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Abstract

Background

Controlled hypoventilation while accepting hypercapnia has been advocated to reduce

ventilator-induced lung injury. The aim of the study was to analyze outcomes of a cohort of

immunocompromised children with acute respiratory distress syndrome (ARDS) ventilated

with a strategy of stepwise increasing PCO2 targets up to 140 mmHg.

Methods

Retrospective analysis of outcomes of a cohort of children with oncologic disease or after

stem cell transplantation and severe respiratory failure in comparison with a historical con-

trol cohort.

Results

Out of 150 episodes of admission to the PICU 88 children underwent invasive mechanical

ventilation for >24h (overall survival 75%). In a subgroup of 38 children with high ventilator

requirements the PCO2 target ranges were increased stepwise. Fifteen children survived

and were discharged from the PICU. Severe pulmonary hypertension was seen in two

patients and no case of cerebral edema was observed. Long term outcome was available

in 15 patients and 10 of these patients survived without adverse neurological sequelae.

With introduction of this strategy survival of immunocompromised children undergoing

mechanical ventilation for >24h increased to 48% compared to 32% prior to introduction

(historical cohort).
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Conclusions

A ventilation strategy incorporating very high carbon dioxide levels to allow for low tidal vol-

umes and limited inspiratory pressures is feasible in children. Even severe hypercapnia may

be well tolerated. No severe side effects associated with hypercapnia were observed. This

strategy could potentially increase survival in immunocompromised children with severe

ARDS.

Introduction

Permissive hypercapnia is a ventilation strategy to allow for an unphysiologically high partial

pressure of carbon dioxide (PCO2) to permit lung protective ventilation with low tidal vol-

umes. Current guidelines recommend the concept of low tidal volume ventilation and permis-

sive hypercapnia for patients with sepsis, acute respiratory distress syndrome (ARDS) or acute

on chronic respiratory failure [1;2]. However, there is insufficient clinical data which levels of

PCO2 can safely be allowed for, and there are no data available if such a strategy translates into

a survival benefit.

In several models hypercapnic acidosis was associated with benefits on lung and distant

organs apart from the reduction of ventilation parameters: In in vivo and ex vivomodels for

ventilator induced lung injury [3–5], ARDS [6;7], ischemia reperfusion injury [8;9] and sepsis

[10] therapeutic hypercapnia through inspired carbon dioxide attenuated lung injury, as mea-

sured by gas exchange, reduced cytokine release, lung edema formation and histological lung

injury. Differential effects of hypercapnia on bacterial infection i.e. pneumonia have been

observed [11]: While hypercapnia can prevent lung damage in established and treated pneu-

monia, increased bacterial loads and deteriorating lung function was observed in evolving

untreated pneumonia [12;13]. The clinical impact of potential negative effects of hypercapnic

acidosis like impaired wound healing [14;15] or decreased fluid resorption from the lung [16]

is unclear. Nevertheless, all these effects may add on to a possible benefit of a low pressure, low

tidal volume strategy in regard to lung protection.

Very few clinical trials have addressed permissive hypercapnia until present: In the late 90s

Amato et al. compared in a randomized controlled trial a lung protective strategy including

low tidal volumes and permissive hypercapnia with standard therapy [17]. They observed a

reduction in mortality; however effects of low tidal volumes and hypercapnia were not differ-

entiated. In 2000 the ARDS Network trial demonstrated superiority of a low tidal volume

strategy on mortality [18]. A secondary analysis of this trial showed lung protective properties

of mild hypercapnic acidosis in the subgroup of injuriously ventilated patients [19]. Very

recently, in contrast, the concept of permissive hypercapnia was challenged by results from a

large prospective observational database. In adults with ARDS an increased mortality was asso-

ciated with the presence of hypercapnia, even after correction for the more severe ARDS in

these patients [20].

Stimulated by experimental and clinical data in 2003 we began to use permissive hypercap-

nia in children with primary immunodeficiency, with oncologic disease and patients after

human stem cell transplantation (HSCT) if mechanical ventilation otherwise would have been

regarded as too injurious and because we considered extracorporal membrane oxygenation

(ECMO) in such patients futile.

Permissive hypercapnia for ARDS
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The aim of this study is to report outcomes, experiences, and the side effects in this unique

patient cohort treated with a protocol of stepwise allowing for very high PCO2 values, and to

compare those results with a historical cohort from our unit.

Materials andmethods

This retrospective cohort study was approved by the ethics committee of the University of

Ulm, Germany (No. 230/11).

All admissions of immunocompromised patients to the level three pediatric intensive care

unit, Department for Pediatrics and Adolescent Medicine, Ulm University between 1996

and 2010 were identified by review of admission logs of the Pediatric Intensive Care Unit

(PICU). Immunocompromised patients were defined as primary immunodeficiency, ongoing

chemotherapy for malignancy or ongoing treatment with allogenic HSCT. Medical records of

included patients were reviewed.

First, patients invasively ventilated with target arterial PCO2>60 mmHg for>24h were

identified from the entire cohort. In case of repeated readmissions to the PICU including inva-

sive ventilation only the last (sometimes fatal) episode was included.

In November 2003 the concept of permissive hypercapnia was introduced in an individual

patient based on experimental data as an individual treatment attempt with success and, on

from that time point, it was applied to all following patients with respiratory failure and high

ventilator settings to maintain a tidal volume of<6 ml/kg and a peak inspiratory pressure

(PIP) of<30 mbar, if possible. In general hypercapnia was permitted early after intubation

with a lower range (i.e. 50–70 mmHg) and subsequently increased by 10–20 mmHg/per day

up to ranges of max. 120–140 mmHg if necessary. Other unit policies to protect the lung

included noninvasive ventilation for less severe respiratory distress, higher ventilation rates

during invasive ventilation adjusted to individual lung mechanical properties, avoidance of air

trapping and high frequency oscillatory ventilation as rescue strategy. These strategies had

been introduced many years before introduction of the concept of permissive hypercapnia.

Patient charts were analyzed in detail: All available information on patient history, clinical

course, ventilation parameters, laboratory values, X-ray images, echocardiography as well as

outcome parameters were collected. The PRISM24 III score was determined at the day of intu-

bation according to [21]. The PELOD score was determined throughout stay in the PICU

according to [22]. Long term outcome was taken from the medical records of the last follow up

visit.

For comparison of outcome variables, a historical cohort from the 7 years before (1/1996-

10/2003) was compared to the Permissive Hypercapnia cohort (11/2003-12/2010). All episodes

of admissions of immunocompromised children were identified between 1/1996 and 12/2010.

Patient data of interest were identified from medical records and are given below. From both

cohorts a subcohort was defined, which included immunocompromised patients with invasive

ventilation for>24h. Again, if patients were repeatedly admitted and underwent mechanical

ventilation more than once, only the last episode of admission (expected to be associated with

the highest risk for death) was included.

Statistics: Data were processed in Excel (Microsoft, Redmond, WA). Data were analyzed

using SigmaStat V2.03 (Systat Software, San Jose, California) or SAS V9.2 (SAS Institute,Cary,

N.C.). Data are reported as median and interquartile ranges or numbers and percent. Statisti-

cal analysis of numerical or categorical data was performed using a t-test, u-test, Χ2-test or

fishers exact test as appropriate. Comparison of groups with repeated measurements were ana-

lyzed by using a mixed model (SAS). Survival analysis was done using the the LogRank test.

Permissive hypercapnia for ARDS
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Results

Thirty eight immunocompromised patients undergoing mechanical ventilation with moderate

to high PCO2 target ranges (>60 mmHg) were identified. Patient data are given in Table 1.

ARDS was moderate in 3 patients and severe in all others [23]. Survivors had a lower

PRISM24 III at time of intubation and lower PELOD scores during the stay. There was no

difference in ventilation settings and parameters of gas exchange at the time of intubation

between surviving and non-surviving patients.

Course of PCO2 is given in Fig 1A for surviving and non-surviving patients of the cohort

ventilated at high PCO2 targets. The highest individual PCO2 target range aimed for by the

clinical team was 120 to 140 mmHg. Cumulative PCO2 values measured in the entire cohort

over time is given in Fig 1F. By unit policy the target range for PCO2 was gradually increased

by 10–20 mmHg per day (Fig 1A). We observed a rapid metabolic compensation for respira-

tory acidosis, therefore, pH remained within acceptable limits despite very high PCO2 levels in

the majority of patients (Fig 1B and 1C). However, there was a high variability in PCO2 levels

(Fig 1B and 1C). PIP was targeted to remain below 30 cm H2O (Fig 1D). Initial ventilator rate

was 35 (30;47)/min (median (interquartile range)) 2-4h after intubation.

Overall 15 out of 38 patients survived (39%; Fig 2A). Length of invasive ventilation was 13

(9; 29) days for the survivors and 9 (6;21) days for the non-surviving patients (Fig 2B). Notably,

one patient was successfully extubated after 52 days of invasive ventilation.

We observed pneumothoraces in 6/38 patients and pneumomediastinum in 4/38 patients.

Pulmonary hypertension was observed in 7/38 patients and was graded severe in two patients.

Occurrence of pulmonary hypertension was always associated with death. Abnormal cardiac

Table 1. Patient data (Permissive hypercapnia cohort).

All
n = 38

Survivors
n = 15

Non-survivors
n = 23

p

Age (years) 3.83(0.57;9.2) 3.52 (0.59;8.44) 3.89 (0.59;8.49) 0.88

Weight (kg) 12.6 (7.1;20.9) 12.6(7.4;25.9) 12.7(6.54;20.7) 0.77

Gender (f/m) 12/26 4/11 8/15 0.47

Underlying disease

Immunodeficiency n = 16(42) n = 7(47) n = 9(39) 0.9

Leukemia n = 10(26) n = 4(27) n = 6(26) 1.0

Solid tumor n = 2(5) n = 1(7) n = 1(4) 1.0

Other n = 10(26) n = 3(20) n = 7(30) 0.7

Stem cell transplantation 23(61) 11(73) 12(52) 0.33

HLA identical 10 6 4

HLA haploidentical 13 5 8

Scores

PRISM 24* 16(10;24) 12(5;16) 20(12;27) 0.001

Pelod-Score 43(32;52) 32(23;42) 44(34;53) 0.004

Intubation

paO2/FiO2 (mm Hg) 84(64;110) 81(64;124) 84(62;110) 0.73

PIP (cm H2O) 29(24;33) 32(24;36) 28(24;33) 0.68

PEEP(cm H2O) 10(8;12) 10(8;12) 9(7;12) 0.23

FiO2 0.78(0.6;1.0) 0,7(0.6;0.85) 1.0(0.6;1.0) 0.17

*day of intubation, median (1.;3. quartile)

https://doi.org/10.1371/journal.pone.0179974.t001
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contractility was seen in nine patients. It was severe in two patients. Patients that developed

renal failure had a significantly lower survival than patients without renal failure (Table 2).

Long term outcome of surviving patients is given in Table 3. There were further 6 late

deaths not associated with the episode of respiratory failure. Neurological outcome of the sur-

vivors after treatment with severe permissive hypercapnia was normal in 10 survivors. Mild

learning difficulties were found in two patients and three patients had moderate or severe

mental impairment (Table 3). Neurologic impairment was present in two of them prior to

admission or might be related to an large underlying brain tumor in one patient.

To estimate the impact of this strategy of allowing for extreme hypercapnia on patient sur-

vival we compared this cohort to a seven year historical cohort prior to introduction of the

permissive hypercapnia concept. Data of the two cohorts are given in Tables 4 and 5. Despite

Fig 1. Blood gas result, ventilation parameters, and number of blood gases of the cohort of
immunocompromised children (n = 38) ventilated with allowance of severe hypercapnia.Dashed
line = survivors; solid line = non-survivors. Median and interquartile ranges are given.

https://doi.org/10.1371/journal.pone.0179974.g001
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Fig 2. Survival and length of ventilation of a cohort of immunocompromised 38 children exposed to
severe permissive hypercapnia. (A) Survival plot and (B) length of ventilation. Dashed line = survivors; solid
line = non-survivors.

https://doi.org/10.1371/journal.pone.0179974.g002
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the tendency towards more severe respiratory failure (as assessed by the PaO2/FiO2 gradient),

chance of survival was significantly higher in the permissive hypercapnia cohort looking at all

episodes of admissions of immunocompromised patients to the PICU (Fig 3A) as well as look-

ing at children ventilated�24h (Fig 3B).

Table 2. Adverse events (Permissive hypercapnia cohort).

All
n = 38

Survivors
n = 15

Non-survivors
n = 23

p

Pneumothorax n = 6 n = 1 n = 5 0.37

Mediastinal emphysema n = 4 n = 2 n = 1 0.55

Pulm. hypertension n = 7 - n = 7 0.029

mild n = 3 - n = 3

medium n = 2 - n = 2

severe n = 2 - n = 2

Abnormal cardiac function n = 9 n = 2 n = 7 0.27

mild n = 4 n = 1 n = 3

medium n = 3 n = 1 n = 2

severe n = 2 - n = 2

Nosocomial sepsis n = 10 n = 3 n = 7 0.71

Ventilator-associated pneumonia n = 2 - n = 2 0.51

Renal failure n = 19 n = 4 n = 15 0.046

Other adverse events n = 1 seizure n = 1 seizure 1.0

n = 1 pulm. hemorrhage

https://doi.org/10.1371/journal.pone.0179974.t002

Table 3. Long term outcome (Permissive hypercapnia cohort).

Pat. Neurological outcome Pulmonary outcome other alive Cause of death
(time to death in

days)

1 Mild learning difficulties Restrictive pulmonary disease y n.a.

4 Mild learning difficulties Lung fibrosis 24h- O2

dependence
CMV-reactivation/immunosuppression n Lung fibrosis (95)

5 Normal None Erythrodermia, paresthesias Abn. liver function tests
thrombocytopenia

n Sepsis/pneumonia
(412)

6 Moderate learning
difficulties

Normal Hypogonadism, herpes zoster y n.a.

8 Normal Normal n Sepsis, DNR (6)

10 Normal Normal Craniosynostosis y n.a.

12 Normal Normal n Sepsis (210)

19 Normal Normal Mitral valve insufficieny y n.a.

21 Moderate learning
difficulties

Chronic lung disease, 24h O2

dependence
Chron GVHD of liver and skin, seizures, art

Hypertension, EBV-Lymphoma
n EBV (1229)

22 Normal Mild obstructive pulmonary
disease

Hemiparesis, Dermal mycosis, intracranial calcification,
short stature

y n.a.

24 Normal Moderate obstructive pulmonary
disease

Dermatitis, seizures y n.a.

27 Normal y n.a.

30 Normal Microcephaly, normal IQ, specific language impairment y n.a.

34 Mental impairment Recurrent pneumonias Gastroesophageal reflux n Progress of brain
tumor (43)

38 Normal Normal y n.a.

https://doi.org/10.1371/journal.pone.0179974.t003
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Discussion

Herein, we report the single center treatment results of immunocompromised children with

severe ARDS treated according to a protocol of stepwise increase of PCO2 to allow for lung

protective ventilation with low tidal volumes and limited inspiratory pressures. Our findings

indicate that: first the feasibility of such a strategy, second the limited rate of severe side-effects

like pulmonary hypertension or neurological complications, third we provide some long term

outcome data and, furthermore, there is some evidence that such a strategy might result in

higher survival rates.

Respiratory failure during severe immunosuppression i.e. oncologic disease and after

HSCT remains a major threat. More recent reports indicate improved PICU survival rates of

Table 4. Comparison of the recent permissive hypercapnia period with a historical period. All admissions of immunocompromised patients to the
PICU.

Cohort A
3.2003–12.2010

Cohort B
1.1996–2.2003

p

Admissions (n) 150 121

Patients (n) 101 101

Any invasive ventilation;n (%) 88 (59) 60 (50) 0.26

Age (y) 5.1(1.3;12.5) 4.0(1;12.5) 0.41

Gender (male) 100(71) 76(60) 0.59

Length of PICU stay (d) 3(1;12) 5(1;12) 0.23

Survival (%) 113 (75) 71(59) 0.005

https://doi.org/10.1371/journal.pone.0179974.t004

Table 5. Comparison of the recent permissive hypercapnia period with a historical period. Patients ventilated�24h*.

Cohort A
3.2003–12.2010

Cohort B
1.1996–2.2003

p

Patients (n) 58 47

Age (y) 3.8(0.7;8.8) 2.7(0.5;12.2) 0.88

Gender (male) 41(71) 28(60) 0.26

Type of disease

Immunodeficiency 24(41) 20(43) 0.93

Leukemia 13(22) 12(26) 0.89

Solid tumor 7(12) 2(4) 0.28

Other 14 (24) 13(28) 0.85

HSCT (%) 32 (55) 33(70) 0.17

PRISM III score 17(9;21) 16(11;20) 0.93

paO2/FiO2 (mm Hg) 104(67;160) 122(100;166) 0.057

pH 7.35(7.26;7.43) 7.4(7.3;7.44) 0.25

PIP (mbar) 30(24;34) 26(24;33) 0.52

PEEP (mbar) 9(6;11) 8(5;10) 0.02

Ventilator rate (/min) 35(27;44) 35(25;45) 0.94

Permissive hypercapnia (n) 38(66) -(-)

Length of PICU-stay (d) 13.5(4.3;24) 9(3.5;16) 0.12

Survival (%) 28 (48) 15(32) 0.135

*In case of repeated episodes only the last episode per patient is included HSCT human stem cell transplantation, PIP positive inspiratory pressure, PEEP

positive end-expiratory pressure

https://doi.org/10.1371/journal.pone.0179974.t005
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Fig 3. Comparison of the permissive hypercapnia period (Cohort A) with a historical period (Cohort
B). (A) Survival plots of all episodes of admission of immunocompromised children to the PICU. (B) Survival
plots of immunocompromised children ventilated >24h. Solid line = Permissive hypercapnia cohort; dashed
line = historical cohort.

https://doi.org/10.1371/journal.pone.0179974.g003
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59% (6 month survival of 43%) [24]; 58% [25]; and 58% [26] of admissions of children with

HSCT or oncologic disease requiring any mechanical ventilation. At a first glance, these results

seem to match well with our results, however, given the high proportion of HSCT patients in

our cohort, the exclusion of patients ventilated<24h and including only the last episode of

ventilation if patients were readmitted repeatedly, our results appear even more favorable.

For example, survival through their last PICU discharge decreased to 39% in the study from

Cincinnati for HSCT patients who needed any mechanical ventilation [26]. Another recent

study from Seattle differentiated HSCT patients ventilated for>24h and survival was as low as

25% in this subcohort [27]. Therefore, a survival rate of almost 40% appears to be rather high,

which might support our use of hypercapnia.

Various direct effects of hypercapnic acidosis have been described: these include attenua-

tion of inflammatory mediators i.e. attenuation of neutrophil function, antioxidative proper-

ties, reduction in proinflammatory cytokine levels and apoptosis. These effects have translated

into benefits in various preclinical models like ischemia-reperfusion or ventilation induced

lung injury [3;4;8;9]. Differential or negative effects were noted in sepsis/pneumonia and

organ recovery models [13;15]. As buffering reverses some of the effects [28] it is not clear if

these direct effects of acidosis become meaningful in our patients: We observed rapid meta-

bolic compensation in our cohort of patients eliminating severe acidosis quickly. Nevertheless,

our goal was to allow for a strategy of applying tidal volumes as low as possible at rather high

ventilator rates depending on the lung mechanical properties. This goal was achieved by

increasing the PCO2 target ranges daily to maximum levels. Recent experimental [7] and clini-

cal data [29;30] further support the use of ultraprotective low tidal volumes in the setting of

ARDS. However, in these publications progressive hypercapnia was avoided by extracorporal

CO2 elimination. This was disregarded in our patient subset because extracorporeal mem-

brane oxygenation is considered futile in hematologic disease [31].

Unwanted side effects have to be taken into account when using a strategy of allowing for

extreme hypercapnia. Early ARDS may be associated with acute cor pulmonale in adults in

about 20% of patients [32]. This may add to the pulmonary vasoconstriction caused by hyper-

capnia [33] and a PCO2>60 mmHg was shown to be an independent risk factor for acute cor

pulmonale [32]. We observed pulmonary hypertension in a considerable number of patients,

however, it was regarded mild or moderate in the majority, as it was found by Cavalho et al.

[34]. Interestingly, despite increasing the risk for acute cor pulmonale an increased PCO2 was

not associated with death in the study of Lherithier et al. [32]. However, the presence of air-

leaks increased the risk for death 5-fold, suggesting that aiming for maximal lung protection

while carefully monitoring right heart cardiac function may finally sum up to the best benefit.

Abnormal cardiac function was seen in roughly a quarter of our patients. Despite some neg-

ative effects of hypercapnia on contractility we may expect an increase in cardiac output due to

an increase in sympatoadrenal activity [34]. Furthermore, tissue perfusion is directly increased

by hypercapnia and oxygen delivery into the tissues is enhanced by facilitated oxygen release

owing to a right shift of the oxygen binding curve [35;36]. Our patients frequently had been

treated with multiple cardiotoxic antineoplastic drugs prior to their episode of ARDS, there-

fore, it seems impossible to differentiate the impact of hypercapnia from a preexisting cardiac

disease, ARDS or infection with this retrospective study design.

Multiple reports of acute asthma reassure that even excessively high values of hypercapnia

can be survived without sequelae [37;38]. However, there are reports where acute exposure to

high CO2 was associated with cerebral vasodilation, and cerebral edema. Hypercapnia was

considered the main causative reason. In our study no patient suffered or died from clinically

relevant increased intracranial pressures.

Permissive hypercapnia for ARDS

PLOSONE | https://doi.org/10.1371/journal.pone.0179974 June 20, 2017 10 / 14

https://doi.org/10.1371/journal.pone.0179974


Some children treated with permissive hypercapnia suffered from learning disabilities or

even mental impairment long term. Neurologic sequelae after HSCT or severe ARDS in addi-

tion to underlying conditions are well recognized. Our data do not allow to determine the

exact cause of impairments among these possibilities, however, no episodes of severe hypoxia

or resuscitation were documented in these patients. The proportion of impaired survivors,

does not seem to be higher in our permissive hypercapnia cohort.

In the very recent prospective observational trial focusing on ARDS in adults the concept

of permissive hypercapnia was challenged, as presence of hypercapnia was associated with

increased mortality in this trial [20]. These findings remained significant even after correction

for the more severe lung disease in the subgroup of hypercapnia patients as evidenced by a

lower paO2/FiO2. In the hypercapnia cohort relevant higher ventilation settings (PIP/PEEP)

had been used compared to patients without hypercapnia and cardiovascular failure was

observed in 74% of these patients. This is in contrast to the observation in our cohort of chil-

dren where the risk for cardiovascular failure was much lower.

To unravel potential benefits from our ventilation strategy we compared the mortality

within 7 years after introduction of the permissive hypercapnia concept with the 7 preceding

years. However, patient data including a severity of illness score and parameters of gas

exchange showed a trend towards more severe lung disease in the latter cohort. Nevertheless,

survival in patients after introduction of the strategy of permissive hypercapnia ventilated

>24h increased by 16%. Obviously, we cannot be sure if this increased survival rate is due to

the ventilation policy only. Advances in survival rates in HSCT intensive care patients over

the years have also been observed by other centers [25;26]. However, a recent meta-regression

analysis challenges this impression for the subset of ventilated patients [39]. Furthermore, per-

missive hypercapnia is frequently incorporated in the new concepts of intensive care therapy,

therefore, may have contributed to some of the improvements seen by others [25;26]. Anyway,

there is considerable dispute about the best target ranges of PCO2 [40].

The increase in survival is modest. However, mechanical ventilation in ARDS in the setting

of immunosuppression is only a supportive measure to buy time for more causative therapies

to become effective. Therefore, optimizing ventilation may not alter outcomes if the underly-

ing cause of the ARDS cannot be sufficiently treated. In the survival curves, it seems that the

time window for such treatments has opened somewhat in our recent patient cohort even if

the final outcome was not altered tremendously. Multiple improvements in all aspects of care

will be necessary to achieve better results in respiratory failure after bone marrow transplanta-

tion or antineoplastic chemotherapy.

This study has multiple limitations: First, it is a retrospective study. Comparison with a his-

torical cohort bears numerous risks for bias, although we are not aware of major systematic

changes in regard to oncologic or antibiotic therapy between the episodes. Attending physi-

cians of oncology and intensive care did not change during study time. New guidelines for

intubation at lower thresholds were introduced at the very end of the second time period [41]

and have, therefore, not contributed to the results. Furthermore, hypercapnia was introduced

only, if the peak pressures exceeded 30 mmHg and the daily increase in PCO2 targets was

roughly 10 mmHg. However, this was modified depending on the patient and at the discretion

of the physician responsible. To minimize selection bias all patients admitted to the PICU dur-

ing the study period were analysed irrespective of exposure to hypercapnic ventilation. Patient

numbers are low in this study, however, even in large transplantation centers the number of

such cases is limited. Therefore, large scale randomized trials for this subset of patients will

remain challenging. Furthermore, there is a wide variety and complexity of underlying diseases

as well as reasons for respiratory failure. By pooling these data, potential beneficial effects
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might be blurred, as some individual patients might benefit more than others. Therefore,

results have to be interpreted cautiously.

Herein we report our experiences with the strategy of consequently increasing PCO2 targets

in order to limit lung damage from high ventilation pressures by allowing for very high PCO2.

This concept, so far, has to be regarded as individual treatment attempt in a subset of very sick

immunocompromised patients with anticipated high morbidity and high mortality. We think

a larger scale multi center randomized trial is urgently warranted to assess effects of such a

strategy on outcome and to define side effects.

Conclusion

A ventilation strategy incorporating very high permissive hypercapnia seems to be feasible

in immunocompromised children with severe respiratory failure secondary to ARDS. Even

high levels of PCO2 are tolerated well. No severe side effects associated with hypercapnia were

observed. This strategy potentially could increase survival in immunocompromised children

with severe ARDS.
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