include it too
even though we do not need it for present purposes.

LEMMA 3.3.3. Let D be any derivation using at most TAUT, SI, AND, CTA, OR. Then
the head of the root classically implies the head of each leaf.

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 413

Proof sketch. Straightforward induction on the derivation. ✷
OBSERVATION 3. The non-repetition property holds for:

(a) out1 with its usual rules TAUT, SI, WO, AND,
(b) out2 with its usual rules, i.e. the above plus OR,
(c) out3 with the rules TAUT, SI, WO, CTA.

Proof of (a). Consider any derivation D using at most the rules TAUT, SI, WO, AND
with root r: (b, y) and leaf-set L. If no leaf of D carries (a, x) we are done. Suppose that
at least one leaf of D carries (a, x). By Lemma 3.1.1 there is a derivation D′ with root
r ′: (b,¬x ∨ y), using the same rules from a subset of the same leaves plus possibly a leaf
carrying (t, t), such that (a, x) does not decorate any leaf of D′. Now add (a, x) as a new
leaf to D′. By Lemma 3.1.2, since (a, x) figured as a leaf of D, a ∈ Cn(b). Hence in the
new derivation we may apply SI to get (b, x), and then apply AND, WO to this with r ′ to
get (b, y).

Proof of (b). The argument is essentially the same as for case (a), with suitable addi-
tions. In detail, consider any derivation D using at most the rules TAUT, SI, WO, AND,
OR, with root r: (b, y). By Lemma 3.2 we can phase it with all applications of OR at the
end. So we have a number of derivations Di without OR, with roots ri : (bi, y), such that
b ≈ ∨bi . The applications of OR may clearly be re-ordered so that we apply OR first to
the pairs (bj , y) such that (a, x) is carried by a leaf of Dj . By Lemma 3.1.1 each such Dj

can be replaced by a derivation D′
j of (bj ,¬x ∨ y), using the same rules, from a subset

of the same leaves plus possibly a leaf carrying (t, t), such that (a, x) does not appear as
a leaf of Dj . Apply OR to the roots of those derivations alone, getting r ′: (∨bj ,¬x ∨ y).
Now add (a, x) as a leaf. By Lemma 3.1.2, since (a, x) figured as a leaf of Dj , we have
a ∈ Cn(bj), so a ∈ Cn(∨bj). Hence in the new derivation we may apply SI to the new
leaf (a, x) to get (∨bj , x), and then apply AND and WO to this with r ′ to get (∨bj , y).
Then apply OR to this with the roots of the remaining Di in which (a, x) did not occur as
a leaf, and we are done.

Proof of (c). Consider any derivation D using at most the rules TAUT, SI, WO, CTA
with root r: (b, y). By Lemmas 3.3.1 and 3.3.2 we can phase it with rules applied in the
order TAUT, SI, CTA, WO, and with the major premise of an application of CTA never
serving as the conclusion of another application of CTA. By Observation 3(a), already
established above, we may also assume that for each node whose subtree does not involve
CTA, that subtree contains at most one leaf carrying the pair (a, x). Call this derivation D′.

Suppose that in D′ the pair (a, x) decorates at least two distinct leaves. We show that
we can eliminate one of them. Let n be a first node of the derivation whose subtree has that
property (if there is more than one such first n, choose any one of them). Clearly, n must
be the conclusion of an application of CTA. We thus have the step:

p: (c, z) q: (c ∧ z,w)

... CTA

n: (c, z ∧ w)

where (1) the subtree determined by p uses at most TAUT, SI, CTA and contains a leaf
carrying (a, x), and (2) the subtree determined by q uses at most TAUT, SI and also
contains a leaf carrying (a, x). Applying Lemma 3.3.3 to (1) gives us x ∈ Cn(z). From
(2) it follows that the subtree determined by q has (a, x) as its sole leaf and uses only SI,

414 DAVID MAKINSON AND LEENDERT VAN DER TORRE

so that x ≈ w. Since x ∈ Cn(z) we thus have z ≈ z ∧ w. Hence we may delete from the
tree the node n and the subtree determined by q, and we are done. ✷
This completes the proof of Observation 3. It seems that the result cannot be extended to
out4 (under the rules TAUT, SI, WO, CTA, OR). Consider the derivation of ((a ∧ (¬x ∨
b)) ∨ (b ∧ (¬y ∨ a)), x ∧ y) from (a, x), (b, y) below:

(a, x) (b, y) (b, y) (a, x)

SI SI SI SI

(a ∧ (¬x ∨ b), x) (a ∧ x ∧ b, y) (b ∧ (¬y ∨ a), y) (b ∧ y ∧ a, x)

- CTA --- CTA

(a ∧ (¬x ∨ b), x ∧ y) (b ∧ (¬y ∨ a), x ∧ y)
- OR

(a ∧ (¬x ∨ b)) ∨ (b ∧ (¬y ∨ a)), x ∧ y)

In this derivation, each premise is used twice. It is easy to show that there is no deriva-
tion in which no premise is used more than once. We conjecture, more strongly, that there
is no derivation in which premise (a, x), say, is used only once, no matter how many times
the other premise is used.

NOTES

1 In the logical literature, the distinction between positive and negative permission seems
first to have been made by (von Wright, 1959) and in more detail in (von Wright, 1963).
For a critical discussion, see (Alchourrón and Bulygin, 1984).

2 As we do not consider the imposition of consistency constraints on the operations, no
familiarity is needed with (Makinson and van der Torre, 2001).

3 Thus when x is negatively permitted with respect to a, this does not mean that a is a
sufficient condition for x to be permitted. It means that a is not a sufficient condition for x
to be prohibited. This point was made forcefully by (Alchourrón, 1993, Section 3.4.1.1).
He attributes it to Hector-Neri Castañeda, but without giving a specific reference, and the
authors have not been able to locate a source in Castañeda’s publications. As Alchourrón
puts the point, the negation of a conditional is not in general a conditional, and in particular
the negation of a conditional obligation is not a conditional permission, whether positive
or negative. For this reason, he regards the very term ‘negative conditional permission’ as
misleading, and recommends its abandonment. We sympathize with this recommendation,
but have not followed it, partly because the term is so well established and partly because
it is difficult to devise a less misleading one to replace it.

4 One may imagine strengthened forms of negative permission that satisfy SI, so that the
body may be regarded as a sufficient condition for the head. For example, as suggested to
the authors by Jan Broersen, one may put (a, x) ∈ negperm∗(G) iff there is no consistent b
with a ∈ Cn(b) such that (b,¬x) ∈ out(G), i.e. iff (b, x) ∈ negperm(G) for every
consistent b with a ∈ Cn(b). Evidently, this operation satisfies SI for consistent bodies.
We do not study it in this paper. It should not be confused with the operation of dynperm,
which we define in Section 3 and relate to negperm in Section 6. In particular, dynperm
satisfies WI rather than SI.

PERMISSION FROM AN INPUT/OUTPUT PERSPECTIVE 415

5 The empty set would not suffice, since all the rules in (HR)−1 have a permission-
premise. In the case that G is internally coherent in the sense defined early in Section 2,
then as already noted we have out(G) ⊆c negperm(G), so that out(G) might be suggested
as a suitable basis. However, it is easy to see that in general this does not suffice. Take the
case that G = ∅ and out is any outi for i ∈ {1, 2, 3, 4}. Then out(G) is the set of all pairs
(a, t), where t is a tautology, while negperm(G) is the larger set of all pairs (a, x) with
x �= f , where f is any contradiction. Application of the rules TRIV, WI, WO, AND does
not lead us out of the former set, and so does not take us to the latter one.

6 We do not consider here the contractions or revisions that one might wish to make to
the code when A is inconsistent with some z ∈ Z. This is a separate matter, and forms part
of the logic of normative change.

7 This way of expressing the definition suggests a further concept of proper dynamic
permission. We may wish to require that the addition of (a,¬x) to G not only leaves
us with a cross-incoherent system, but also creates the cross-incoherence. One way of
attempting to express this formally would be to say: (a, x) ∈ dynperm#(P,G) iff (as
before) G ∪ {(a,¬x)} is not cross-coherent with P and (in addition) G is cross-coherent
with P . This notion is certainly of interest, but given the space limitations of this paper,
we do not study its properties here. Our methodology is: study the simple components first
and their compounds afterwards.

8 We have chosen the names static and dynamic permission because in the case of dy-
namic permission we are considering what would happen if we were to change the current
code by adding a certain prohibition, whereas in the case of static permission we consider
the current code alone. From a purely formal point of view, one could speak of forward
versus backward permission; from a social point of view one could contrast citizens’ with
legislators’ permission.

9 For a counterexample in one direction, put G = ∅ and P = {(a, x)}, where a, x, y

are distinct elementary letters. Then (a, y) ∈ negperm(G) since (a,¬y) /∈ out(G), but
(a, y) /∈ statperm(P,G) = out({(a, x)}). For a counterexample in the other direction, put
G= {(a, x)} and P ={(a,¬x)}. Then (a,¬x) ∈ statperm(P,G)= out({(a, x), (a,¬x)}),
but (a,¬x) /∈ negperm(G) since (a, x) ∈ out(G).

10 In other words, the inclusion statperm(P, statperm(P,G)) ⊆ statperm(P,G) can fail.
Witness the example G = ∅, P = {(a, x), (a,¬x)}, so that (a, f) /∈ statperm(P,G) =
out({(a, x)})∪out({(a,¬x)}) while (a, f) ∈ statperm(P, statperm(P,G)) = out({(a, x),
(a,¬x)}).

11 For a counterexample to idempotence of dynperm, put G = {(a, x)} and P = {(b, y)}.
Then (a, x∧y) is in dynperm(dynperm(P,G),G) but not in dynperm(P,G). To check the
former, note that since (b, y) ∈ P , we have (a ∧ b, y) ∈ statperm(P,G), so that (a, y) ∈
dynperm(P,G) ⊆ statperm(dynperm(P,G),G), so finally using the presence of (a, x) in
G, (a, x ∧ y) ∈ dynperm(dynperm(P,G),G). But although (a, y) ∈ dynperm(P,G), we
have (a, y) /∈ statperm(P,G) and (a, x∧y) /∈ dynperm(P,G). We note that idempotence
would hold if the definition of dynperm were narrowed to replace statperm(P,G) in it
by P ; but this would not accord well with the intuitive motivation given in Section 3.

REFERENCES

Alchourrón, C. E. (1993): Philosophical foundations of deontic logic and the logic of de-
feasible conditionals, in J. J.Meyer and R. J. Wieringa (eds), Deontic Logic in Computer
Science: Normative System Specification, Wiley, New York.

416 DAVID MAKINSON AND LEENDERT VAN DER TORRE

Alchourrón, C. E. and Bulygin, E. (1984): Permission and permissive norms, in W. Kraw-
ietz et al. (eds), Theorie der Normen, Duncker & Humblot, Berlin.

Makinson, D. (1999): On a fundamental problem of deontic logic, in P. McNamara and
H. Prakken (eds), Norms, Logics and Information Systems. New Studies in Deontic Logic
and Computer Science, Frontiers Artif. Intell. Appl. 49, IOS Press, Amsterdam, pp. 29–
53.

Makinson, D. and van der Torre, L. (2000): Input/output logics, J. Philos. Logic 29, 383–
408.

Makinson, D. and van der Torre, L. (2001): Constraints for input/output logics, J. Philos.
Logic 30, 155–185.

Makinson, D. and van der Torre, L. (2003): What is input/output logic?, in Founda-
tions of the Formal Sciences II: Applications of Mathematical Logic in Philosophy
and Linguistics, Trends in Logic Series 17, Kluwer Academic Publishers, Dordrecht,
pp. 163–174.

Von Wright, G. (1959): On the logic of negation, Soc. Scient. Fennica Com. Physico-Math.
XXII, 4.

Von Wright, G. (1963): Norm and Action, Routledge, London.

DAVID MAKINSON

Department of Computer Science
King’s College London
Strand Campus, London WC 2R 2LS,
United Kingdom
E-mail: makinson@dcs.kcl.ac.uk

LEENDERT VAN DER TORRE

CWI, Kruislaan 413
PO Box 94079
1090 GB Amsterdam,
The Netherlands
E-mail: torre@cwi.nl

