
BioMed Central

Page 1 of 8

(page number not for citation purposes)

Source Code for Biology and 
Medicine

Open AccessSoftware review

Permutation – based statistical tests for multiple hypotheses
Anyela Camargo1, Francisco Azuaje2, Haiying Wang*3 and Huiru Zheng3

Address: 1University of East Anglia, School of Computing, Norwich, NR4 7TJ, England, UK, 2Laboratory of Cardiovascular Research, CRP-Santé, 
L-1150, Luxembourg and 3University of Ulster at Jordanstown, School of Computing and Mathematics, Shore Road, Newtownabbey, Co. Antrim, 
BT37 0QB, Northern Ireland, UK

Email: Anyela Camargo - A.Camargo-Rodriguez@uea.ac.uk; Francisco Azuaje - francisco.azuaje@crp-sante.lu; 
Haiying Wang* - hy.wang@ulster.ac.uk; Huiru Zheng - h.zheng@ulster.ac.uk

* Corresponding author    

Abstract

Background: Genomics and proteomics analyses regularly involve the simultaneous test of

hundreds of hypotheses, either on numerical or categorical data. To correct for the occurrence of

false positives, validation tests based on multiple testing correction, such as Bonferroni and

Benjamini and Hochberg, and re-sampling, such as permutation tests, are frequently used. Despite

the known power of permutation-based tests, most available tools offer such tests for either t-test

or ANOVA only. Less attention has been given to tests for categorical data, such as the Chi-square.

This project takes a first step by developing an open-source software tool, Ptest, that addresses

the need to offer public software tools incorporating these and other statistical tests with options

for correcting for multiple hypotheses.

Results: This study developed a public-domain, user-friendly software whose purpose was

twofold: first, to estimate test statistics for categorical and numerical data; and second, to validate

the significance of the test statistics via Bonferroni, Benjamini and Hochberg, and a permutation test

of numerical and categorical data. The tool allows the calculation of Chi-square test for categorical

data, and ANOVA test, Bartlett's test and t-test for paired and unpaired data. Once a test statistic

is calculated, Bonferroni, Benjamini and Hochberg, and a permutation tests are implemented,

independently, to control for Type I errors. An evaluation of the software using different public

data sets is reported, which illustrates the power of permutation tests for multiple hypotheses

assessment and for controlling the rate of Type I errors.

Conclusion: The analytical options offered by the software can be applied to support a significant

spectrum of hypothesis testing tasks in functional genomics, using both numerical and categorical

data.

Background
Current statistical inference problems in areas such as
genomics and proteomics regularly involve the simultane-
ous test of hundreds of null hypotheses. This strategy has
allowed scientists to unveil important cues on the mecha-
nisms involved in the development of deadly diseases. For

example, Barth et al. (2006) [1] analysed gene expression
patterns related to dilated cardiomyopathy (DCM) and
identified specific gene regulatory relationships relevant
to this disease condition. By means of Significant Analysis
of Microarray (SAM) and Nearest Shrunken Centroid
(NSC), 27 genes, whose expression profiles were sufficient
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to differentiate between DCMs and non-failing hearts
samples, were identified. Mathur et al. (2005) [2] ana-
lysed antibody arrays and identified potential candidates
for ischemic preconditioning-associated vascular growth
pathways. Potential candidates were identified by apply-
ing a cut-off threshold value that filtered out non-signifi-
cant probes. When dealing with these and related types of
data, many hypotheses are tested and each test has a spec-
ified Type I (i.e. false positive) error probability, which is
associated with the chance of committing Type I errors
[3]. Therefore, it is important to define an appropriate
Type I error threshold, as well as selecting an effective
multiple testing procedure to control this error rate and
account for the joint distribution of the test statistics.

To correct for the occurrence of false positives, validation
tests based on multiple testing corrections and re-sam-
pling techniques (i.e. permutation-based test) are fre-
quently used. Although both strategies aim to control
Type I error, these techniques implement different
approaches to estimating errors and rejecting null hypoth-
eses. Traditional multiple-testing corrections, such as Bon-
ferroni and variations, adjust P-values derived from
multiple statistical tests to correct for the occurrence of
false positives [4]. The Benjamini and Hochberg (B&H)
ranks P-values in an ascending order, multiplies them by
the number of features, and divides them by their corre-
sponding rank [5]. The permutation test re-samples N
times the total number of observations, in a population
sample, to build an empirical estimate of the null distri-
bution from which the test statistic has been drawn [6]. In
the end, the application of these methods leads to either
the rejection or acceptance of the null hypothesis. The
Bonferroni correction is known to be extremely conserva-
tive. It can lead to Type II (i.e. false negative) errors of
unacceptable levels, which may contribute to publication
bias and the exclusion of potentially relevant hypotheses
(e.g. significant differential expression between patient
groups or genotype-phenotype associations) [7]. In con-
trast, B&H is less stringent, which may lead to the selec-
tion of more false positives [5]. Unlike Bonferroni and
B&H, permutation tests do not use individual association
scores based on family-wise corrections [8]. Instead, per-
mutation-based tests estimate statistical significance
directly from the data being analysed. More importantly,
irregularities of the observed data are maintained in the
permuted data sets and are included in the estimation of
the permutation probability [9].

To date, permutation tests have become widely accepted
and recommended in studies that involved multiple sta-
tistical testing [3,6,7]. Despite its power, current available
tools, such TIGR MeV [10], offer permutation tests to esti-
mate P-values for either t-test or ANOVA only. Another
example is GeneSpring [11] that offers a permutation test

for multiple testing for either t-test or ANOVA test statis-
tics only. These and other tools published do not offer
multiple-testing solutions for categorical data, such as the
Chi-square. This test is appropriate for the analysis of
SNPs (single nucleotide polymorphisms) data to identify
significant patterns of genetic variability, i.e. variation-
phenotype associations. Another important statistical sig-
nificance assessment technique not available in well-
known open-source tools is the Bartlett test, which may be
used for testing equality of variances or the significance of
data dispersion differences across groups. Moreover, the
Bartlett test should also be used before attempting the cal-
culation of either ANOVA or t-test, as they assume that
variances are equal across groups or samples.

Given the evident need to offer software tools incorporat-
ing such statistical tests with options for correcting for
multiple tests, this study takes a first step by developing a
public-domain, user-friendly software with the following
functionality. The tool allows the calculation of Chi-
square test for categorical data, ANOVA test, Bartlett's test
and t-test for paired and unpaired data. Once a test statis-
tic is calculated, Bonferroni, B&H and a permutation tests
are implemented, independently, to control for Type I
errors. P-values from the permutation test were estimated
as follow, using the data encoding format shown in Figure
1:

First, test statistic and corresponding P-value are calcu-
lated on the original data set. Data are permuted at ran-
dom B times and test statistics are calculated on each
permuted data set. Third, permuted distribution is calcu-
lated by: counting the times (K) the statistic value
obtained in the original data set was smaller than the sta-
tistic value obtained from the permuted data sets, and
dividing that value by the number of random permuta-
tions i.e. K/B. Results are stored in a text file for subse-
quent analyses. Table 1 offers guidelines for the selection
of the most appropriate statistical test under this system.

Implementation
The software is a Java-based, command-line tool [see
Additional files 1 and 2]. Input data are presented in a
plain text file, where rows represent samples and columns
represent features (Figure 1). The maximum number of
groups to be compared is two, with two exceptions: the
Chi-square test, for categorical data, and the ANOVA test
for numerical data, which permit the comparison of more
than two more groups. These requirements have been
defined because they cover most of the typical multiple-
testing applications in gene expression and SNPs data
analysis. New functionality (e.g. Windows interface or
other relevant tests) could be added based on future
requirements and additional external user feedback.
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Statistical tests

The tool has at the user's disposal the following statistic
tests: Student's test for numerical data, two classes; Bar-
tlett's test for numerical data, two classes; ANOVA test for
numerical data, more than three classes; and Chi-square
for categorical data, two or more classes. For detailed
information about each test, please refer to National Insti-
tute of Standards and Technology/Semiconductor Manu-
facturing Technology e-Handbook of Statistical Methods
[12].

Multiple hypotheses testing procedures

Given (N) number of samples, (C) number of classes, (F)
number of features, (S) significance level, (B) number of
permutations, and (T(obs)) test statistic, validation meth-
ods are as described bellow:

Multiple testing correction: P-values, according to test sta-
tistic and degrees of freedom (N-2), were obtained and
adjusted under Bonferroni and B&H multiple testing cor-
rections B[5]. Permutation test: test statistic is estimated
from original data set T(obs); sample's labels are shuffled
B times and T(obs)s' are obtained; if T(obs) <T(obs)' a
counter T(per) is increased by 1. The probability that
T(obs) occurred by chance alone is: T(per)/B.

Software usage

Typical usage involves a user providing the following
information: file name containing the data to be analysed,

the name of new file where results are to be stored, the
selection of test statistic to be calculated, the significance
level at which the null hypothesis is to be rejected, and the
number permutated data sets to be created for the estima-
tion of the null-hypothesis distribution (Figure 2) [see
Additional file 3]. Depending on the test statistic to be cal-
culated, the user may need to provide additional informa-
tion in a few steps. For example, if the t-test is selected, the
user should indicate whether samples (i.e. groups being
compared) are independent or not (paired). The user is
also allowed to specify which type of distribution should
be used: one- or two-tailed distribution. Once the
required information is provided, the tool performs the
analysis and displays those features whose raw P-values
are below the significance level, their corrected P-value
after Bonferroni correction, their corrected P-value after
B&H correction, and their corrected P-values after per-
forming the permutation test.

Figure 3 is a pseudo-code representation of the multiple
testing correction procedure implemented.

Results
To illustrate some of the advantages of using the permuta-
tion-based test for multiple hypotheses validation, this
section summarises examples of analyses using publicly
available data. This includes a comparison with results
obtained when Bonferroni correction was applied (Table
2).

Format specifications of the input dataFigure 1
Format specifications of the input data. Format specifications of the input data. Rows represent samples and columns 
represent features.

Table 1: Statistical tests provided by the Ptest software. 

Goal Measure Data type Test

To compare two unpaired groups Mean Numerical unpaired t-test

To compare two paired groups Mean Numerical paired t-test

To compare two or more unmatched groups Proportions Categorical Chi-square test

To compare two groups Variance Numerical Bartlett

To compare three or more unmatched group Mean Numerical ANOVA

Selecting the correct statistical test available in the Ptest software.
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Testing data sets

Three data sets were used in the analysis:

1) A microarray data set generated by a study in dilated
cardiomyopathy was obtained from the GEO (Gene
Expression Omnibus) [13], accession number GDS2205
(for numerical data analysis) and composed of 12 sam-
ples: 5 from non-failing hearts and 7 from DCM patients.

2) A genotype data set (for categorical data analysis) was
obtained from the Single Nucleotide Polymorphism data-
base (SNPdb) [14]. This data set was composed of 34 sam-
ples, 10 from African-American people, 12 from
European-American people and 11 from Han-Chinese
people.

3) A microarray data set, oligo array, generated by a study
in heart failure was obtained from the GEO, accession
number GDS1362, was composed of 37 samples: 7, 20
and 10 samples were obtained from non-failing hearts,
DCM heart, and Ischemic cardiomyopathy (ICM) patients
respectively.

Data pre-processing

Microarray data: probe sets with absent calls in more than
50% of their transcripts were discarded. Transcripts of
probe sets corresponding to similar gene symbols were
averaged. Data were normalised per chip and then per
gene. Values were transformed using the mean and stand-
ard deviation of the row (per gene) or column (per chip).
Genotype data did not require pre-processing.

Statistical analyses

The first analysis calculated Bartlett's test statistic to deter-
mine whether the variances of two experimental groups,
from a microarray data set [see Additional file 4], were
equal. The null hypothesis of this analysis was that there
was no significant difference between the variances of the
two groups, and the significance level to reject the null
hypothesis was set to 0.05. Data set was composed of 12
samples: 5 and 7 samples were obtained from non-failing
hearts and DCM patients respectively. Out of 8068 genes,
526 genes were found to be statistically significant (P <
0.05, before correction for multiple-testing), one gene was
under the significance level after correcting with Bonfer-
roni, and one gene was under the significance level after
correcting with B&H. However, after performing the per-
mutation test, 327 genes were found significantly differ-
entially expressed (P < 0.05). That is, the two group
samples being compared exhibit equal variances, which is
commonly expected in typical microarray data analyses.

The second analysis implemented the t-test (type: two
sample equal variances; number of distribution tails: two-
tailed): equal variances and two tailed) to estimate the

Permutation test tool usage flowchartFigure 2
Permutation test tool usage flowchart. Permutation 
test tool usage flowchart. Significance level (α), number of 
permutations (B). Bonferroni (Bf) and Benjamini and Hoch-
berg (B&H).
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Algorithm for multiple testing correction based on permutation testFigure 3
Algorithm for multiple testing correction based on permutation test. Algorithm for multiple testing correction 
based on permutation test. Significance level (α), number of permutations(B), counter (T(per)), number of features (F), test sta-
tistic original data (T(obs)), test statistic permutated dataset (T(obs)').

Table 2: Results of analyses of statistical tests. 

Test Data description Groups Features Samples Feature selection according to

raw P-value Multiple test correction

Bonferroni B&H PT

Bartlett Microarray Numerical 2 8068 12 526 1 1 327

t-test Microarray Numerical 2 8068 12 1413 2 39 1398

Chi-square Single nucleotide polymorphisms (SNP) Categorical 3 334 33 153 8 131 153

ANOVA Microarray Numerical 3 14976 37 6371 9 3331 6262

Comparative statistics when multiple-testing correction is based on either Bonferroni correction, Benjamini and Hochberg (B&H), or permutation 
test (PT), against potentially significant features (P-value) before correction. Significance level (α) = 0.05, Number of permutations (B) = 10000.
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potential statistical significant difference between the
means of two (normally distributed) experimental
groups, from the same microarray data set analysed above
[see Additional file 5]. The null hypothesis of this analysis
was that there was no difference between the means of the
two groups, and the significance level to reject the null
hypothesis was set to 0.05. In this case, the raw P-values of
1413 genes were under the significance level (P < 0.05),
39 genes were under the significance level after correcting
with B&H, and only two genes were under the significance
level after correcting with Bonferroni. In this case, results
were consistent with our expectations: B&H identified
more genes than Bonferroni did, which shows that the
former tends to be less stringent. After performing the per-
mutation test, 1398 genes were found significantly differ-
entially expressed (P < 0.05). In addition, we noted that
the raw P-values of some of the genes filtered out by Bon-
ferroni were well below the significance level, i.e. they
were potentially significant under a less conservative cor-
rection approach. For example, raw P-values of ACVR1
and CFHR1 were 0.0004 and 0.004, respectively, and their
P-values after Bonferroni correction were above 0.9. How-
ever, based on the permutation-based test, these two
genes fall below the significance threshold (corrected P
values: 0.0001 and 0.001 for ACVR1 and CFHR1, respec-
tively). This, as expected, shows the statistical power of
permutation-based procedures for multiple testing.

The third analysis implemented the Chi-square test on
categorical data derived from a genetic variation data set
(SNPs) [see Additional file 6]. The problem was to deter-
mine statistically significant genetic variations among the
SNPs of three ethnic groups: African-American, European-
American and Chinese. The data encode genotype values
for each SNP under each group [15]. This data set was
composed of 34 samples: 10 from African-Americans, 12
from European-Americans and 11 from Han-Chinese
people. The null hypothesis of this analysis was that there
were no genetic differential variations among the three
groups, and the significance level to reject the null
hypothesis was set to 0.05. In this case the raw P-values of
153 SNPs, out of 334, were under the significance level (P
< 0.05). Bonferroni correction identified only eight SNPs,
whose P-values were below significance level, and B&H
correction identified 131 SNPs, whose P-values were
below significance level. In contrast, the permutation test
identified more features than B&H: 153 SNPs with signif-
icant P-values. These results are consistent with the results
reported by Carlson, et al. (2003) [16], which found that
only 48% of the SNPs were shared by African-Americans
and European-Americans. In our study, the permutation-
based adjustment found that 55% of SNPs showed no sig-
nificant differences among the three populations been
analysed. These results again confirm the statistical power
of permutation-based procedures for multiple testing.

A fourth analysis implemented the ANOVA test to esti-
mate the potential statistical significant difference
between the means of three (normally distributed) exper-
imental groups. Samples in this data set were obtained
from heart tissue of healthy donors, as well as from
donors suffering from either dilated or ischemic cardio-
myopathy [see Additional file 7]. We used the ANOVA test
to look for possible outstanding differences among the
three populations evaluated, because t-test is designed to
perform pair-wise comparisons, only. The null hypothesis
of this ANOVA analysis was that there were no differences
between the means of the three groups, and the signifi-
cance level to reject the null hypothesis was set to 0.05. In
this case, the raw P-values of 6371 genes were under the
significance level (P < 0.05), 3331 genes were under the
significance level after correcting with B&H, and only nine
genes were under the significance level after correcting
with Bonferroni. After performing the permutation test,
6262 genes were found significantly differentially
expressed (P < 0.05). The genes reported as significantly
differentially after correcting via Bonferroni were not
included in the set of potentially significant genes
detected by the permutation test. In addition, we com-
pared our results against those previously reported by Kit-
tleson, et al. (2005) [17] and found that most genes
reported by them as significantly differentially expressed
were also below significant level when our permutation
test was performed, or when P-values were corrected via
the B&H method. In contrast, only one of the genes
reported by Kittleson's was also below significant level
after we corrected with Bonferroni. Perhaps this analysis
showed the real strength that the permutation test has to
identify potential biomarkers of disease.

Conclusion
The techniques for multiple testing offered here through a
platform-independent tool are relevant to a variety of data
analysis tasks in biology and medicine. The results also
allowed us to illustrate the power of a permutation test for
multiple hypotheses assessment procedures and for con-
trolling the rate of Type I errors. We also demonstrated
that even when P-values were corrected via B&H, which is
considered a less stringent method as opposed to Bonfer-
roni, a number of potentially significant features were dis-
missed. The software is easy to use and it offers the basis
for future extensions. Another key contribution is the
implementation of multiple hypotheses statistical testing
techniques for both numerical and categorical data. The
analytical options offered can be applied to support a sig-
nificant spectrum of hypothesis testing tasks in functional
genomics, e.g. fast detection of significantly differentially
expressed genes and genotypes. Moreover, to the best of
our knowledge, this is the first open-source software tool
freely available for supporting less traditional genomic
applications, such as the detection of between-group dif-
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ferences on the basis of SNPs. In this area multiple-testing
procedures have traditionally relied on very stringent
adjustment approaches (e.g. Bonferroni).

Despite its simplicity, in terms of usability, this tool in
comparison with others, such as GeneSpring and TIGR
MeV, offers the following advantages: Freely-available, as
TIGR MeV does, no computational installation cost, easy
to use, computationally inexpensive. Moreover it allows
the calculation of traditional statistical tests and multiple
testing with categorical data, as well as test- and distribu-
tion-independent permutation-based tests.

We expect to continue expanding the tool with alternative
statistical significance measures, such as Fisher's exact test,
Z or Wald scores. We will welcome additional user's feed-
back after the publication of this article.

Availability and requirements
Project name: Permutation-based statistical tests for mul-
tiple hypotheses

Project home page: http://rosalind.infj.ulst.ac.uk/CWB/
Ptest.html

Operating system(s): Platform independent

Programming language: Java

Other requirements: Java 1.5.1 or higher

License: None

Any restrictions to use by non-academics: None
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ANOVA: Analysis of variance; DCM: Dilated CardioMy-
opathy; SAM: Significant Analysis of Microarray; NSC:
Nearest Shrunken Centroid; SNP: Single nucleotide poly-
morphisms
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