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Permittivity Gradient Induced Depolarization:
Electromagnetic Propagation With the

Maxwell Vector Wave Equation
Stephen R. Shaffer and Alex Mahalov

Abstract— Recent interest in 3-D vectorial sensors requires
the development of vectorial propagation methods, rather than
scalar wave equation approaches. We derive a vector wave
equation from Maxwell’s equations for a medium which has
an inhomogeneous dielectric permittivity dominated by variation
along one dimension. It is well known that the electric field
components decouple for homogeneous media. However, 1-D
permittivity variations yield an upper triangular system of scalar
wave equations with the wave polarization component parallel to
the inhomogeneous direction/axis acting as a forcing term for the
orthogonal components. The main implication is that waves with
polarization oriented parallel to the permittivity gradient will act
as a forcing term and excite other polarization components and,
thus, induce depolarization. Contemporary studies treat the per-
mittivity as a constant when deriving a wave equation or paraxial
approximation, and then re-introduce via inhomogeneous wave
speed, variable permittivity, thus missing important terms and
physical mechanisms in their resulting equations. Contemporary
studies neglect the term in the Maxwell vector wave equation
responsible for this effect. Application of the electromagnetic
propagation depolarization effect is demonstrated numerically
for an air–sea interface evaporation duct with a 500 MHz
source.

Index Terms— Electromagnetic (EM) propagation, nonhomo-
geneous media.

I. INTRODUCTION, BACKGROUND, AND MOTIVATION

ELECTROMAGNETIC (EM) propagation in inhomoge-
neous media poses several challenges and there is a need

to go beyond standard scalar propagation models based on
scalar wave, Helmholtz, and paraxial equations and to incor-
porate vector wave propagation effects. Contemporary studies
treat the permittivity as a constant when deriving a scalar wave
equation or paraxial approximation. Mohsen [1] considers
the electromagnetic field within a stationary nonconducting
source-free medium which satisfies the stationary Maxwell
equations. A solution for the field is given in terms of the
two Hertz vectors for a general orthogonal coordinate system.
In the context of geometric optics, McDaniel and Mahalov

Manuscript received March 17, 2020; revised June 23, 2020; accepted
July 21, 2020. Date of publication August 19, 2020; date of current version
March 3, 2021. This work was supported by the Air Force Office of
Scientific Research under Grant FA9550-19-1-0064. (Corresponding author:
Stephen R. Shaffer.)

The authors are with the School of Mathematical and Statistical Sci-
ences, Arizona State University, Tempe, AZ 85287-1804 USA (e-mail:
stephen.shaffer@asu.edu; mahalov@asu.edu).

Digital Object Identifier 10.1109/TAP.2020.3016463

[2], [3] studied the impacts of refractive index gradients
on electromagnetic propagation in random media. It is well
known that the electric field components decouple for homo-
geneous media. It has also been well established since, e.g.,
[4], [5], that homogeneous turbulent media causes polarization
fluctuations, which [6] shows to have a λ2 dependence and is
negligible for the optical regime but suggest may be important
for longer wavelengths. Despite this suggestion, contemporary
studies which proceeded for longer wavelengths retained the
assumption of neglecting this effect [7].

Our work is grounded in a first-principle approach, begin-
ning with the fundamental vector Maxwell equations. By
retaining gradients of the refractive index in the derivation
of the Maxwell vector wave equation (MVWE), we cap-
ture depolarization effects as a result. We show that 1-D
anisotropic permittivity variations yield an upper triangular
system of wave equations, with the component parallel to
the inhomogeneous direction/axis acting as a forcing term
for the orthogonal components of the electric field. The main
implication is that waves with polarization oriented parallel to
the inhomogeneous dimension will excite other polarization
components, inducing depolarization.

There are many recent areas of inquiry for which a
more comprehensive vectorial theory could find the appli-
cation. The eigenvalue problem for the MVWE was con-
sidered by [8] stressing the mathematical challenges of the
vector problem in contrast with the scalar problem, which
remains an active area of research [9], [10]. The impor-
tance of vector cross-polarization effects is discussed in
[11] and [12]. The term responsible for depolarization is
retained by [13]–[15], where they discuss orbital angular
momentum and other effects. Polarized inertial gravity wave
excitations give rise to Rayleigh–Taylor organizing mixing
patterns within ionospheric plasma flows, where accumulation
enhances media inhomogeneities inducing large density and,
thus, permittivity gradients [16]–[20], which may, thus, influ-
ence transionospheric propagation and communication. There
are also ground-based remote observations of 3-D structures in
the ionosphere [21], magnetosphere propagation experiments
[22], detecting 3-D wave vector components [23], and full-
wave 3-D propagation modeling [24], which could be extended
by our method—and additional generalization, to incorporate
depolarization for fully anisotropic media.
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Novel 3-D vector sensor technologies require the devel-
opment of vector EM propagation models derived from the
fundamental Maxwell equations [23]. In situ CubeSat satel-
lite missions are being developed with novel vector antenna
technology which is anticipated to be a pathfinder for future
swarms of in-space interferometric radio telescopes [23], [25],
[26]. Interferometric observations may encounter differential
depolarization depending upon observation baseline and local
structure of medium inhomogeneities. Applications for 3-D
vector sensors include observing ionosphere and space
weather, solar radio burst emissions, plasma waves, and radi-
ation in the heliosphere [27]. Synthetic radio observations of
stellar coronal radio emissions [28] and propagation through
space weather in stellar environments will also be influenced
by permittivity gradient-based depolarization [29]. Astronom-
ical signals, such as observed with low-frequency radio arrays
for extra-galactic sources, may depolarize along their entire
path and in the last moments of their journey to the detector
[30].

Terrestrial applications include EM propagation in evap-
oration ducts, which are a downward refracting layer that
results from the rapid decrease in humidity with respect to
altitude occurring in the atmospheric surface layer above
bodies of water or clouds. Characteristics of evaporation ducts
were studied extensively in the coupled air–sea processes
and electromagnetic ducting research (CASPER) campaigns
[31]. The boundary layer phenomenon of evaporation ducts
has land-based analogs, for which scintillometry has been
employed for urban [32]–[35] and agricultural [36] applica-
tions. Sand and dust storms also cause cross polarization,
as discussed by [37]. Studies on atmospheric propagation
include quantifying refractivity from propagation loss [38].
There are also engineering applications for materials to manip-
ulate guided surface waves within varying dielectric materials
for cloaking purposes [39] and for synthetic aperture radar
[40]. Dual-polarization techniques used in communication via
dual-polarization frequency reuse, e.g., [41], or observations
of hydrometers, e.g., [42], also need to account for signal
depolarization.

II. DERIVATION OF MVWE GOVERNING

EQUATIONS FROM MAXWELL’S EQUATIONS

We derive a vector wave equation from Maxwell’s equations

∇ · D = ρ (1)

∇ · B = 0 (2)
∂B
∂ t

= −∇ × E (3)

∂D
∂ t

= ∇ × H − J (4)

for a medium which has an inhomogeneous dielectric per-
mittivity dominated by variation along one dimension. The
electric displacement and magnetic fields are, D = �E + P,
and H = μ−1

0 B − M, respectively, given in terms of electric
field (E), electric polarization (P), magnetic induction (B), and
magnetic polarization (M), respectively. Here, μ0 is the mag-
netic permeability, a constant, and � is the electric permittivity,

dependent upon medium properties. We first derive the general
vector wave equation and then apply restrictions to a specific
cause for our study. Taking the curl of Faraday’s Law (3),
using the vector identity ∇ × ∇ × A = ∇(∇ · A) − �A, with
a fixed magnetic permiability μ0, and then using Ampére’s
law (4), gives, respectively

∇ × ∂μ0(H + M)

∂ t
= −∇ × ∇ × E = �E − ∇(∇ · E) (5)

∂

∂ t
μ0

�
∂

∂ t
(�E) + P + J + ∇ × M

�
= �E − ∇(∇ · E). (6)

Rearranging Coulomb’s law (1) as

∇ · E = �−1(ρ − ∇� · E − ∇ · P) (7)

and substituting into (6), we arrive at an MVWE

∂

∂ t
μ0

�
∂

∂ t
(�E) + P + J + ∇ × M

�
= �E − ∇(�−1(ρ − ∇� · E − ∇ · P)). (8)

For our study, we consider an unpolarized medium (P = �0)
without an applied magnetic field (M = �0) and no charges
(ρ = 0) or current (J = �0). These restrictions yield the MVWE
for E

∂

∂ t
μ0

∂

∂ t
(�E) − �E − ∇(�−1∇� · E) = 0. (9)

The third term in (9) is responsible for depolarization effects
and is often neglected by omission of the second term on the
right-hand side of (7) when assuming ∇� = 0 as in many
contemporary studies. In the following, we describe �−1∇� in
terms of an inverse length scale for variations of the media.

With μ = μ0 a constant and allowing only one dominant
dimension of permittivity variation, we begin restricting the
general case given by (9) to our specific study. We use a right-
handed Cartesian coordinate system such that the permittivity
variation aligns with x̂3, i.e., � = �(x3), e.g., due to a
permittivity gradient layer, described in the following for the
application of an evaporation duct (Fig. 1). The operators for
the gradient and Laplacian have their usual Cartesian form
(see Appendix). This choice yields the following equation:

μ0
∂2�E
∂ t2 − �E − ∇(αE3) = 0. (10)

Here

α = α(x3) = �−1(x3)
∂�(x3)

∂x3
= ∂

∂x3
ln �(x3) = L−1

� (11)

where L� = α−1 is a length scale characterizing inhomo-
geneous media for the electric permittivity gradient layer.
Observe that (10) is a homogeneous equation and that a
forcing, as by an antenna, can be incorporated by setting the
right-hand side to a nonzero function [43], [44].
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The wave equation (10) is equivalent to the upper triangular
system of equations for each component of E

μ0�
∂2 E1

∂ t2 − �E1 − α(x3)
∂ E3

∂x1
= FH (t, x1, x3)δ(x2 − xT )

(12)

μ0�
∂2 E2

∂ t2 − �E2 − α(x3)
∂ E3

∂x2
= 0 (13)

μ0�
∂2 E3

∂ t2 − �E3 − ∂α(x3)E3

∂x3
= FV (t, x1, x3)δ(x2 − xT ).

(14)

The forcing terms F() are included here to represent a trans-
mitter at range position xT , for transmitters which are either
vertically polarized along x̂3, FV (), or horizontally polarized
along x̂1, FH (). Elliptically polarized sources could be handled
by controlling the relative amplitudes and phases of FH () and
FV (), but only a vertically polarized source will be considered
in the present study.

III. EVAPORATION DUCT APPLICATION

A. Layered Media Permittivity Profile, � = �(x3)

The present work will be applied to evaporation ducts,
an ubiquitous phenomenon of the marine atmospheric surface
layer, where the refractive index changes rapidly due to humid-
ity above the air–sea interface. The CASPER project [31],
[45], [46] describes sea spray and other factors influencing
the permittivity gradient. A basic modified refractivity profile
for characterizing radar propagation can be estimated from
observable atmospheric thermodynamic properties, as given
by [31], that is

M = 77.6

T

�
p + 4810

e

T

�
+ z

R
× 106 (15)

with T temperature [K], p atmospheric pressure [hPa], e water
vapor pressure [hPa], z height above mean sea level (MSL)
[m], R mean radius of Earth [m]. The last term accounts
for Earth’s curvature. Ducting occurs in the near-surface layer
where d M/dz < 0. Monin Obukhov Similarity Theory scaling
relationships are often employed for empirically estimating T
and e, with many caveats as discussed by [31]. Evaporation
duct height, typically around 10–50 m, and can extend up
to 2 km above MSL, as determined from the height of the
minimum value of M from the near-surface profile, which
is dominated by variations in humidity gradients within the
surface layer [46]. The relationship between M units and
permittivity is given by

M = 106(n − 1) = 106��2
r − 1

� = 106��2�−2
0 − 1

�
(16)

with �r being the relative permittivity and �0 the vacuum
permittivity.

We define a right-handed Cartesian coordinate system such
that the unit vector x̂3 is orthogonal to the mean air–sea
interface and parallel to a vertically polarized source, FV (·),
and x̂1 is parallel to a horizontally polarized source, FH (·).
We are neglecting air–water interface waves and associated
scattering complexities for the present study. We set x̂2 to be
oriented along the initial path of signal propagation from a

Fig. 1. (a) Vertical profiles of electric permittivity �(x3) given by (17) (blue)
and α(x3) given by (11) (green) for the simplified linear ramp (17) approxi-
mation of the evaporation duct (“duct”) at the air–sea interface (neglecting air–
water interface waves). For comparison with observed profiles (in M-units),
refer to [45, Fig. 14]. (b) Forcing function modulation timeseries, temporal
part of (18). (c) Vertical cross section in the x1-x3 plane of the maximum
spatial part of the forcing function (18), maxFV (t, x1, x3)δ(x2−xT ), used in
(14), to show the transmitter beam shape function. A right-handed Cartesian
coordinate system is used and x̂2 is directed into the page.

stationary transmitter to a receiver, before refractive effects
may influence the propagation direction, as shown in Fig. 1.
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Fig. 2. Vertical cross section on source optical plane (x1 = 0) of electric field components E1 (top) E2 (middle) and E3 (bottom) at different snapshots of
time. Case �(x3) as in (17). Both refraction and depolarization effects are apparent. Here, we see E2 is more strongly forced than E1 for this configuration.
Horizontal dotted line indicates extent of α �= 0 as in Fig. 1.

As a simplifying approximation to (15) and (16), we use a
linear ramp profile, as shown in Fig. 1(a), given by

�(x3) =

⎧⎪⎪⎨
⎪⎪⎩

�0n2
l , x3 < 0

�0
n2

u − n2
l

	
x3 + �0n2

l , 0 ≤ x3 ≤ 	

�0n2
u, x3 > 	.

(17)

Here, the duct height is given by 	 (we set 	 = 10 m),
and lower/upper values of refractive index are given by nl =

1.33 (water) and nu = 1 + 353.1 × 10−6 (air at wavenumber
29.1 cm−1) [47], respectively.

B. Antenna Forcing Function and Boundary Conditions

A simplified Gaussian modulated source, see Fig. 1(b),
is used to represent antenna forcing in the systems (12)–(14).
A pulse duration of D = 10 periods for a continuous wave
(CW) source with frequency f = 500 MHz was chosen. The
forcing beam pattern [Fig. 1(c)] has a Gaussian cross section
centered at (x1, x2, x3) = (0, xT , x3,s = 5 m) with half-width
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(3 dB beamwidth) L = 1 m, given by

FV (t, x1, x3) = E3,max sin(2π f t) exp

�−(t − D
2 f )2

2(D/10 f )2



× exp

�
−√

2 ln 2

2L
(x2

1 + (x3 − x3,s)
2)


.

(18)

Fig. 1(b) shows the time series of the FV (t, x1 = 0, x2 =
xT , x3 = 5) and a vertical cross section of maxFV (t, x1, x2 =
xT , x3) is shown in Fig. 1(c). We set E3,max = 1 V m−1.

For the present study, we adopt the zero boundary conditions
which fully reflect waves at the boundary, rather than employ-
ing a perfectly matched layer or other absorbing boundary
conditions, which were developed for the curl system and
near-normal incidence [48]. This choice was motivated by
the phenomena of depolarization being strictly an interior
problem, and we want to avoid conflating these dynamics with
boundary condition issues. By limiting the simulation duration
to before the pulse reflects from the boundary, we avoid
unphysical issues of the choice of boundary condition. The
domain is taken to be a rectangular box with dimensions
40 m × 40 m × 50 m, centered in x1-x2 at the transmitter
position, as shown in Fig. 1, with the right half-space shown
in Fig. 2. A numerical approach based upon a Yee scheme
[49] is employed and is described in the Appendix.

IV. RESULTS AND DISCUSSION

Depolarization will be measured as the ratio of complex
electric field of the wave orthogonally polarized to the trans-
mitted wave (Ed ) to that copolarized (Ec) with the transmitted
wave (Et ), given by

D = Ed/Ec (19)

as per [50]. For our case, Et = Ec = E3, and Ed =
span{E1, E2}. Fig. 2 shows several EM propagation model out-
put times for vertical cross sections of E1, E2, and E3, along
the optical axis in the direction of propagation. Depolarization
is apparent in Fig. 2, where E1 and E2 are nonzero, and thus,
D �= 0. Furthermore, the signal depolarization which occurs
within the permittivity gradient layer is shown to propagate
out of that layer.

There are many settings for which broader impacts and
implications of these results for EM propagation experienc-
ing electromagnetic ducting are anticipated, e.g., ionosphere
electron density and marine atmospheric boundary layer evap-
oration ducts, as example environments which have anisotropic
permittivity gradients with length scales comparable to the
EM wavelength (L� ∼ λ). Depolarization from inhomoge-
neous permittivity should be considered for transionospheric
propagation, variations due to ionosphere/space weather, solar
radio burst emissions, plasma waves and radiation in the
heliosphere, and so on. Recent developments in vector sensor
technology require full vector propagation model capabilities
based upon 3-D vector Maxwell equations coupled wave equa-
tions. Vectorial sensors can be used to measure depolarization
forcing between electric field components of polarized waves.

Furthermore, these results indicate that vector sensor interfer-
ometry needs to consider variations of depolarization along
different propagation paths from inhomogeneous gradients of
permittivity.

V. CONCLUSION

Electromagnetic propagation in inhomogeneous media with
an anisotropic permittivity gradient exhibits depolarization
effects through a coupling of EM wave components as demon-
strated with a numerical model. Conventional EM wave prop-
agation methods based upon scalar wave/Helmholtz/paraxial
equation techniques do not capture depolarization effects in
inhomogeneous media. Without coupling, a constant per-
mittivity profile will not cause depolarization (not shown).
Inhomogeneous/anisotropic media, such as the layered media
examined here (i.e., � = �(x3)), give rise to an upper triangular
system not a scalar equation. A scalar equation propagates
only the individual electric field components without coupling.
In the upper-triangular system, the electric field component
parallel to the inhomogeneous direction is a forcing term
for the orthogonal components when α = �−1∇� �= 0.
A source initially linearly polarized parallel to the inhomo-
geneous direction will depolarize, and the received signal
will have nonzero orthogonal components (i.e. E3-polarized
source and �(x3) anisotropy will develop nonzero E1 and
E2 components). We have shown that EM waves with linear
polarization oriented parallel to the inhomogeneous direc-
tion of an anisotropic media excite orthogonal polarization
components.

APPENDIX

A. System Equations and 3-D FDTD Numerical Scheme

Consider a 3-D domain. The components of the electric field
vector are expressed as

E j = E j (t, x1, x2, x3), j = 1, 2, 3. (20)

The systems (12)–(14) can be written as

μ0�
∂2 E1

∂ t2 −
�

∂2

∂x1
2 + ∂2

∂x2
2 + ∂2

∂x3
2

�
E1 − α(x3)

∂ E3

∂x1

= FH (t, x3)δ(x2 − xT ) (21)

μ0�
∂2 E2

∂ t2 −
�

∂2

∂x1
2 + ∂2

∂x2
2 + ∂2

∂x3
2

�
E2 − α(x3)

∂ E3

∂x2

= 0 (22)

μ0�
∂2 E3

∂ t2 −
�

∂2

∂x1
2 + ∂2

∂x2
2 + ∂2

∂x3
2

�
E3 − ∂(α(x3)E3)

∂x3

= FV (t, x3)δ(x2 − xT ). (23)

A numerical scheme adapted from a Yee scheme [49] for a
Cartesian grid, where t = n�t , x1 = k�x1, x2 = l�x2,
and x3 = m�x3, with k, l, m, n ∈ N. For simplicity, we set
�x j = �x, j = 1, 2, 3, and specify grid increments viz
�x = (r f

√
μ0�max)

−1, with r being a resolution/sampling
parameter, where r = 2 satisfies Nyquist criteria and, e.g.,
r = 10 uses ten grid-points per wavelength, shows numerical
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convergence. The CW source/forcing frequency is specified
by f , and �max = max �(x3) ensures the grid spacing is
based upon the shortest wavelength in the domain. To satisfy
CFL conditions, we then set �t = �x/(2c0). The numerical
scheme for the system of equations is, thus, written as

E1|n+1
k,l,m = 2E1|nk,l,m − E1|n−1

k,l,m + �t2

μ0�

× � + �x−2
1

�
E1|nk+1,l,m − 2E1|nk,l,m + E1|nk−1,l,m

�
+ �x−2

2

�
E1|nk,l+1,m − 2E1|nk,l,m + E1|kn,l−1,m

�
+ �x−2

3

�
E1|nk,l,m+1 − 2E1|nk,l,m + E1|nk,l,m−1

�
+ (2�x3)

−1(α|m+1 − α|m−1)E3|nk,l,m

+ (2�x1)
−1α|m

�
E3|nk+1,l,m − E3|nk−1,l,m

�
+FH |nk,l=lT ,m

�
(24)

E2|n+1
k,l,m = 2E2|nk,l,m − E2|n−1

k,l,m + �t2

μ0�

× � + �x−2
2

�
E2|nk+1,l,m − 2E2|nk,l,m + E2|nk−1,l,m

�
+ �x−2

2

�
E2|nk,l+1,m − 2E2|nk,l,m + E2|nk,l−1,m

�
+ �x−2

3

�
E2|nk,l,m+1 − 2E2|nk,l,m + E2|nk,l,m−1

�
+ α|m(2�x2)

−1�E3|nk,l+2,m − E3|nk,l−2,m

��
(25)

and

E3|n+1
k,l,m = 2E3|nk,l,m − E3|n−1

k,l,m + �t2

μ0�

× � + �x−2
2

�
E3|nk+1,l,m − 2E3|nk,l,m + E3|nk−1,l,m

�
+ �x−2

2

�
E3|nk,l+1,m − 2E3|nk,l,m + E3|nk,l−1,m

�
+ �x−2

3

�
E3|nk,l,m+1 − 2E3|nk,l,m + E3|nk,l,m−1

�
+ (2�x3)

−1(α|m+1 − α|m−1)E3|nk,l,m

+ α|m(2�x3)
−1�E3|nk,l,m+1 − E3|nk,l,m−1

�
+FV |nk,l=lT ,m

�
. (26)

REFERENCES

[1] A. Mohsen, “Electromagnetic field representation in inhomogeneous
anisotropic media,” Appl. Phys., vol. 2, no. 3, pp. 123–128, Sep. 1973,
doi: 10.1007/BF00883972.

[2] A. McDaniel and A. Mahalov, “Lensing effects in a random inhomo-
geneous medium,” Opt. Express, vol. 25, no. 23, pp. 28157–28166,
Nov. 2017. [Online]. Available: https://doi.org/10.1364/OE.25.028157

[3] A. Mcdaniel and A. Mahalov, “Stochastic mirage phenomenon
in a random medium,” Opt. Lett., vol. 42, no. 10, pp. 2002–2005,
May 2017, doi: 10.1364/OL.42.002002.

[4] V. Tatarskii, Wave Propagation in a Turbulent Medium. New York, NY,
USA: McGraw-Hill, 1961.

[5] H. Hodara, “Laser wave propagation through the atmosphere,” Proc.
IEEE, vol. 54, no. 3, pp. 368–375, Mar. 1966, doi: 10.1109/
PROC.1966.4698.

[6] J. Strohbehn and S. Clifford, “Polarization and angle-of-arrival fluctua-
tions for a plane wave propagated through a turbulent medium,” IEEE
Trans. Antennas Propag., vol. AP-15, no. 3, pp. 416–421, May 1967,
doi: 10.1109/TAP.1967.1138937.

[7] J. W. Goodman, Statistical Optics. New York, NY, USA: Wiley, 1985.
[Online]. Available: https://cds.cern.ch/record/789128

[8] D. Colton, P. Monk, and J. Sun, “Analytical and computational meth-
ods for transmission eigenvalues,” Inverse Problems, vol. 26, no. 4,
Mar. 2010, Art. no. 045011, doi: 10.1088/0266-5611/26/4/045011.

[9] F. Cakoni, O. Ivanyshyn Yaman, R. Kress, and F. Le Louër,
“A boundary integral equation for the transmission eigenvalue problem
for Maxwell equation,” Math. Methods Appl. Sci., vol. 41, no. 4,
pp. 1316–1330, 2018. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/mma.4664

[10] F. Cakoni, D. Colton, and P. Monk, “Qualitative methods in inverse elec-
tromagnetic scattering theory: Inverse scattering for anisotropic Media,”
IEEE Antennas Propag. Mag., vol. 59, no. 5, pp. 24–33, Oct. 2017, doi:
10.1109/MAP.2017.2731662.

[11] L. Keefe, I. Zilberter, and T. J. Madden. (2018). When Parabolized
Propagation Fails: A Matrix Square Root Propagator for EM Waves.
[Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2018-3113

[12] D. Rogers, “Propagation considerations for satellite broadcasting at
frequencies above 10 GHz,” IEEE J. Sel. Areas Commun., vol. 3, no. 1,
pp. 100–110, Jan. 1985, doi: 10.1109/JSAC.1985.1146168.

[13] D. J. Sanchez and D. W. Oesch, “The creation of angular momentum
in optical waves propagating through atmospheric turbulence,” in Proc.
Frontiers Opt., 2011, pp. 1–7, doi: 10.1364/FIO.2011.FTuY6.

[14] D. J. Sanchez and D. W. Oesch, “Localization of angular momentum
in optical waves propagating through turbulence,” Opt. Express, vol. 19,
no. 25, pp. 25388–25396, Dec. 2011, doi: 10.1364/OE.19.025388.

[15] D. J. Sanchez and D. W. Oesch, “Orbital angular momentum in optical
waves propagating through distributed turbulence,” Opt. Express, vol. 19,
no. 24, pp. 24596–24608, Nov. 2011, doi: 10.1364/OE.19.024596.

[16] A. Mahalov, “Multiscale modeling and nested simulations of three-
dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and non-
equilibrium layer dynamics at fine scales,” Phys. Scripta, vol. 89, no. 9,
Sep. 2014, Art. no. 098001, doi: 10.1088/0031-8949/89/9/098001.

[17] A. Mahalov and M. Moustaoui, “Multiscale nested simulations of
Rayleigh–Taylor instabilities in ionospheric flows,” J. Fluids Eng.,
vol. 136, no. 6, pp. 060908–060916, Jun. 2014, doi: 10.1115/1.4025657.

[18] W. Tang and A. Mahalov, “Stochastic lagrangian dynamics for charged
flows in the E-F regions of ionosphere,” Phys. Plasmas, vol. 20, no. 3,
Mar. 2013, Art. no. 032305, doi: 10.1063/1.4794735.

[19] W. Tang and A. Mahalov, “The response of plasma density to breaking
inertial gravity wave in the lower regions of ionosphere,” Phys. Plasmas,
vol. 21, no. 4, Apr. 2014, Art. no. 042901, doi: 10.1063/1.4870760.

[20] D. C. Fritts et al., “The deep propagating gravity wave experiment
(DEEPWAVE): An airborne and ground-based exploration of gravity
wave propagation and effects from their sources throughout the lower
and middle atmosphere,” Bull. Amer. Meteorol. Soc., vol. 97, no. 3,
pp. 425–453, Mar. 2016, doi: 10.1175/BAMS-D-14-00269.1.

[21] S. T. Loi et al., “Real-time imaging of density ducts between the
plasmasphere and ionosphere,” Geophys. Res. Lett., vol. 42, no. 10,
pp. 3707–3714, 2015. [Online]. Available: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1002/2015GL063699

[22] G. Spanjers et al., “The AFRL demonstration and science experiments
(DSX) for DoD space capability in the MEO,” in Proc. IEEE Aerosp.
Conf., Mar. 2006, p. 10, doi: 10.1109/AERO.2006.1655750.

[23] M. Knapp et al., “Hero: A space-based low frequency interferometric
observatory for heliophysics enabled by novel vector sensor technology,”
in Proc. 8th Int. Workshop Planet., Sol. Heliospheric Radio Emis-
sions held at Seggauberg near, Graz, Austria, Oct. 2016, pp. 411–424.
[Online]. Available: https://www.austriaca.at/?arp=0x0039b73f

[24] C. Ferencz, “Electromagnetic wave propagation in inhomogeneous,
moving media: A general solution of the problem,” Radio Sci.,
vol. 46, no. 5, pp. 1–4, Oct. 2011. [Online]. Available: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2011RS004686

[25] F. Lind et al., “AERO & VISTA: Demonstrating HF radio interferometry
with vector sensors SSC19-WKV-09,” 33rd Annu. AIAA/USU Conf.
Small Satell., 2019, pp. 1–7.

[26] M. Knapp et al., “Vector antenna and maximum likelihood imaging for
radio astronomy,” in Proc. IEEE Aerosp. Conf., Mar. 2016, pp. 1–17,
doi: 10.1109/AERO.2016.7500688.

[27] J. A. Durazo, E. J. Kostelich, and A. Mahalov, “Local ensem-
ble transform Kalman filter for ionospheric data assimilation:
Observation influence analysis during a geomagnetic storm event,”
J. Geophys. Res., Space Phys., vol. 122, no. 9, pp. 9652–9669,
Sep. 2017. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1002/2017JA024274

[28] S.-P. Moschou et al., “Synthetic radio imaging for quiescent and
CME-flare scenarios,” Astrophys. J., vol. 867, no. 1, p. 51, Oct. 2018,
doi: 10.3847/1538-4357/aae58c.

[29] O. Cohen et al., “Exoplanet modulation of stellar coronal radio
emission,” Astronomical J., vol. 156, no. 5, p. 202, Oct. 2018,
doi: 10.3847/1538-3881/aae1f2.

http://dx.doi.org/10.1007/BF00883972
http://dx.doi.org/10.1364/OL.42.002002
http://dx.doi.org/10.1109/TAP.1967.1138937
http://dx.doi.org/10.1088/0266-5611/26/4/045011
http://dx.doi.org/10.1109/MAP.2017.2731662
http://dx.doi.org/10.1109/JSAC.1985.1146168
http://dx.doi.org/10.1364/FIO.2011.FTuY6
http://dx.doi.org/10.1364/OE.19.025388
http://dx.doi.org/10.1364/OE.19.024596
http://dx.doi.org/10.1088/0031-8949/89/9/098001
http://dx.doi.org/10.1115/1.4025657
http://dx.doi.org/10.1063/1.4794735
http://dx.doi.org/10.1063/1.4870760
http://dx.doi.org/10.1175/BAMS-D-14-00269.1
http://dx.doi.org/10.1109/AERO.2006.1655750
http://dx.doi.org/10.1109/AERO.2016.7500688
http://dx.doi.org/10.3847/1538-4357/aae58c
http://dx.doi.org/10.3847/1538-3881/aae1f2
http://dx.doi.org/10.1109/PROC.1966.4698
http://dx.doi.org/10.1109/PROC.1966.4698


SHAFFER AND MAHALOV: PERMITTIVITY GRADIENT INDUCED DEPOLARIZATION: EM PROPAGATION WITH THE MVWE 1559

[30] S. Giacintucci, M. Markevitch, M. Johnston-Hollitt, D. R. Wik,
Q. H. S. Wang, and T. E. Clarke, “Discovery of a giant radio fossil
in the ophiuchus galaxy cluster,” Astrophys. J., vol. 891, no. 1, p. 1,
Feb. 2020.

[31] Q. Wang et al., “CASPER: Coupled air–sea processes and electro-
magnetic ducting research,” Bull. Amer. Meteorol. Soc., vol. 99, no. 7,
pp. 1449–1471, Jul. 2018, doi: 10.1175/BAMS-D-16-0046.1.

[32] H. C. Ward, J. G. Evans, C. S. B. Grimmond, and J. Bradford, “Infrared
and millimetre-wave scintillometry in the suburban environment—
Part 1: Structure parameters,” Atmos. Meas. Techn., vol. 8, no. 3,
pp. 1385–1405, Mar. 2015, doi: 10.5194/amt-8-1385-2015.

[33] H. C. Ward, J. G. Evans, and C. S. B. Grimmond, “Infrared and
millimetre-wave scintillometry in the suburban environment—Part 2:
Large-area sensible and latent heat fluxes,” Atmos. Meas. Techn., vol. 8,
no. 3, pp. 1407–1424, Mar. 2015, doi: 10.5194/amt-8-1407-2015.

[34] H. C. Ward, “Scintillometry in urban and complex environments:
A review,” Meas. Sci. Technol., vol. 28, no. 6, May 2017,
Art. no. 064005, doi: 10.1088/1361-6501/aa5e85.

[35] M. Zieliáski, K. Fortuniak, W. Pawlak, and M. Siedlecki, “Long-
term turbulent sensible-heat-flux measurements with a large-
aperture scintillometer in the centre of, central poland,” Boundary-
Layer Meteorol., vol. 167, no. 3, pp. 469–492, Jun. 2018, doi:
10.1007/s10546-017-0331-5.

[36] G. Pozníková et al., “Quantifying turbulent energy fluxes and evapo-
transpiration in agricultural field conditions: A comparison of microme-
teorological methods,” Agricult. Water Manage., vol. 209, pp. 249–263,
Oct. 2018, doi: 10.1016/j.agwat.2018.07.041.

[37] A. Musa and B. S. Paul, “A review of microwave cross polarization
in sand and dust storms,” J. Commun., vol. 14, no. 11, pp. 1026–1033,
2019, doi: 10.12720/jcm.14.11.1026-1033.

[38] M. Wagner, P. Gerstoft, and T. Rogers, “Estimating refractivity from
propagation loss in turbulent media,” Radio Sci., vol. 51, no. 12,
pp. 1876–1894, Dec. 2016, doi: 10.1002/2016RS006061.

[39] L. La Spada, S. Haq, and Y. Hao, “Modeling and design for electromag-
netic surface wave devices,” Radio Sci., vol. 52, no. 9, pp. 1049–1057,
Sep. 2017, doi: 10.1002/2017RS006379.

[40] M. Gilman, E. Smith, and S. Tsynkov, Transionospheric Synth. aperture
Imag. Cham, Switzerland: Springer, 2017, doi: 10.1007/978-3-319-
52127-5.

[41] S. G. Lee, S. W. Ra, and S. J. Lee, “Depolarization mitigation using
frequency offset in the dual-polarized X-band for eess,” in Proc. Int.
Workshop Satell. Space Commun., Sep. 2006, pp. 25–28, doi: 10.1109/
IWSSC.2006.255983.

[42] V. A. Sinclair, D. Moisseev, and A. von Lerber, “How dual-
polarization radar observations can be used to verify model represen-
tation of secondary ice,” J. Geophys. Res., Atmos., vol. 121, no. 18,
pp. 10954–10970, 2016, doi: 10.1002/2016JD025381.

[43] A. Taflove and S. C. Hagness, Computational Electrodynamcis—The
Finite-Difference Time-Domain Method, 3rd ed. Norwood, MA, USA:
Artech House, 2005.

[44] C. Wang and T. Keech, “Antenna models for electromagnetic compati-
bility analyses,” U.S. Dept. Commerce, Nat. Telecommun. Inf. Admin.,
Boston, MA, USA, Tech. Rep. TM-13-489, Oct. 2012.

[45] Q. Wang et al., “Range and height measurement of X-band
EM propagation in the marine atmospheric boundary layer,” IEEE
Trans. Antennas Propag., vol. 67, no. 4, pp. 2063–2073, Apr. 2019,
doi: 10.1109/TAP.2019.2894269.

[46] M. Ulate, Q. Wang, T. Haack, T. Holt, and D. P. Alappattu, “Mean
offshore refractive conditions during the CASPER east field campaign,”
J. Appl. Meteorol. Climatol., vol. 58, no. 4, pp. 853–874, Apr. 2019.

[47] J. E. Chamberlain, F. D. Findlay, and H. A. Gebbie, “Refractive index of
air at 0.337-mm wave-length,” Nature, vol. 206, no. 4987, pp. 886–887,
May 1965, doi: 10.1038/206886a0.

[48] J.-P. Berenger, “A perfectly matched layer for the absorption of elec-
tromagnetic waves,” J. Comput. Phys., vol. 114, no. 2, pp. 185–200,
Oct. 1994, doi: 10.1006/jcph.1994.1159.

[49] K. Yee, “Numerical solution of initial boundary value prob-
lems involving Maxwell’s equations in isotropic media,” IEEE
Trans. Antennas Propag., vol. 14, no. 3, pp. 302–307, May 1966,
doi: 10.1109/TAP.1966.1138693.

[50] D. C. Cox, “Depolarization of radio waves by atmospheric hydrometeors
in Earth-space paths: A review,” Radio Sci., vol. 16, no. 5, pp. 781–812,
Sep. 1981, doi: 10.1029/RS016i005p00781.

Stephen R. Shaffer received the B.S. degree in
astronomy, physics, and mathematics from the Uni-
versity of Arizona, Tucson, AZ, USA, in 2005,
the M.S. and Ph.D. degrees in mechanical engi-
neering from Arizona State University, Tempe, AZ,
USA, in 2009 and 2014, respectively. His disserta-
tion was on investigations of environmental effects
on freeway acoustics.

He held a post-doctoral position with the School of
Mathematical and Statistical Sciences, Arizona State
University, from 2014 to 2019, where he is currently
an Assistant Research Professor.

Alex Mahalov received the Ph.D. degree in applied
mathematics from Cornell University, Ithaca, NY,
USA, in 1991.

He held a post-doctoral position with the Depart-
ment of Mechanical Engineering, University of Cal-
ifornia at Berkeley, Berkeley, CA, USA. He joined
Arizona State University, Tempe, AZ, USA, where
he was promoted to the Wilhoit Foundation Deans
Distinguished Professor in 2008. He has authored
over 150 research articles and scientific reports.
His current research interests include the stochastic

Maxwell equations and their applications, computational modeling, imag-
ing, optical turbulence, and the stochastic theory of electromagnetic wave
propagation.

http://dx.doi.org/10.1175/BAMS-D-16-0046.1
http://dx.doi.org/10.5194/amt-8-1385-2015
http://dx.doi.org/10.5194/amt-8-1407-2015
http://dx.doi.org/10.1088/1361-6501/aa5e85
http://dx.doi.org/10.1007/s10546-017-0331-5
http://dx.doi.org/10.1016/j.agwat.2018.07.041
http://dx.doi.org/10.12720/jcm.14.11.1026-1033
http://dx.doi.org/10.1002/2016RS006061
http://dx.doi.org/10.1002/2017RS006379
http://dx.doi.org/10.1007/978-3-319-52127-5
http://dx.doi.org/10.1007/978-3-319-52127-5
http://dx.doi.org/10.1002/2016JD025381
http://dx.doi.org/10.1109/TAP.2019.2894269
http://dx.doi.org/10.1038/206886a0
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1109/TAP.1966.1138693
http://dx.doi.org/10.1029/RS016i005p00781
http://dx.doi.org/10.1109/IWSSC.2006.255983
http://dx.doi.org/10.1109/IWSSC.2006.255983

