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ABSTRACT: This article describes a formal
semantics for the deontic concepts -- the
concepts of permission and obligation — which
arises naturally from the representations used in
artificial intelligence systems Instead of treating
deontic logic as a branch of modal logic, with
the standard possible worlds semantics, we first
develop a language for describing actions, and
we define the concepts of permission and
obligation in terms of these action descriptions.
Using our semantic definitions, we then derive a
number of intuitively plausible inferences, and we
show generally that the paradoxes which are so
frequently associated with deontic logic do not
arise in our system*

I INTRODUCTION

The representation of deontic concepts — the
concepts of permission and obligation -- has not yet
been seriously addressed in the artificial intelligence
literature, but there are numerous application areas in which
these concepts seem to be required. In our work on the
TAXMAN Project [1] [2], for example, we represent the
characteristics of various kinds of stocks and bonds by
describing the rules of permission and obligation which are
binding, at any given time, on the corporation and its
securityholders In our work on the T"usufructuary"
provisions of the Louisiana Civil Code [3], just recently
initiated, we have encountered a similar need for the
representation of complex permissions and obligations Nor
are these examples confined to legal domains In the
classical work on single agent planning systems, e.g., [4],
the operators which change the state of the world can be
interpreted as a set of "permitted" actions, but in a more
realistic planning environment, with multiple agents, we
would expect to see "obligatory" actions as well, and we
would expect to see the actions of one agent produce
modifications in the rules of permission and obligation
binding upon another agent. Similar observations apply to
the field of computer security, see, e.g., [5], where there
has been extensive debate over the appropriate
"authorization mechanisms" for a community of computer
users. For all of these purposes, a formalization of the
concepts of permission and obligation appears to be
essential

Outside of the field of artificial intelligence, there exists
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an extensive literature on the deontic concepts, by logicians

[6] [7], philosophers [8] [9], and lawyers [10] [11]
[12], but the attempts to formalize these concepts have
generally led to paradox Since the 1950s, deontic logic
has been treated as a branch of modal logic, with the
necessity' operator replaced by the obligation" operator,
O. and the ‘"possibility" operator replaced by the
"permission" operator, P Many of the theorems of modal
logic turn out to be intuitively correct under this translation
For example, the dual relationship between necessity and
possibility becomes a dual relationship between obligation
and permission, Op = ~P~p. and this formula certainly
seems plausible If it is false that you are permitted to do
not-p, then you are obligated to do p. and vice versa The
formula Op > p. which is valid in any modal system with a
reflexive accessibility relation between possible worlds,
would not be plausible in a deontic logic, since people in
the actual world do not always abide by their obligations,
but it can be replaced by the more plausible formula Op =>
Pp, which is valid as long as every possible world has
some possible world accessible from it This point was
first noted by Kripke, in one of his original papers on
possible worlds semantics [13].

Despite these positive results, there are several other
modal formulae which seem counterintuitive in a deontic
logic, and which cannot be so easily modified. For
example, the formula for disjunctive permission, Pp D Pip v
q), contradicts our ordinary understanding of what it means
to grant permission to do p v q, but this formula is valid
even in the weakest modal systems Likewise, any formula
containing an iterated operator, such as OPp or POp, seems
anomalous in a deontic context, and yet the various modal
systems are distinguished precisely by the way in which
they handle these iterated modalities. Of course, it may
make sense to say that you are permitted to impose a
particular obligation upon someone else, or upon yourself,
and we might conceivably write this as POp, but the
inferences we would make about such statements do not
correspond at all to the inferences which are valid in the
standard possible world semantics. Finally, even the dual
relationship between permission and obligation seems
problematical if we cast it into the form Pp = ~0~p If it
is false that you are obligated to do not-p, ie, if it is
false that you are forbidden to do p, does it follow that p
is permitted ? Stringing together all of these questionable
inferences, it is not surprising that we can generate a host
of "deontic paradoxes," and the literature is full of them
For a survey, see [14] and [15]

In this paper, we will develop a formal semantics for
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permissions and obligations which seems to avoid these
difficulties, and we will do so in a way which is entirely
natural for an artificial intelligence system Instead of
representing the deontic concepts as operators applied to
propositions, as in a standard modal logic, we will
represent them as dyadic forms which take condition
descriptions and action descriptions as their arguments
The most important part of this representation is the use
of action descriptions in the place of propositions Instead
of granting permissions and imposing obligations on the
state of the world itself, we will grant permissions and
impose obligations on the actions which change the state of
the world This is an approach long advocated by
Castaneda [15], and pursued in various forms by von
Wright [16] [14]. but to carry out this approach in full it
seems necessary to establish a connection between the
abstract description of an action and the concrete changes
that occur in the world when the action takes place This
has been a major concern of artificial intelligence research
throughout its history [17] [18] [19], of course, and we
will  draw upon this earlier work in constructing our
formalisms  Although the actions that we actually discuss in
this paper are fairly simple ones, intended to highlight the
principal features of the deontic representation, the action
descriptions themselves can be extended to more realistic
situations, in several ways We will return to this point in
our concluding remarks

I DEONTIC SEMANTICS

In this section we develop a formal semantic
interpretation of the deontic concepts, using a variant of
the possible worlds approach Our strategy proceeds in
stages We start with an ordinary first-order language L
and a set of states S. and we use these materials to
construct a new language La in which we are able to
describe actions The formulae of L; are evaluated with
respect to the states in S. as usual, but the formulae of La
are evaluated with respect to sequences of states, or
worlds. We thus have a way of saying that an action is
"true' in, or is satisfied" by, a particular world The details
of these constructions are presented in Sections IIA and
LB below. Now consider a state r which is situated at the
junction between a "past world v and a "future" world w

We assume that there exists a set P which tells us, for
r

each past world v, all the future worlds w which are
"permitted." Working exclusively with this permitted set P,
we construct three expressions which tell us whether an
action at r is permitted, forbidden, or obligatory,
respectively These expressions then become part of our
deontic language Lp The details of these constructions are
presented in Section IIC below This is not the end of the
story, however. Since each deontic expression has a
definite truth value at each state in S, it turns out that the
language Lp can be embedded within our original first-
order language L , and thus the process of linguistic
construction we have outlined here becomes fully recursive
This technique enables us to represent "dynamic"
permissions and obligations, ie., permissions and obligations
which change over time, without the wuse of iterated

modalities  This latter point is developed in Section II.D

The principal technical difficulty in this development
rises in connection with the definition of "satisfaction" for

the language La Our initial approach is similar in spirit to
the approach of Harel [20] and Rosenschein [21]: We
define a primitive action to be a relation between two
states, and we define the meaning of the more complex
formulae of La by a set of recursive truth definitions on
arbitrary sequences of states But the ordinary notion of
satisfaction in L; which takes into account the complete
state of the world at a given time, is too imprecise for our
purposes here, and we will supplement it with a notion of

strict satisfaction, which associates with each action in La
A

the specific set of changes in the world attributable to that
action It turns out that this notion of strict satisfaction is
absolutely essential to the construction of the deontic
language Lp Without it, our definition of a rule of
permission simply would not work We will return to this
point in Section IIIB
A. State Descriptions

Let Ly be a many-sorted function-free first-order
language with equality, and let S be a set of states with
respect to which the formulae of L; are evaluated We
will  follow the standard procedures for specifying the
syntax and the semantics of a first-order language Thus, if
(Own x y) is a formula of L; with free variables x and vy,
and if o is an assignment of the variables x and y to
elements in the domain of interpretation of L; and if
Own(s) is the set of tuples defining the extension of the
predicate Own for s € S, then we will say that (Own x vy)
is true m s wunder the assignment o" if and only if
<o(x),o(y)> E Own(s) We will write this in general as 0,& =
(Own x y), but if the assignment o is fixed and clear from
the context, we will often omit it from the notation and
write s = (Own x ) Truth conditions for the nonatomic
formulae of L will also be defined in the standard way If
there are constraints in our domain of interpretation,
expressible as a finite set of formulae in L; we will simply
assume that S has been restricted in advance to include
only those states in which the constraints are conjunctively
satisfied To avoid any mathematical complexities, however,
and to reveal the points of greatest importance to the
representational problems of artificial intelligence, we will
also assume, whenever it is convenient to do so, that the
relevant sets are finite Thus we may assume that the
predicate  symbols are finite, that the domain of
interpretation is finite, and so on We will attempt to
remove these restrictions at a later date

We plan to use the states in § to represent the world
at differant points in time, as i a standsrd temporal logic.
but with one important modification Normally, sach s € §
15 assumed to provide us with a complete specification of
the state of the world at a particular tima, but we wish to
work primarily with partia/ specificatons of the state of
the world Our approach is similar to the approach of
Harwise and Perry [22]. Since we can think of the
complate spacification of 2 state 3 @ S as a coliection of

sets, one set for each predicate in L . it is natural to think
of a partial specification of 8 as a collaction of subsets,

one subset for each predicate and cne subset for the
complement of each predicate in L,  Specifically. for
5 E S let s be an orderad coliection of sets
<, P% .. .. P, P>
_ 1 1 n n
satisfying the requirement that

P (s} € P (s) and Plis) 0 P (8) = D



for all predicates Pk n L1. Under thase conditions, we will
say that s 1s a substate of s and we will denote the set of
all such substates by 3lal It 15 important to note that these
dafinitons depend explicitly on s Within each Sisl. there
exists B natural partial order, gwen by set inclusion, and an
additive binary operation, given by set union, but this will
not be the case n general for arbitrary substates
Specifically. for any 5 and v in Sisl. we define

s<t == for all k, P (s) & P {1 and P{is) & P,
and for some .,

aither Pkls! c Pkm or Pfls] c me.
Also, for any s and t in Sigl we define s+t 1o be the
ordered coliection of sl sets of the form Pkisr u P i and
P sl u P*:rl so that s+f 15 jtself a member of 5{5# We
now extend these jdeas from- states and substates. 1o
wor/ds and subworids. We define a world w to be a
tmear seguence of states {s {s € 5], and we denote the
set of all such worlds by W. Gwen any w € W. wa define
a subworld w to be a linear seguehce of substates
{s |s € S(s! for all s n w}. and we dencte the set of all
such' subworlds by Wlw] It 15 convenent to index these
worlgs and subworids as follows.

<. . .8, 5.8 .>
B, 8 , 6, 5.8,

and to oefine a shift operator T" which takes w = {s}
mto Tw = {s 3} We can then extend the partial order
“<" and the blnary operaton "+ to subworlds in the
cbvious way, compohent by component with  the
nonexistent substates in 2 subworld Interpreted as existing.
but null. substates Finally, we define an operatioh of
sequantial composition in Wiwl if w_ € Wiw) is 8 subworld
ending In s, and if w, € WIT "w} is a subworld bagmnning

. X — n
with 5o than we sat wow, = w, + T w,

We are primarily interested in these substates and
subworlds because they can be used to specify the precise
content of an action in particular, the concept of a
subworid 18 the technical device which we will use 1o
tocus on a small set of changes in the world, and to
designate these changes as the "meaning” of an action
description. wihile ignoring everything slse that is occurring
lor not occurring) 1 the same world at the same time.  We
will thus be making extensive use of the subworld concept
in the remainder of thic paper. The concept of a substate
will be used onty briefly, to define the meaning of the
primitive actions, and for this we need only work with the
atomic formulae in L. There are two main issues which
need to be addressed for both subststes and subworlds,
however. and these issues are simplar for substates:

1.} Satisfaction. What does it mean to say that a
formula 4 of L is true in a substate s € Sis7 It is

converient to adopt the following manatanicity condition:
kA e (Vii[2 € Sig) A 125 == t=A)

to insure that the truth value of A cannot change as we
move along the partial order to a more "complete” substate
in 518l However, if A is an atomic formula in L. or if A
1s the negation of an atomic formuls in L., we can use the
same truth dafinition hare that we used to define truth in 8
compiete state s € S For example, define

0.8 [Dwn x y) =+ <gixioiyl> € Ownis)
and define:

0, 5m~0wWn x y} %= <glxiolyl> & Own®(s)
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and it is then clear from our construction of Siz) that the
monotonicity  conditich  holds. If A is nonatomic, the
intuitionistic truth definitions due to Kripke [23] will give
us the results we want For example, the existental
quantifier can be definad in the usual way in each substate,
angd the monotonicity condition will stil hold  but the
universal quantifiar in a substate s must be defined for all
{ & Sis} such that r>5 These definitions suggest a mode!-
theoretic versicn of some of the recent results in non~
meonotonic fogic [24] [25] [2B]. but we will not pursue
this analysis in the present paper It is sufficient for owr
present purposas 1o confine our attention to the atomic
formulae in L1

2.} Strict Satisfaction. It s possible, indesd quits
probable, for a substate s € Sis) to satisfy a formula 4 of
L, and stil contain a great deal of ‘irrelevant” detail To
avpid this situation, we need to develop the notion of strict
satisfaction, which we write as s 4 The intuitive idea
here is that a substate strict/y satisfies a formula 4 if it
contains those tuples necessary for the truth of A but no
more For an atomic formula A the substate which strictly
satisfies 4 is simple it consists of a singie nonsmpty sgt
containing a single tuple. For saxample, the formula
Dwn x vyl is strictly satisfied by the substate s for which
Ownist = {<olxiolyi>}, and the formaula -~l0wn x y) is
strictly satisfied by the substate s’ for which Own®is’) =
{<gixlalyl>}. Note. however, that s and s’ cannst hoth be
members of the same set Sigl The nonatomic formulae can
be handled in the same intuitive way. 1f 4 is a conjunction
of two atomic formulae. then o.sFOA if and only if s
contains the tuples satisfying both of the conjuncts. but no
more;, and if A is a disjunction of two atomic formulae,
then o5& A if and only if s contains a tuple satisfying one

o .

of the disjuncts, but no more. Negaticn cannot be defined
n this way, but we can always transform a formula of L
50 that ali negations have atomic scope. At any rate, the
notion of strict satisfaction will be used primarily within the
context of our language of actions, L,. in which, as we
shall see, there are no general negation opserators. Thus,
once again. 1t is sufficient for our present purposes to
confine our attention to the atomic formulse in L.

B. Action Descriptions

Lat us now extend the concepts of satisfaction and
strict satisfaction to the langusge of actons: L,. We bagin
by constructing a set of primitive actions, and defining the
truth conditions for these actions on a subworld consisting

of only two substatess w = <s> Dur primitive actions
are thus elementary statechanges. a familiar construct in
arnficial inteligence. It is convenient to work with the
following set of actions:

1.1 Af{irmstive Statechsnges. Let 4 and 8 be atomic
formulae " L, and let £ be a ipossibly smpty) conjunction
of equality and inequality constraints on the varisbles
appearing in A and 5 Suppose wa can show that ¢.8 &
(ArBAE) for all ¢ and for all s € S Wa will say in this
case that A and £ are incompatibie in 5, given the
constraints in £ A fact of this sort would generally be
astablished, not by an inspection of S, but by a desduction
from the axiomatic constrsints we heve imposed on our
domain. For example, if our language L, contains the
predicate Own, we might naturally lmpose tha constraint
that a single property can be owned by only one actor:
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W KX KV [Own x, ¥ A Dwn x, y) 2 ix, = X,
in which case we could take 4 = (Owr X, ¥yl and 8 =
Own x_, y as atomic formulae which are mncompatible
given the constramnt E = |x £ x5 Under these conditions
we can construct an expression (4|8 to describe the
action In which we "change tha world irom a situation n
which 4 s true to a situation in which 8 s true”

Definition 1 Let A4 and 8 be atomic formulae
which are incompatibie m S, given tha constraints
in E, and et 5 and t be substates of some
states 5 and t m S Then I4] 8}, is true on <st>
undger the assignment o if and only if es & A4
and ot » 8 and o = £

We will write this n general as g.<5.[> F |A|B}E, as long as
i is understood that the symbol " n this  context
designates the satisfaction of an action description by a
particular wor/d, rather than the sausfacvon of a first-
order formula by a particular state  Obwously, if A4 =
Owr x vl and 8 = [Own x, y), then the expression mlBJE
descripes a “transfer of the property y from x to X,
The definition of strict satisfaction n this  situaton s
straightforward We simply replace the symbol “E" by the
symbol "F_" in the previous defintion. Thus, In our exampie,
the action (4|8). would be strictly satisfied by the deletion
of an ownership tuple from the first state, and the addition
of an ownership tuple to the second state. and this 15
precisely the rasult we want

2. Creative end Destructive Statechanges. These are
speciat cases of the previous actions. where we take either
4 =~8 or B =~A For example, f A = {love x y) and &
= {Hate x yl. then (A|~A) represents the destruction of
love, {(~8{8) represents the creauon of hate, and we meke
no clwms at at! about the compatibility or the incompatibility
of these two actions.

3.) /dentities. Hare. we construct the expression {4| Al
and define it to be true on <si> if and only if s=A4 and
=4 A usefuyl special case is the expression (4), which is
dafined to be true on <ss5> if and only if s,4 Note that
this is the only action which can be reflexively true on a
single state. A simiar device is used extensively by Harel
“E‘Zggggéc rapresent the conditional test in a programrung

Wwe now specify the meaning of the compound actions
n L,. begnning with the definition of disjuncrion. parallel
composition and seguential compositich We nesd 10
provide a separate recursive definition for “=' and "!=°" "
each case

Definition 2. Lst « and § be actiohs in L‘. and
let ¢ be an assignment of the free varigbles in «
and § 1o elaments in the domain Of interpretation
of L‘. Then. for all w € W, and for all
w € Wiw), the truth conditions for the actions
avp, aafl, and o;f are given as follows

Disjunction:

awk oV = owea Or o wWFf
o.wtoavﬂ - o,muu or o,m-oﬂ
Paraiiel Composition:

oWk ahfl == gwka and o wkp

o.wkuura\ﬁ -

for some w. and w, in Wiwi,

w=w +w_ and ow F o and ow_F _f
1 1 e 2 o

2
Sequential Composition:

o.wWE o =+ gwkx and o T weg
- L ]
n,mou.ﬂ

for some w € Wiw) and w_ & WiT "w),

w=w w_ and ow * &« and ow_k g -
1 1T o 20

2
Although we are using the famihar logical symbols "v" and
"A" here, the meanmg of these connectives n L_ s slightly
differant from therr meaning In L, When we perform the
action ovf. we are either parforming the action c«, or we
are performing the action 8. but we are nor performing the
actions « and § together, because of our defimtion of
strict satisfaction This interpretation has consequenctes for
our analysis of disjunctive permissions. as we will see n
Section B baelow. The notion of a conyunction of actions
m L, 15 ambiguous. and we have distinguished here only
two simple cases a strnictly paratie” comjunction, and a
strictly "sequential” comunction  In a more reahstic language
of actions, we would attempt to include some more
compiex methods of composition, using overlapping time
ntervals and uncertam endpoints [27]. but the presant
language 15 compiex enough to reveal the principal features
of the deontic concepts

We now define three aoditional operations on the
actions in L, predicate rastriction. which restricts one of
the sorts in the action «ix) to a pradicate A; and existential
and universal quantification, which are lkewise restricted to
the individuals satisfymg a predicate R We will omit the
defintion of “®° when it 5 dentical to the defintion of
E

Definition 3: Let xix] be an actign in L, which
containg the free wvariable x, and let R be a
unary predcate l.1 Let ¢ be an assignment
of the free variables 1n a to eiements in the
domain of ntarpretation of L. and let olx/ti be
the assignment which (s identical to o except

that it assigns the varnable x to the mdwidual o

Then, for all w € W, ang for all w £ Wiwl the

truth conditions for the actions L) (1:Rxiaein)

and {¥-Axlix} are given as follows

Predicate Restriction:

oweE g_ (x| * owF gix) and o8 FIR X
o A o 0

Existential Quantification:

o,uﬂlola:ﬁxlatxl -
tor some wu, nlem,sni'{ﬁ x and alxa’u!.w#na(xl

Universal Quantification:

a,wE (Y-Rxkx{x) =
for every v such that olx/u).8 =R x).
olx/u), wealx)

o.molv;ﬂ'x)alxl -
for every u] such that alxa’ujl,snl-lﬂ X),
there exists 8 w in Wiwi such that



nlx!uj],w!kouixl
and w = I.w]

We can illustrate these definitions with several simple
examples.  Suppose «lxy) represents the "transfer of a
property ¥ to an actor x,° and (S y) represents the fact
thet "y is a stock” Thenh the predicate restricton e {x.y!
represents the “transfer of & stock y to an acter x°
Suppose furthermore that {C x) represents the fact that “x
IS a corparation” Than {E:kazsv(x.yl rapresents the
“rransfer of a stock y to some corporaton x.” a disjunctive
action. and V:Cxlx_ (x.y} represents the “transfer of a stock
y 1o aff corporatlc‘;ns x." @ parallel composition of actions
Notce that it is nacessary for our definitions to refer to
the complate state s_ in w, even though we are only
specifying truth conditions for a subworld w € Wiwl

C. Permiseions and Obligations

We are now In a position to define the semantics of
permission and obligation, relative to a state r First, for
any two worlds v and w, 5 15 both the last state in v
and the first state in w. we will say that the pair <v.w> 15
“joined together” at r. Let us consider the set of pairs
{<v.w>] where w 15 a subworid of w. and where <v,w> is
jomed together at r. We will assume that there exists, at
each 1, a subsst P of the set {<v.w>} which nforms us
of our "permitted courses of action” in the following way:
If v is the worid up to the present stata, then the
subworld w 15 a permitted course of action /f and only if
<y w> € PF it is helpful to think of the set P' as &n
"oracie,” and to imaging that we can consult with this oracle
whenever we are contemplating a course of action w. We
will never have full access to the set P or its complemant,

of course. but we will know some of its members. and
some of r1ts nonmembers, by wirtue of the rules of

permission and obhgation

We begin by defiring the notion permitted We write
((b]u)p to represent the English sentence. "if ¢ 1s satisfied
up 1o the present. then the action o is parmitted.”

Definition 4: (w[u)P 15 true at r under the
assighment o if and onfy if, for all <vw> joined
togather at r. and for all w € Wiwl

[o.v=e and D'w':n“] - <v.uw> € P

It 15 important to note that this definibon incorporates the
concept of strict satisfaction. instead of ordinary
satisfaction. and that any subworld which strictly satsfies
the action o« bpaelongs to the set P Therefore. two
separate rules of permission will cumulate by set theoretic
uron, and 8 course of action will be permitted if it is
permitted by any one of these rules.

We now define, in a similar manner, the nation
forbidden. We write (¢j¢>F to represent the English
sentance: “if ¢ is satisfisd up to the presant, then the
action a is forbiwdden.”

Definition &: {¢|a>_ is true at r under the
assignment o if and only if, for all <vw> joined
together at r. and for all w & Wiwi:

[o.vkg and owkal = <v.w> € P,

Note that this definition incorporates the ordinary concept
of satisfaction, insteac of the concept of sirict satisfaction
In affact, we are saying here that if « is forbidden, then it
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is not only the subworlds strictly satisfying o which are
forbidden. but also all supersets of these subworlds.

To arrive 8t the definiticn of obligation. let us consider
the preceding defintion with the symbel "~o" formally
substituted for the action «. The final line of this definition
could then be rawritten as

<vw> € P = [pvk¢ = ~owk-g]

We will not actually construct “negative” actions in L, for
both technica! and philosophical reasons, but this formal
manipulation suggests an appropriate step to take We will
replace the expression “~owk~x’ with the expreassion
"owkx" Accordingly. let us write (¢|n>0 to represent the
Enghsh sentance: “iff ¢ is satisfied up 10 the present. than
the action « i5 obligatory,” and let us recast our previous
truth condition to read as fellows:

Definition 6: <¢ja>o is true at r under the
assignment o if and only if. for all <v.w> joinad
together at r. and for all w & Wiwk

<y, W> E F'r = [ovEg == owka]

This final definition has a structural similarity to the standard
definition of modal logic. The action « s ob/igstory if and
only if it is true in all permitted worids.

D. Dynamic Permissions and Obligations

Notice that every expression it our deontic language LD
is either true or faise, under the assignment o. in each state

r. If one of these sxprassions has free variables in it than
it expresses 8 se/ationship among individuals in the domain

of interpretation of L. and we can define a new pradicate
in L1 which holds just in case the expression in LD holds
Thus, we can assert the existence of permissions and
obligations wn the same way we assert any other first-order
statement  Using the machmnery for defimng statechanges,
we can then construct actions which modify the deontic
assertions, we can make these actions permitted or
forbidden, or obligatory. and so on In other words. the
process of linguistic construction, from L, 1o L,tol,is
fully recursive

Now. suppose the foliowing formulae are true, in sach
state r, for a particular ¢ and o

~ [ (¢|tx)P A (@}a}F ]
~ [ <olad, A (o> ]

Then we have satisfied the conditions for constructing an
affirmative statechange, and we can defing a general action
which makes o permittad, forhidden, or obligatory, n
sequence, as we wish But, as we shall see in Section
WD below, those formulag are true for a// ¢ and « This
makas the management of deontic modifications particularly
smple and slegant.

Il DEONTIC AXIOMATICS

In this section we consider verious formulae involving
the deontic expreassions, and we prove that these formulae
are true in our system, for all r, and for all assignments o.
Wa thus present part of a sound axiomatizstion of our
proposed decntic logic, and we indicate this fact by writing
the forrmulas as deontic theorsams, denoted Ty Wa will
not be able to prasent a compiete axiomatization, however,
since the rules of inference in our system are considerably
more complex than tha rules of inference in a standard
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modal togic  This point will be discussed in Saection IIIF
There is a second purpose to our discussion of deontic

axiomatics. howaver, and that 15 to demonstrata that the’

familiar paradoxes of deontic logic do not arise in our
systam. To this end we wil examine the intutive
intarpretations of our deontic formulae in some detail.

A. Compound Obligations

Let us first consider a disjunctve obligation. Wwe
estabhsh the following result
ks (¢|¢1>0 v “l“z)o 2 “'“1“‘2)0 {1
Proof: Assume either “1“1)0 or (¢|u2>0 5 true ator
Using Definition 6 we pick <vw> in P and assume that
veg  On thus assumption, if the first disjunct on the ieft
hand side of (1) 15 true. then wea - and if the second
disjunct on the left hand side of (1) is true. than wre
Thus wee Vo Singe this result holds for arbitrary <wv w>,
it foliows that <o|«1Va2)o is true atr

Note that the converse implication 15 false. To see this
ot <v.w > € Pr be a permitted subworld for which w Fa,
and ~w Rme_ . and let <wv.w,> E P be a permitted subworld
for which w_Fa, and ~w_Fe For example, if o, s the
action "open the door” and «, is the acton “turn aon the
hght” then w_ would be the subworld in whith the door s
opened but the light remains off and w_ would be the
subworld i which the light 15 turned on but the door
remams closed Since both subworlds are permittad.
neither <¢|¢1)0 nor <¢|a2>0 would bg true.  Suppose.
however. that these are the on/y permitted subworids at
least when the inmal condition ¢ 15 satished Since both
w, and w, sausfy a Va, 1t 15 easy to see that the
disjunclive obligat:on (o|c1\m2> 15 true at r In other
words. ong can be obligated to open the door or twrn on
the light” without being cbigated to "open the door,” and
without bewng oblgated to “"turn on the hght”

Now consider a conjunctive obligaton In this case. the

implicauon goes both ways

o (¢|u1)0 A (ﬁiuz)o = <¢|a1f\u2>o 12
‘Proof: The proof 15 analogous to the proof of (1) To
establish the mplication from left to right, we pick <v.w> €
F'r . assume that veé. and show that wea Ax To establish
the implication from right to left, we show separataly that

<¥.wW> E l:'r imphies wa . and that <v.w> & Pr imphes wra,

B. Compound Permissions

The formula for a disjunctive permission takes the
fellowing form:

Fo @lep A (ola ), = (ole Vo), 3
Proof: To establish the mplication from laft to right, we
assume that both <(g¢|a.>, and ($|«,), are true at r
Using Defminition 4. we plck a <vw> such that vkg and
wkoulvcz. By the dsfinition of strict satisfaction, this
megns that we a. or wx a But in sither case, <v.w> €
P_and thus “r“'tv“z)p is true. To wstabiish the mmplication
from right to left, we construct a similar argument for both
(ola e and (olu ) For example. if veg and we o

then m- AL the right hand sids of {3} then tells us
that <v.w> '« 3

The implication in (3} from a singla disjunctive

permission to g conjunction of two permissions violates the
standard results of modal logic. but it corresponds closely
to our ordinary usage of deontic terminclogy. Yo use our
sarlier example, if we are permitted to “open the door or
turn on the hght” then sursly we are permitted to “opsn
the door” In our ordinary decntic language, an agent is
free to choose among the disjuncts, a fact that is captured
in our semantics and revealed in {3}

QOur  analysis becomes somewhat more compiex,
however, if we consider the following plausible theorem:

*hy (Bla), A (bjed, 2 (ple ra) i4)
Should this result be provable in gur system? It is easy to
see that |4) cannot be derived from the sesmantc
assumptions we have made so far. Consider our sarlier
example Let a, be the action "opan the door.” let o, be
the action “turn on the hght” let w,  be the subworid in
which tha door is opened. but nothing else occurs, and let
w, be the subworld in which the light is turned on, but
nothing else occurs Suppose furthermore that <v,.w > and
<v.w,> are the on/y members of P. I ¢ 15 sausfied
whenever the door 15 ntially closed and the light 15 mitally
off then w.x a  and w_F o8 and we can sae from an
inspection of E)efmmon a that both (da}u } and (qb]c: )
are true  But a subworld in which we borh opened the
door and turhed on the hght would not be permitted under
these assumptions. and hence (¢ju1m }, cannot be true
We have thus refuted the imphcation n 14) from left to
right. and a similar exampie can be constructed to refute
any attempted mmphcation from right to  left Motice,
though, that this refutabon depends critcally on our use of
the concept of stnict sausfaction n Defintion 4 In fact if
we replaced "i=n" by "¢ n our definmon of <¢}u)P we
could establish an even stronger result

“r (oled, 2 Lol ae), {5
by an argument closely analogous to cur proof of {31 But
since {5} would hold for any action o_. 1t would be totally
unacceptable  Alternatively, and iess drastically, we could
constran our defrhon of P by the following closure
axiom

<vw > € P ang wvw,> € P - VW tw,> E P
With this assumptnon the proof of 14) would go through
but the proof of (51 would be blockad

Which result do we want” Suppose we have been told
separately that we are “permitted to open the door” and
that we are “permitted to turn on the hght” Would we
then conclude that we are permittad s/muitaneously to
open the door and to turn on the light? Maybe yas, maybe
no.  We would not want 4] to hold in all cases. because
that would totally conflate a very useful distinction betwean
disjunction and conjunction. But if we were given s long
list of permittad actions, intended to be composable in
parailel, in would be inefficient to hst alt possible
combinations of these actions. and 1o grant permissions
separately for each one. As a pragmatic alternative, we
might construct a special rule of inference that would
operate on "independent” permissions, appiying the formula
in (&) only to a designated set of expressions (¢|u.>P, in
perticuiar, if the expressions {¢foa >, and <¢|an2 p had
originally been derived from the expression (¢|R|V¢2) by
the use of (3. then the special rule of inference woul



be applicable, thus preserving the distinction between a
disjunctive and a conjunctive rule of permission

C. Compound Decntic Conditions

For the sake of completeness, we include here several
results on the conditional component of the deontic
eXpressions:

ko (¢1|u>P A (¢2|a)p = (w1V¢2$u)p (=]
o <¢'l{“>o A (¢2|u)o = <¢1V¢2[¢>0 {7
ko {0, |u}P =] (¢1h¢2|u>P {8
"y (¢‘|a}o E <¢1A¢2|u)0 19

Proof: Omittad, but analogous to prior proofs
D. The Relation Between Permission and Obligation

Let us now consider two questions which were nitially
raised n Section | as part of our discussion of standard
modal logic  First, does the formula Pp £ ~0~p hoid for
permissions and abligabons?  In particular. f 1t is false that
you are forbidden to do p. does it follow that p s
permitted? Second. deoes the formula Op > Pp hoid® In
other words, 15 every obigatory achon permitted?

The answer to the first guestion 15 negatwve The
followmmg mmplicaton holds in only one drection n our
system

Fo (dﬁ}a)p oo~ <¢r|u>i (o

Proof Immediate. from Defimtions 4 ang 5. For & counter
example 1o the reverse wnphcation, we pick any o which 15
strictly satsfied by two subworlds w, and W, and we put
<v.w > € P and <v,w,> € P Then the right side ot (10}
15 true, whiié the left side 15 faise

The answer to the second question 1s also negative, f
it 15 translated literally nto our notaton  Since obhgations
ctumulate by set theorebtc intersection. each obhgauon
narrowing the scope of the remaining permitted acts. there
15 ho reasoh to expect that a// the courses of acton
within a single rule of cbligaton wil! be permitted by other
rules of obligaton A weaker version of this formula is
more plavsible namely, that if « 15 obligatory there exsis
sorne permitted course of action which satisfies « It turns
out that this weaker formuia is true in our system only if
P satisfies an additional assumption  (ywi3wi[<v.w> & P ],

v\;hnch asseris that Pr has no "dead ends” Under this
assumption. we can prove the following:
Fo (¢|ns}o o~ <¢]a)F {1

Proof. We will assume <¢|u)F and derive a contradiction
By Definibon 5. if we pick a v such that veg, then for all
W wkEg = <y w> £ Pr. Because of the assumputon that
I='r has no "dead ends.” there exists 8 w' such that <v.w’>
€ P. Clearly this w’ cannot satisfy « Since (w]«}o is
also true. howaver. Definition 6 telis us that w'ka, a
contradiction.

Note that {10} and {11) are equivalent to the formulee
citad in Section LD abowve. thus allowing us to construct a
general action for the modification of an arbitrary deontic
exprassion.

E. Quantification Over Actions

Let «ix) be an action in L containing a free variable X,
snd let ¢ be a condition in L, which does not contain x as
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a8 tree variable. Think of the axistential quantifier as 2
disjunctive operator, ang think of the universal quantifiar as
a conjunctive oparator. Then, by analogy to (1). (2}, [3) and
(4), we can write down the following variants of the Barcan
formulae of standard modal logic:

Fp BRxe abad | 3 <8 [ 3:Rudatn) 12
Fp AXKG x>, w (8|(V:Rxiatn? 113
by WRxICe|alx)>, m (o3RI, (14)
* v VARXI e atad, 2 (p|i¥:Rxlalx), {151

Proof: These results can be established by modifying the
proofs of (11 (2). (31 and {4). respectively, so that they
apply to the quanufied expressions of Definition 3 The
most interesting case 13 {14) Reading from right to left "If
we are permitted 1o transfer stock to sorme corporation x,
then. for every corporaton x, we are permitted to transfer
stock 1o that x°

F. Rules of Infarence

Most axiomatizations of modal logic include an axiemn
Dip 2 ¢ > iDp 2 Og
and a ruie of inference:
it +p, then FOp

which enable us to transfer provable formulae from
nonmodal contexts nto modal contexts and to carry out
deductions inside the modal operators However, as Mogre
has pomted out [18), these axiomatizatrons are notoriously
nefficiemt for automatc theorem proving In our present
formalzation of deontic logic, of course. the modal axiom
makes no sense at all. and the rule of inference applies
only to trivial cases What we need instead are & numbper
of specialized rules of inference whiwch would enable us to
“lift" deductions from the language L1 up to the language
L, and then up to the language L. and to do so in an
efficient manner.

For example. consider the achon n:sty! in which  ely}
represents the “transfer of a property ¥ and the predicate
restriction (5 y} represents either the fact that "y is a
stock” or that "y is a security” Suppose (Wyl[iStock y) >
iSecurity y}] in the language L =~ Then any subworld w

which  strictly  satisfies “smck(y} also  strictly satishes
&g fyl, and we can show.
®CUr iy
|~D <6[“Slock{y})0 2 <"lutSe:urll\«lyDO (18)
'.D <¢}“Secur|tyly!>l’ 2 <°|85toch1y»P a7

In ordinary language “if we are cbligasted to transfer a
stock y, then we are obligated to transfer a security y."
Conversely “If we are permitted to transfer a security vy,
then we are permitted tc transfer a stock y Given our
previous discussion of the intuitive meaning of permissions
and obligations. these results seem correct What is neaded,
howsver, is a more general set of rules to carry out these
inferences. We have some partial results along these lines,
but they are not yet completa.

IV CONCLUSION

We have presented in this papsr a formal sermantics
for the concepts of permission and obligation which seems
to avoid the paradoxes of the standard deontic logics. The
major deficiencies at the moment sre two: we hava not
yvet worked out the complete rules of infarence for owr
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system; and we have confined our attention so far to a
relatively simple language of actions Unfortunately, these
two points are intimately connected The rules of inference
proposed for our system are complex because they take
into account the structure of the language of actions L

and as we add further complexity to L. we will certainly
add complexity to the rules of inference, too Nevertheless,
we believe that the semantics of the deontic language itself,
the language Lp is basically correct, and robust, and that it
will remain in its present form as the language L, evolves
Perhaps this is even a fact of our cognitive lives that the
concepts of permission and obligation are relatively simple,
and the complexity arises instead from our concept of
action
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