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This paper presents a method for blind separation of convolutive mixtures of speech signals, based on the joint diagonalization
of the time varying spectral matrices of the observation records. The main and still largely open problem in a frequency domain
approach is permutation ambiguity. In an earlier paper of the authors, the continuity of the frequency response of the unmixing
filters is exploited, but it leaves some frequency permutation jumps. This paper therefore proposes a new method based on two
assumptions. The frequency continuity of the unmixing filters is still used in the initialization of the diagonalization algorithm.
Then, the paper introduces a new method based on the time-frequency representations of the sources. They are assumed to vary
smoothly with frequency. This hypothesis of the continuity of the time variation of the source energy is exploited on a sliding
frequency bandwidth. It allows us to detect the remaining frequency permutation jumps. The method is compared with other
approaches and results on real world recordings demonstrate superior performances of the proposed algorithm.
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1. INTRODUCTION

Blind source separation consists in extracting independent
sources from their mixtures, without relying on any specific
knowledge of the sources. Earlier works have been focused
on linear instantaneous mixtures and several efficient algo-
rithms have been developed.

The problem is much more difficult in the case of con-
volutive mixtures, especially audio mixtures. Although there
have been many works on this subject [1–3], the success-
ful application of the proposed algorithms in realistic set-
tings is still elusive [4], due mainly to the long impulse re-
sponses of the mixing filters. To blindly separate the sources,
one would have to find an “inverse filter” (which would also
have long response) such that the recovered sources are as
mutually independent as is possible. A direct (time domain)
approach would be too computationally heavy, not to men-
tion the difficulty of convergence, since it requires the ad-
justment of too many parameters. However, by using the
Fourier transform, the separation problem of convolutive
mixtures can be recast as a set of separation problems of
instantaneous mixtures associated with each frequency bin,
which can be solved independently. But the discrete Fourier
transform tends to produce nearly Gaussian variables, and it
is well known that blind separation of instantaneous mix-
tures requires non-Gaussianity. Fortunately, speech signals

are highly non stationary so a promising approach is to ex-
ploit this nonstationarity to separate their mixtures using
only their second-order statistics [5], which leads to a joint
diagonalization problem. This approach has been developed
in two earlier papers of the authors [6, 7]. Actually, the idea
of exploiting nonstationarity was introduced even earlier by
Parra and Spence [1], but these authors used an ad-hoc cri-
terion, while in our papers, a criterion based on the Gaussian
mutual information and related to the maximum likelihood
is used. Such a criterion has in fact been considered in [3],
but without using the nonstationarity idea.

The main advantage of the frequency domain approach is
that the calculations can be done in each frequency bin sep-
arately and independently, but it comes with a price. As the
independence criterion is optimized independently, the sep-
arating matrices can be obtained only up to a scale change
and a permutation. The scale ambiguity is inherent to the
blind separation of convolutive mixtures, since it amounts to
applying some filter to each signal and it is clear that such
operations do not affect their independence. This ambigu-
ity can be removed by using some a priori knowledge of the
source signals or by setting constraints to the unmixing fil-
ters. So, the original sources cannot be generally recovered
and one solution consists in estimating the contribution of
the sources recorded on the sensors without the presence of
the other sources. The scale ambiguity is fixed such that one
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output is as close as possible to one sensor by minimizing a
mean square error (minimal distortion principle) [8]. This
can be realized in the frequency domain by multiplying the
outputs by the inverse of the unmixing matrix [9, 10].

The permutation ambiguity must be eliminated or re-
duced to a global ambiguity not dependent on the frequency.
This is the main problem in a frequency domain approach.
In the context of blind separation of audio signals, it is the
biggest challenge and is still not satisfactorily solved. There
have been many proposals to resolve the permutation ambi-
guity. The earlier works added a constraint to the separation
filters by imposing a finite (short) time support [3] as permu-
tations induce filters with infinite or very long tail responses.
This idea may be impractical in this audio context, as for long
responses the inverse is usually longer [3, 11, 12].

Two other approaches can also be envisaged. They ex-
ploit either the continuity of the unmixing filters or the time
structure of speech signals. The first idea consists of ensur-
ing the continuity of the separation filter frequency response
[2, 3, 6, 13]. This is rather similar to imposing the constraint
of short-time support, since such a constraint would entail
some smoothness on the filter frequency response. The sec-
ond idea is to exploit the time envelope structure and to add
frequency coupling [2, 7, 9, 14]. These methods rely on the
assumption of the comodulation of speech signals. There-
fore, the source components belonging to the same source
signal, but at different frequencies, should have similar shape
in amplitude. Testing all the correlations on amplitude spec-
trograms [14] could greatly increase the complexity of the al-
gorithm and simpler methods proposed to test only the cor-
relation (or a distance) at one frequency bin with the sum
of the aligned frequencies as reference [7, 9, 15] or to pro-
cess first the channels that have the maximum signal energy
[14]. In [16], the permutation is solved in increasing order
of similarity and algorithm is implemented in a random fre-
quency sequence. However, calculating the correlations over
the whole frequency band is not always efficient as the time-
frequency representation coming from the same source can
vary considerably across frequency (especially for the higher
frequencies) [15, 17]. The work [18] considers the correla-
tion between the envelopes at neighbouring frequency bins,
however, it is sensitive to any misaligned frequency bins. Fur-
ther, the coherency at neighbouring frequencies only exists
in a simple environment and does not hold in most cases
[15, 19].

Another approach of addressing the problem is to apply
beamforming techniques to the permutation alignment [20–
27] in a sensor array context. Several methods also combined
the previous approaches [10, 15, 20–22]. The work [15] pro-
posed also to add a psychoacoustic filtering process to solve
the problem.

This paper focuses on this challenging problem of per-
mutation correction in the frequency domain and introduces
a new method based both on the spectral continuity of the
mixing filters and on the time variation of the signal en-
ergy in each frequency bin as well as its continuity across fre-
quency. It extends earlier papers of the authors [6, 7]. First,
the spectral continuity of the mixing (and therefore of the

unmixing) filters is used in the initialization of the joint di-
agonalization algorithm. The exploitation of the continuity
of the unmixing filters can perform quite well if the mix-
ing filter does not contain strong echoes [6]. If not, the mix-
ing filter frequency response matrix can be ill-conditioned
for isolated frequency bins [6]. For those bins, the above
method fails to identify correctly the permutations, as the es-
timated sources are still mixtures (with similar proportions)
so it would be hard to determine to which source they cor-
respond. Nevertheless, this method is efficient for most fre-
quency bins and it tends to fail only on isolated frequency
bins, which then produces permutation error on the whole
frequency band delimited by those bins as the method forces
the spectral continuity of the outputs. So, if there remain
some frequency permutations to be corrected after this step,
they appear as permutation jumps and not errors occurring
on isolated bins.

The originality of this paper is then to introduce a new
method based on the consideration of the smoothly time
variation of the signal energy across frequency. The pro-
posed algorithm is especially devoted to the detection of per-
mutation jumps. The standard hypothesis of similar time-
frequency representations coming from the same source
[7, 9, 14, 18] is abandoned in this paper as observations
show that they can vary strongly across frequency [15, 17]
and that even correlation between the envelopes at neigh-
bouring frequency bin is not always verified on experimen-
tal data [15, 19]. So, we only assume that they vary smoothly
with frequency and that they are continuous across the fre-
quency axis. Thus we work with time variation of the sig-
nal energy averaged on a sliding bandwidth around the pro-
cessed bin, instead of the whole frequency band as in [9]. As
only permutation jumps can occur, at each frequency bin,
the method tests the continuity of all the averaged time vari-
ations of the signal energy across frequency. A short descrip-
tion of the method can also be found in an earlier conference
paper [17]. The idea of the continuity of the time variation
of the energy arises at the same time in [19] but is exploited
in a different way, using reference frequencies.

The paper proposes an original frequency dependent dis-
tance in order to compare this continuity. For each bin and
output, the time variations of the signal energy are averaged
on a bandwidth around the processed bin. We compute first
the difference between the averaged time variations of the
signal energy as a continuity measure. In short, the method
is looking at the bins where a sign change of all these mea-
sures appears across the time index. More precisely, the dis-
tance compares the continuity measure for the output itself
and for the outputs associated with an imposed permutation.
The two distances allow to distinguish the two situations and
to solve efficiently the permutation ambiguity. The work [19]
proposes a frequency-dependent distance between the pro-
cessed bin f and the most reliable reference frequencies close
to f . On the contrary, the proposed method does not need
any reference as in [9, 19]. The additional information on the
spectral diversity and continuity is powerful for quite short
observations where conventional methods based on correla-
tions on amplitude spectrograms [9, 14, 18] fail.
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The paper is organized as follows. Section 2 describes the
observation model for convolutive mixtures and the separa-
tion method based on the joint diagonalization of time vary-
ing spectra. Section 3 focuses on the permutation ambiguity
problem and the methods to solve it. Finally, performance of
the global separation method is investigated with simulation
and experimental speech data in Section 4.

2. MODEL AND METHODS

The problem considered corresponds theoretically to the
blind separation of convolutive mixtures: the observed se-
quences {x1(t)}, . . . , {xK (t)} are related to the source se-
quences {s1(t)}, . . . , {sK (t)} through a mixing filter with im-
pulse response matrix {H(n)}, of general element {Hk j(n)},
as

xk(t) =
∞∑

n=−∞

K∑

j=1

Hk j(n)s j(t − n), 1 ≤ k ≤ K. (1)

The goal is to recover the sources through another filtering
operation:

y(t) =
∞∑

n=−∞

G(n)x(t − n), (2)

where x(t) = [x1(t) · · · xK (t)]T (T denoting the transpose),
{G(l)} is the impulse response matrix of the separation filter
and y(t) = [y1(t) · · · yK (t)]T is the recovered source vector.

As one does not have any specific knowledge either of the
source distributions or of the mixing filter, the idea is to ad-
just the separating filter such that the recovered sources are
as independent as is possible. A direct time domain approach
would mean minimizing some independence criterion (for
the sequences {y1(t)}, . . . , {yK (t)}), with respect to the ma-
trix sequence {G(n)}, assuming that one has truncated it to
some finite sequence. The difficulty is that in audio appli-
cations the mixing filter often has a quite long impulse re-
sponse which contains strong peaks corresponding to echoes,
so the separating filter should also have long impulse re-
sponse, hence there would be too many parameters to adjust.
This would be computationally too heavy, not to mention
the difficulty of ensuring the convergence of the optimization
algorithm. In this context, the frequency domain approach
seems to be more interesting (and is often adopted), since
it reduces the problem to a set of independent separation
problems of instantaneous mixtures associated with each fre-
quency bin. Indeed, let X(t, f ) (resp., S(t, f )) be the vec-
tor composed of the N-points sliding discrete Fourier trans-
forms (DFT) of the data block [x(t) · · · x(t + N − 1)] (resp.,
[s(t) · · · s(t + N − 1)]) along the time axis t. With these no-
tations, the mixing model (1) can be written approximately
as

X(t, f ) = H( f )X(t, f ), (3)

where H( f ) denotes the frequency response of the mixing
filter. The approximation comes from the fact that the DFT
is based on finite stretches of data; it becomes exact as the

data length N goes to infinity. The above model is an in-
stantaneous mixing model for each frequency bin. Further,
since the DFT at different frequencies tends to be indepen-
dent, it is justified to treat the separation of instantaneous
mixture problems independently. But the DFT also tends
to produce nearly Gaussian variables while blind separation
of instantaneous mixtures requires non-Gaussianity.1 Fortu-
nately, speech signals are highly nonstationary and one can
exploit this feature to achieve separation using only second-
order statistics. By adopting a second-order approach, we are
in fact focused on the interspectra between the reconstructed
sources at every frequency. But since we are dealing with non-
stationary signals, we will consider the time varying spectra,
that is the localized spectra around each given time point. It
is precisely the time evolution of these spectra which helps us
to separate the sources.

2.1. Joint diagonalization criterion

From (3), the time varying spectrum of the vector observa-
tion sequence {x(t)} is

Sx(t, f ) = H( f )Ss(t, f )H∗( f ), (4)

where Ss(t, f ) is the diagonal matrix with diagonal elements
being the time varying spectra of the sources and ∗ denotes
the transpose conjugated. The spectrum of the reconstructed
source vector, which equals G( f )Sx(t, f )G∗( f ), should be
diagonal. Thus to perform the separation, a natural idea is
to find matrices G( f ) such that for each frequency f the

matrices G( f )Ŝx(t, f )G∗( f ), at different time points t, are

as close to diagonal as is possible, where Ŝx(t, f ) are esti-
mates of Sx(t, f ). This idea has been exploited by Parra and
Spence [1, 13], but they use a different diagonality criterion
from ours. The one we use is the same as in [5] in the in-
stantaneous case and comes from the maximum likelihood
and/or the mutual information approach. A similar criterion
also in the instantaneous case has been proposed in [28] but
without link to the maximum likelihood. This criterion has
also been considered in [3] in the convolutive case but with-
out using the nonstationarity idea. Experiments realized in
the case of instantaneous mixtures show that it is a powerful
criterion [5]. Besides, we have developed a simple and very
fast algorithm to perform joint approximate diagonalization
based on minimizing this criterion [29]. For a single matrix

G( f )Ŝx(t, f )G∗( f ), the diagonality measure is given by

1

2

{
log det diag

[
G( f )Ŝx(t, f )G∗( f )

]

− log det
[

G( f )Ŝx(t, f )G∗( f )
]}

,
(5)

1 This does not mean that one cannot separate the sources but only that
higher (than second) order moments of the DFT are of little use and one
has to consider also cross higher order moments between the DFT at dif-
ferent frequencies. But this would require treating all the separation of
instantaneous mixture problems simultaneously and not independently.
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where diag(·) denotes the operator which builds a diag-
onal matrix from its argument. But the last term equals

2 log |det G( f )|+log det Ŝx(t, f ) and the term log det Ŝx(t, f )
being constant, can be dropped. Therefore a global diagonal-
ity criterion can be written as

∑
t

{
1

2
log det diag

[
G( f )Ŝx(t, f )G∗( f )

]
− log

∣∣det G( f )
∣∣
}

,

(6)

where the summation is over the time points of interest. This
criterion is to be minimized with respect to G( f ) to obtain
the frequency response of the separation filter. Note that such
minimization can be done in each frequency bin separately
and independently, using the fast joint diagonalization algo-
rithm [29].

2.2. Spectral estimation

The first step in the separation procedure is to estimate the
(time varying) spectral matrix of the observation sequences
appearing in the criterion (6). It is important to have good es-
timators since the quality of the separation depends on their
accuracy, as all subsequent calculations are based on these
estimators. Specifically, we will need a very high frequency
resolution, as the mixing filter frequency responses present
rapid variations (due to their long impulse responses) and
this forces us to work with very narrow frequency bins. We
also need a good time resolution in order to fully exploit the
nonstationarity of the source signals (and also for the “pro-
file” method in Section 3 to work well). Of course both high
frequency and time resolutions would result in a larger vari-
ance of the estimator, so some compromise must be reached.
But in the present situation, high resolutions should be given
more importance than low variance.

There are several ways to estimate the spectrum of a
(multivariate) signal [30]. We focus on frequency domain
methods as time domain methods are too costly since a large
number of lags would be needed. Since we are dealing with
time varying spectra, the simplest way is to subdivide the
data sequence into consecutive blocks and estimate the spec-
trum as if the data inside each block came from a stationary
process. A common (frequency domain) estimation method
is to compute the DFT of the data block, forming the peri-
odogram and then averaging it over consecutive frequencies.
In practice, we find that this method lacks flexibility since we
have few choices for the number of frequencies to average:
due to the required high resolution, the choices reduce to 3
and 5. Also, the block length should be a power of 2 in order
to benefit from the fast Fourier transform, so its choice is also
very limited. Therefore, we will adopt another method which
is also common in the case of nonstationary signals. We will
work with shorter block lengths and further introduce a taper
before applying the DFT. The tapered periodogram is now
averaged not over frequency but over time using sliding data
blocks. The number of data blocks to be averaged is related to
the time resolution and can be easily fine tuned. The block
length is related to the frequency resolution and can also be
adjusted to a large degree, since this length is not so large and

the use of a taper makes it possible to have an effective block
length of any size. We first form the short term sliding peri-
odogram using a Hanning taper window

Px(τ, f ) =
1∥∥HN

∥∥2

[∑
t

HN (t − τ)x(t)e2πi f t

]

×

[∑
t

HN (t − τ)x(t)e2πi f t

]∗
,

(7)

where HN is the Hanning taper window of length, N :
HN (t) = 1 − cos(2πt/N + π/N) for 0 ≤ t < N , 0 otherwise,
and ‖HN‖

2 =
∑N−1

t=0 H2
N (t) (which equals 3N/2). This pe-

riodogram will be averaged over m consecutive equispaced
points τ1, . . . , τm yielding the estimated spectrum at time
(τ1 + τm + N − 1)/2:

Ŝx

(
τ1 + τm + N − 1

2
, f

)
=

1

m

m∑

k=1

Px
(
τk, f

)
. (8)

The frequencies are taken to be of the form f = n/N ,n =
0, . . . ,N/2, with N being chosen to be a power of 2, to take
advantage of the fast Fourier transform. Thus the spectrum
is estimated at a frequency spacing of 1/N , but the real fre-
quency resolution is lower due to tapering. The use of taper-
ing also helps to reduce the bias of the estimator. It is also
possible to choose N , not to be a power of 2, by padding ze-
ros to the tapered data block to increase its length to the next
power of 2. This doesn’t change the real frequency resolution
but only increases the number of frequency points at which
the spectrum is estimated. The time resolution is determined
by mδ, where δ = τi − τi−1 is the spacing between the τi. Us-
ing δ≫ 1 helps to reduce the computational cost but slightly
degrades the estimator: actually δ can be a small fraction of
N without a significant degradation. Of course a compro-
mise between time and frequency resolution has to be made
to get a reasonably low variance of the estimator. The interest
of the chosen spectral estimation is that this compromise is
easier to obtain than with other spectral estimations [6, 7].

2.3. The scale and permutation ambiguity problems

The frequency domain approach has the great advantage that
the calculations can be done in each frequency bin sepa-
rately and independently. This is very important since in the
present application the number of these bins must be very
large as the response of the separation filter could be very
long. A time domain approach would require the minimiza-
tion of some criteria with respect to a very large number of
parameters, which is too costly. By contrast, in our approach,
for each frequency bin, one only has a small minimization
problem, which can be solved very quickly. There is however
a price to be paid for this. The joint diagonalization of the
time varying spectra Ss(t, f ) only provides the matrices G( f )
up to a scale change and a permutation: if G( f ) is a solution,
then so is Π( f )D( f )G( f ) for any diagonal matrix D( f ) and
any permutation matrix Π( f ). Thus, one only gets a separa-
tion filter of frequency response matrix of the form

G(f) = Π(f)D(f)Ĥ−1(f), (9)
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where Ĥ( f ) is a consistent estimator of H( f ), but Π( f ) and
D( f ) are arbitrary permutation and diagonal matrices.

It should be noted that the above ambiguity problem is
not really related to the frequency domain approach but to
the use of a criterion such as (6) which expresses the mu-
tual dependence of the signals in a decoupling way in the fre-
quency domain. The scale ambiguity can be removed by re-
constructing the ith output as close as is possible to the con-
tribution of the ith source on the ith sensor (or minimal dis-
tortion principle) [8–10]. The scale ambiguity is solved in the
experimental results by applying frequency domain Wiener
filtering between outputs and sensors, where outputs act as
reference signals. However, the permutation ambiguity is a
more difficult problem which is still open. The main novelty
of this work is a method to resolve this crucial problem. The
algorithm is described in detail in the next section.

3. RESOLVING THE PERMUTATION AMBIGUITY

Several ideas have been introduced to resolve the permuta-
tion ambiguity, as detailed in the introduction. The first one
consists in constraining the separating filters with short sup-
port FIR structures in the time domain [2, 3]. It may be not
useful, as the mixing filter response is already quite long and
for long responses the inverse is usually longer [3, 11, 12].
Other ideas are to exploit a continuity assumption on the fre-
quency response of the unmixing filters [2, 3, 13] or to add
frequency coupling [2, 7, 9, 14, 15, 17–19, 31], for example,
in the adaptation parameters to preserve the same permuta-
tion [2, 14].

Several methods also used geometric information such as
beam patterns [20–22, 25] direction of arrival and source lo-
cation [24, 27]. It seems to be an effective approach without
too much multi-path propagation and with distinct localiza-
tion of sources. Unfortunately, classification based on the es-
timated location tends to be inconsistent especially in a rever-
berant environment [24] and needs additional methods such
as inter-frequency correlation for neighbouring bins [18] to
solve the permutation problem for all bins [24].

In [6] we have proposed a method to solve the permu-
tation ambiguity problem based on the continuity of the fre-
quency response of the separation filter, which is more or less
equivalent to constraining this filter to have short support in
the time domain [2, 3, 13]. It has the advantage that it re-
lies only on the weak assumption that the frequency response
H(f) of the mixing filter is continuous and requires a very lit-
tle computational cost. However, it has a main weakness that
it can leave wrong permutations over a block of contiguous
frequency bins. In this paper, a method is proposed to ad-
dress this weakness.

3.1. Overview of our earlier works

The method in [6] assumes that H( f ) is continuous and
hence the frequency response G( f ) of the separating fil-
ter should also be continuous. But a permutation function
cannot be continuous unless it is a constant function, this
constraint reduces the ambiguity with respect to a permu-
tation varying with the frequency to that with respect to a

global fixed permutation. This global permutation ambigu-
ity is unavoidable, since it corresponds to simply permuting
the recovered sources. In practice, G(f) will be available only
over a finite regular grid of frequencies f0 < · · · < fL, say.
To detect permutation change, one may look at the “ratio”
G(fl)G−1(fl−1) and test for its closeness to a diagonal matrix.
Indeed, by using the representation (9), this ratio can be writ-
ten as:

Π
(

fl

)[
D
(

fl

)
Ĥ−1

(
fl

)
Ĥ
(

fl−1

)
D−1

(
fl−1

)]
Π
−1
(

fl−1

)
. (10)

Since the function H(·) is continuous, Ĥ−1( fl)Ĥ( fl−1) is
nearly the identity matrix, hence the matrix product in the
above square bracket [] is nearly a diagonal. Left and right
multiplying this matrix by Π( fl−1) and Π−1( fl−1) results in
the same matrix with its rows and columns permuted by the
same permutation, which is thus also nearly diagonal. There-
fore G( fl)G−1( fl−1) appears as the product of Π( fl)Π−1( fl−1)
with a nearly diagonal matrix. Thus a permutation change
can be detected by examining all permutations of the rows of
G( fl)G−1( fl−1) and picking the one for which the resulting
matrix is closest to diagonal in some sense. If the obtained
permutation is not an identity then there is a permutation
change, which can then be corrected using this obtained per-
mutation.

The above method is quite simple and cheap (except
when the number of sources is large). In practice however
we find that one can achieve comparable performance by an-
other simpler and cheaper method, relying on the particu-
lar behaviour of the joint (approximate) diagonalization al-
gorithm. This algorithm operates iteratively by transforming
successively the matrices to be diagonalized by left and right
multiplying them by an appropriate matrix and its transpose
conjugated, and each time between two candidates for such
a matrix, differing only by a permutation, the one which is
closer to the identity matrix (in some sense) is chosen [29].

Thus, instead of jointly diagonalizing the matrices Ŝx(t, fl)

we jointly diagonalize the matrices G( fl−1)Ŝx(t, fl)G∗( fl−1),
where G( fl−1) is the solution to the previous problem of joint

diagonalization of the Ŝx(t, fl−1). By continuity, we expect

that the matrices G( fl−1)Ŝx(t, fl)G∗( fl−1) are already rather
close to diagonal so that a solution to their joint diagonal-
ization problem is nearly the identity matrix and the algo-
rithm would pick this solution (up to possibly a row scale
change). Thus, the algorithm would produce a matrix ratio
G( fl)G−1( fl−1) close to a diagonal matrix and hence no sub-
sequent permutation correction is needed. A side advantage
of this method is that the joint diagonalization algorithm
converges faster since it is better initialized, thus reducing the
computational cost.

Although the above method can correct most frequency
permutation errors, its weakness is that even a single wrong
correction (e.g., in non invertible bins) can cause wrong per-
mutations over a large block of frequency, that is, permuta-
tion jumps. If, at one frequency fl, a source has been wrongly
permuted versus frequency bin fl−1, then the solution will re-
main on that permuted source in frequency bins fl+1, fl+2, . . .
by forcing the continuity assumption.
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To avoid this problem and eliminate these frequency per-
mutation jumps, a complementary method based on an idea
similar to that in [2, 9, 14, 18], which introduces some fre-
quency coupling, is proposed in [7]. The glottis is the main
source of energy for speech production and emits a broad-
band sound with spectral peaks at the harmonics of the
speaker’s pitch frequency. Then the vocal tract filters this
broadband sound and the resulting speech signal can be
seen as an amplitude modulation due to the succession of
phonemes which constitutes speech. Based on this observa-
tion, the main idea is that, for a speech signal, the energy
over different frequency bins appears to vary in time in a
similar way, up to a gain factor. For example, one would ex-
pect that its energy would be nearly zero in all frequency bins
in a period of pause and be maximum in all frequency bins
for speech periods. Several papers evaluate the similarity (or
correlations) between the envelopes of separated signals. To
check this similarity, [14] proposes to recover the permu-
tation ambiguity by considering correlations on amplitude
spectrograms, that is, the modulus of the time varying spec-
tra. But this is awkward and very time consuming as there
are K2L(L − 1)/2 correlations to be computed, L denoting
the number of frequency bins. The method can be also im-
plemented in an iterative way by first processing the channels
that have the maximum signal energy [14]. The sequence of
frequency bins used to solve the permutation ambiguity is
determined in [16] by sorting the similarity in an increasing
order. In [9], the correlation is tested at each frequency bin
and the sum of the aligned frequencies is taken as a reference.

In the same way, the method proposed in [7] simpli-
fies the problem by associating each frequency bin with
a profile (of relative variation of the spectral energy) and
compares it with a reference profile. More specifically, af-
ter joint diagonalization, the spectra of the reconstructed

sources Ŝy(t, f ) can be computed as the kth diagonal ele-

ment of G( f )Ŝx(t, f )G∗( f ). As each spectrum is recovered
up to a gain factor, we consider the “profiles” E( f , k, ·),
defined as the logarithm of the kth diagonal element of

G( f )Ŝx(·, f )G∗( f ). Thus, they are defined up to an addi-
tive constant. Hence by centering all profiles by subtract-
ing their time averages, the additive constant is eliminated
and the notation E′ will be used for centered profiles. In
[7], these profiles are compared with reference profiles as-
sociated with each source (but not dependent on the fre-
quency) to determine which sources they come from. The
reference profiles are not fixed as in [9], but, in turn, are con-
structed iteratively by averaging profiles associated with dif-
ferent frequencies and previously identified as coming from
the same sources. The basic assumption is that profiles from
the same sources, but at different frequencies, are still more
similar than those from other sources. Therefore, the itera-
tive algorithm determines the permutation corrections such
that the sum of squared distances between profiles coming
from a source (after permutation correction) to its reference
profiles is minimum. The algorithm however needs a good
initialization for the reference profiles, and for this end the
method based on the continuity assumption of the frequency
response of the mixing filter is used.
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Figure 1: Time-frequency representation of a speech signal in dB.

3.2. The proposed method

The method in [7] assumes that profiles coming from the
same sources, but at different frequencies, are still more sim-
ilar than those from other sources. It is the implicit idea of
methods relying on the correlations on amplitude spectro-
grams or on neighbouring frequency bins [2, 9, 14, 18]. It
implies that the time-frequency representation (or profiles)
of distinct sources must be different enough. For example,
speakers should have different speech periods and pause pe-
riods (and not synchronous ones), at least at some part of
the processed observations. This may not be completely true
for short signals. A second problem is that, in fact, profiles
coming from the same source can vary considerably with
frequency (see Figure 1) [15, 17]. Further, the coherency at
neighbouring frequencies can exist only in a simple envi-
ronment and this hypothesis does not hold in most cases
[15, 19]. For these reasons, considering the correlations be-
tween the envelopes over the whole frequency band or even
at neighbouring frequency bins is not always efficient.

In this paper we abandon this assumption and only as-
sume that profiles vary smoothly with frequency. The hypoth-
esis of the continuity of the time variation of the source en-
ergy also arises in [19], but is exploited in a different way, us-
ing reference frequencies. The great interest of the proposed
method is that no frequency reference or profile reference is
needed to introduce a distance. This additional information
on the spectral diversity and the spectral continuity will al-
low us to use shorter observations. Thus we work with pro-
files averaged on a bandwidth [ fl−M , fl+M] instead of profiles
averaged on the whole frequency band:

Fy

(
fl, k; ·

)
=

1

2M + 1

l+M∑

n=l−M

E′
(
fn, k; ·

)
. (11)

These averaged profiles are used to detect the block permu-
tation errors arising after the stage of joint diagonalization
of time varying spectra [6] with adaptation to ensure con-
tinuity of the frequency response of the separating filter, as
explained in the previous subsection. Thus, after this stage,
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Figure 2: Differences between averaged profiles in function of fre-
quency bin for each time index.
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Figure 3: Dispersions σ2
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(dotted) before permuta-
tion correction in function of frequency index k.

there can remain only some frequency permutation jumps to
detect. Such jumps may happen at the frequency bins where
the mixing filter frequency response matrix is ill-conditioned
[6].

Consider for simplicity the case of two sources and two
sensors, we look at the difference between the profiles of the
two reconstructed sources after the above stage of separation:

D1( f , k) = Fy( f , k; 1)− Fy( f , k; 2). (12)

Suppose there is a permutation of the separation filter G( f )
at frequency bin fl. Between fl−M and fl+M , the two outputs

correspond to two different sources and the profiles are also
permuted,

D1

(
fl−M , k

)
= FS

(
fl−M , k; 1

)
− FS

(
fl−M , k; 2

)
,

D1

(
fl+M , k

)
= FS

(
fl+M , k; 2

)
− FS

(
fl+M , k; 1

)
.

(13)

If we assume that the averaged profiles are changing
slowly enough, the difference D1( fl−M , k) and D1( fl+M , k)
will be of opposite sign, whatever the time index k. To illus-
trate the assumption, two speech signals have been convolved
with premeasured room responses (detailed in Section 4).
After the step of joint diagonalization, the averaged profiles
have been computed for these outputs as well as functions
D1( f , k). We know that six frequency jumps remain since the
mixing system is accessible. The curves D1( f , k) are plotted
in Figure 2 as a function of f , for each time index k. These
curves change sign correctly at the six frequencies where the
sources must be permuted. If we examine the same curves
after elimination of the permutations (not shown here), we
notice that all the sign changes have disappeared. It can be
deduced from this, that at each frequency bin fl where the
sources are permuted, the dispersion of the values D1( fl, k)
will be minimum. The minima can then detect the beginning
and the end of a frequency block to permute. Suppose that
the time-frequency representation is computed on L time
blocks. As the profiles are centered by construction, the mean
value of D1( fl, k), k = 1, . . . ,L is zero and its dispersion is

σ2
D1( fl)

=

L∑

k=1

D2
1

(
fl, k
)
. (14)

The dispersion σ2
D1( f ) of the data D1( f , ·), shown in Figure 2,

is plotted by the solid line in Figures 3 and 4, before and af-
ter performing permutation correction. In Figure 3, the six
minima are actually permutation (jump) frequencies. They
occur correctly at the six sign changes (see Figure 2). After
permutation correction, these minima disappear, as can be
seen in Figure 4.

In order to detect a possible permutation at any fre-
quency bin fl, we introduce a second function difference
D2( f , k) based on new profiles Hy( f , k; ·) of outputs y(t).
Similar to Fy( f , k; ·), they are constructed by averaging on
the bandwidth [ fl−M , fl+M], but we impose a permutation
on the second part of the band [ fl+1, fl+M]. The outputs are
permuted on the band [ fl+1, fl+M] versus the outputs on the
band [ fl−M , fl]:

Hy

(
fl, k; ·

)
=

1

2M + 1

×

( l∑

n=l−M

E′
(
fn, k; ·

)
+

l+M∑

n=l+1

E′
(
fn, k;π

))
,

(15)

where π denotes the permutation between the two outputs.
A second difference D2( f , k) and its dispersion σ2

D2( fl)
can be
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(dotted) after permuta-
tion correction in function of frequency index k.

calculated with the new averaged profiles:

D2( f , k) = Hy( f , k; 1)−Hy( f , k; 2),

σ2
D2( fl)

=

L∑

k=1

D2
2

(
fl, k
)
.

(16)

The dispersion σ2
D2( fl)

is plotted by the dotted line before
(Figure 3) and after (Figure 4) elimination of the permuta-
tion. If fl is a permutation frequency, Hy( fl, k; ·) will be the
profiles of the corrected sources and the dispersion σ2

D2( fl)

will be bigger than σ2
D1( fl)

as there will be no sign change in

the difference of profiles Hy( fl, k; ·). The two curves σ2
D1( fl)

and σ2
D2( fl)

cross when permutation must be detected. On the
contrary, when a frequency band is correctly permuted, the
profiles Fy( f , k; ·) are good and the dispersion σ2

D1( f ) is max-

imum in this band and bigger than σ2
D2( f ). The curves do not

cross in this band. When all permutations are corrected, the
profiles Hy( f , k; ·) only add false permutations and impose
sign changes in the function D2( f , k). The dispersion σ2

D2( f )

is then always smaller than σ2
D1( f ).

The permutation detection can be done in an iterative
way as follows.

(1) Computation of σ2
D1( f ) and σ2

D2( f ), and detection of the

global minimum of σ2
D1( f ), which occurs at fl, say.

(2) Permutation of the two outputs for all frequencies
higher than fl.

(3) Computation of the new profiles Fy( f , k; ·) and
Hy( f , k; ·), the new functions σ2

D1( f ) and σ2
D2( f ), rede-

tection of the new global minimum of σ2
D1( f ), and so

on until σ2
D1( f ) > σ2

D2( f ) for all f .

This method is easy to implement and shows quite good
results even for short signals. The number of iterations is

exactly the number of permutation corrections to adjust,
which is usually small, as in the diagonalization stage we have
made use of the continuity of the mixing filter frequency re-
sponse.

4. DESIGN AND RESULTS

The first subsection is devoted to the illustration of the im-
provement of the method with simulation results. It shows
the behaviour of the permutation correction when the source
profiles vary strongly with frequency (see Figure 1). Such
sources were artificially mixed with premeasured room im-
pulse responses. The resulting mixtures have been already
used in Section 3 to illustrate how the proposed method for
solving the permutation ambiguity operates. In the second
subsection, real-room recordings are exploited to compare
the proposed method to some of the state-of-the-art meth-
ods for convolutive BSS.

4.1. Simulation results

We considered mixtures of real sound sources from premea-
sured room impulse responses of a conference room. The
last are provided by the Matlab routine roommix.m of Alex
Westner (found at http://sound.media.mit.edu/ica-bench),
which uses a library of impulse responses measured in a real
3.5 m×7 m×3 m conference room. Two and a half walls of the
room are covered with whiteboards, one wall is covered with
a projection screen and a large table sits in the middle of the
room. There are eight microphones hanging from the light-
ing grid of the room, spaced about half-meter apart from one
another (the experiment is detailed in [12]). The user speci-
fies the positions of the sensors and the sources (using 8 pre-
set positions). We chose distances between sources and sen-
sors around 50 cm and 1 m. Two speech signals of 2 s sampled
at 11 kHz (24000 samples) are convolved with the premea-
sured room impulse responses to build up two observations.
These responses are quite long, up to 8192 lags, but become
quite small at high lags so that we can truncate them to 256
lags and still retain all echoes. The four impulse responses are
shown in Figure 5.

We also used these two mixtures in Section 3 to illustrate
how the proposed method for solving the permutation ambi-
guity operates. The time-frequency representation of the first
source is represented in Figure 1. Figures 2, 3, and 4 show
the profiles and their dispersions of the separated sources af-
ter the stage of joint diagonalization. The spectral matrices
are estimated as detailed in Section 2, using a block length of
N = 2048 with an overlap of 1 − (δ − 1)/N = 75% (yield-
ing 41 time blocks). The averaged profiles Fy( f , k; ·) are con-
structed by averaging on 50 frequency bins (M = 25). After
the above stage of separation by joint diagonalization, certain
permutation errors have been eliminated by way of forcing
the continuity of the frequency responses. Yet, there can still
remain permutation jumps. As we know the mixing systems,
we can consider the separation index, defined as

r( f ) =
∣∣(GH)12( f )(GH)21( f )/

[
(GH)11( f )(GH)22( f )

]∣∣1/2
,

(17)

http://sound.media.mit.edu/ica-bench
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Figure 5: The four impulse responses of the mixing filter.

where (GH)i j( f ) is the i j element of the matrix G( f )H( f ).
For a good separation, this index should be close to 0 or
infinity (in this case the estimated sources are permuted).
When r crosses the value 1, this means that a permutation has
occurred. Therefore we plot both min(r, 1) and min(1/r, 1)
versus frequency (in Hz), using different line styles (dots and
solid) to distinguish them. Figure 6 shows these curves, be-
fore and after applying the new method of frequency permu-
tation correction. It is clear from the first curve that six fre-
quency jumps are present after the separation step. It can also
be mentioned that the two curves min(r, 1) and min(1/r, 1)
are quite distinct. One is close to zero whereas the second
one is close to 1. This means that the separation has been
well achieved up to a permutation, except at some isolated
frequency bins. Moreover, the second plot (corresponding to
the separation index after the permutation correction) shows
that the new method eliminates all permutation errors (rel-
ative to a global permutation) since the two curves do not
cross.

To validate the whole BSS method (e.g., separation and
permutation correction), we reconstructed the four impulse
responses of the global filter (G ∗ H)(n) between the two
sources and the two sensors. They are plotted in Figure 7.
One can see that (G ∗ H)11(n) is much higher than (G ∗

H)12(n) and (G ∗ H)22(n) is also bigger than (G ∗ H)21(n),
meaning that the sources are well separated (and permuted).
This will be also revealed afterwards by calculating the noise-
reduction rate.

The efficiency of the whole separation procedure can be
confirmed by looking at the original sources, the mixtures,
and the separated sources, displayed in Figure 8. To quantify
the performance, signal-to-noise ratio (SNR) is computed
before and after separation. For one observation, one source
is considered as “signal” and the second one as “noise”. In
that sense, the SNR values of the two mixtures were equal
to 3.3 dB and −3.7 dB. The SNR values of the outputs have
been improved until 20.4 dB and 17.7 dB with the proposed
method. Usually, BSS is compared with the noise-reduction
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Figure 6: Separation index (dots) and its inverse (solid) truncated at 1 (a) before and (b) after applying the proposed permutation correction
algorithm.

rate, defined as the output SNR in dB minus the input SNR.
In that experiment, the noise-reduction rates were equal to
16.7 dB and 21.4 dB, which are really efficient on such short
observations (here 2 s).

4.2. Experimental results

Experiments were conducted at the McMaster University
in the context of hearing aid design. McMaster University
recorded in the BLISS project a database of real-room record-
ings: live-capture audio mixtures and a realistic hearing in
noise test environment (R-HINT-E) (http://www.lis.inpg.fr/
pages perso/bliss/). A human head and torso model called
KEMAR were placed in the centre of three rooms. KEMAR
has in each ear a small microphone. A single loudspeaker was
moved to different locations around KEMAR with different
angles from 0◦ to 180◦. For each of the seven locations, six
sentences were played and recorded on the two microphones.
In addition, for each location, the room impulse response
was measured. The database created by McMaster University
is very useful for comparison studies of algorithms as it pro-
vides real-room mixtures as well as the true sources.

Several BSS algorithms have been evaluated and com-
pared in a 2-source 2-microphone system, using the real con-
volved sources captured on the two microphones and coming
from two loudspeakers. The loudspeakers were moving from
0◦ to 180◦ around the human model at distance of 1.4 m.
This corresponds to 21 different mixtures (without repeti-
tions and without equal angles). The chosen room is a re-
verberant classroom with dimensions 5.3 m by 10.3 m. The
reverberant time is around 130 ms.

Several approaches have been developed to solve the per-
mutation ambiguity: in short, exploiting the continuity of
the spectra of recovered signals or the separation matrix
[2, 13], exploiting the time structure of the source compo-
nents [9, 14], or applying beamforming techniques if enough
sensors are available. In a 2-source 2-microphone system,
methods using beamforming alignment cannot be employed.
Thus, the proposed method is compared to some of the
state-of-the-art methods for convolutive BSS exploiting ei-
ther the spectral continuity (algorithm of Parra and Spence
[13]) or the time envelope structure (algorithm of Murata
et al. [9]). The algorithm of Murata et al. [9] is found at

http://www.ism.ac.jp/∼shiro/. The implementation for the
Parra-Spence algorithm has been provided by S. Harmel-
ing.2

In the case of synthetic data (artificially convolved with
premeasured impulse responses), the BSS performance is
commonly evaluated in terms of the signal-to-interference
ratio (SIR) and signal-to-distortion ratio (SDR) of each out-
put y(t) = [y1(t) · · · yK (t)]T, where

yi(t) =
K∑

k=1

Gik ∗ xk(t) =
K∑

j=1

(G∗H)i j ∗ s j(t) =
K∑

j=1

yi j(t).

(18)

A solution for solving the scaling problem can be ob-
tained by the minimal distortion principle. The output yi(t)
is calculated to be as close as is possible to the contribu-
tion of the ith source on the ith sensor. As the outputs are
uncorrelated, yi(t) can be reconstructed by minimizing a
quadratic error between yi(t) and xi(t). In the experiment,
the quadratic error was defined in the frequency domain. The
output yi(t) is so calculated such that

∑
t ‖Xi(t, f )−Yi(t, f )‖2

is minimized for each frequency bin. It leads to the classical
Wiener filter between yi(t) and xi(t), expressed in the fre-
quency domain. Therefore, yi(t) aims at the reconstruction
of the contribution of the ith source on the ith sensor.

The SIR for yi(t) is then defined as the ratio of the power
of the portion of yi(t) coming from source i, yii(t), to the
power from jammer signals, yi j(t):

SIR i = 10 log

∑
t yii(t)

2

∑
t

∑
j 
=i yi j(t)2

. (19)

In the case of real world situations, we have generally no
access to the source signals. However, the SIR can still be
computed if just one of the sources is active during a cer-
tain time interval. In the database, we have also access to the
microphone signals xki(t) k = 1, . . . ,K , recorded when only
the ith source is present. Therefore, the SIR will be calculated

2 http://ida.first.gmd.de/∼harmeli/.

http://www.lis.inpg.fr/pages_perso/bliss/
http://www.lis.inpg.fr/pages_perso/bliss/
http://www.ism.ac.jp/~shiro/
http://ida.first.gmd.de/~harmeli/
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Figure 7: The four impulse responses of the global filter (G∗H)(n).

here by

SIR i = 10 log

∑
t

(∑K
k=1 Gik ∗ xki(t)

)2

∑
t

(∑K
k=1 Gik ∗

∑
j 
=i xki(t)

)2 , (20)

and the SIR is averaged on both channels.
The sound quality is measured with the distortion be-

tween the portion of yi(t) coming from source i, yii(t), and
the microphone signal xii(t) recorded when only the ith
source is present. xii(t) can be decomposed as ayii(t−l)+ei(t),
where a and l are the values that minimize the power of the
error ei(t) = xki(t)− ayii(t − l). Then, the SDR is defined by

SDR i = 10 log

∑
t(xii(t))2

∑
t

(
xii(t)− ayii(t − l)

)2 . (21)

Figure 9 visualizes the SIRs of the observations, and the SIRs
of the unmixed signals. The algorithms of Murata et al. [9],

Parra and Spence [13] and the proposed method were tested.
The SIRs are shown in grey level for all different angle combi-
nations and are given in dB between 0 dB and 20 dB. The val-
ues have been set to 0 dB on the main diagonal since they cor-
respond to the same directions of sources and so the signals
are not separable in that case. The parameters of the three al-
gorithms have been optimized to obtain a better SIR for each
one (T = 1024, Q = 128, K = 3, N = 5 for Parra’s method,
NFFT = 512, overlap = 492, N = 40 for Murata’s method,
and N = 1024, m = 5 for the proposed method). The speech
signals (about 18000 samples) were sampled to 11025 kHz
(1.6 s), and the SIRs were averaged on the six speakers.

For all angle combinations, the SIRs of input signals are
low (dark areas), indicating that the two sources arrive very
well mixed at the ears. These plots represent the initial situ-
ation. The three other figures show the results after applying
one of the BSS algorithms. We improve upon the initial situ-
ations when a plot in every box is lighter in the off diagonal.
The algorithm of Murata et al. fails on the dataset and we ob-
serve that the squares change towards a lighter grey for the
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Figure 8: Sources, mixtures, and estimated sources.

Parra and Spence algorithm. It is able to improve the separa-
tion in all cases. The proposed method leads clearly to better
results and is able to largely improve the degree of separation.

To confirm the previous comments and evaluate each
method, the SIRs have been averaged on all positions (with-
out the diagonal terms) and are reported in the Table 1. The
SIR value of the Murata algorithm is low while the Parra algo-
rithm gives more satisfactory results. The proposed method
performed best and there was 4.6 dB SIR enhancement on
the average versus the Parra and Spence method.

Figure 10 visualizes the SDRs computed for the algo-
rithm of Murata et al. [9], the algorithm of Parra and Spence
[13], and the proposed method. As previously, the SDRs are
averaged on all positions (without the diagonal terms) in
Table 2. Figure 10 shows that the proposed method is able
to obtain high SDR. With the algorithms of Murata and
Parra, the SDR values are unsatisfactory on the dataset. If
the permutations are not correctly aligned, the recovered
source components may have different permutations along
the frequency axis so that the reconstructed source signals
are strongly distorted in the time domain.

Finally, from these experimental results we can say that
the proposed algorithm has a superior performance over
conventional methods [9, 13] for SIR values as well as SDRs.
The algorithm [9] failed in recovering the permutation am-
biguity on that dataset while the method [13] gives accept-
able results. The reason for such behaviour of [9] might
be that the method, which should solve the permutation

problem, fails due to the correlations among the envelopes
of the sources. Indeed, it seems that calculating the correla-
tions over the whole frequency band or even on neighbour-
ing bins does not give an accurate alignment on that data. It
is confirmed by low and strictly similar results obtained for
the algorithm [14] (not seen here), which is also based on the
same hypothesis. The point has also been reported in [15].

Additional results can be found on the BLISS project
website for two less reverberant rooms (http://www.lis.inpg.
fr/pages perso/bliss/). They have been obtained by S. Har-
meling, P. Bunau, A. Ziehe (FhG FIRST), and D.T. Pham
(LMC) on the McMaster database. The algorithms of Murata
et al., Parra and Spence, Anemüller [14], and the proposed
method have been compared. The results obtained with the
algorithm of Murata et al. [9], Parra and Spence [13], and
the proposed method are similar to those obtained in this
paper and confirm that [9] failed on that dataset. The rea-
son might be the correlations among the envelopes of the
sources. Indeed, the algorithm of Anemüller [14] is based
on the observation, that for a speech signal, amplitude vari-
ations in frequency channels are correlated but not intercor-
related across different sources. The results are really similar
to those obtained with the Murata algorithm [9]. The rea-
son for the failure might be that the used speech signals are
quite short so that there might not be enough statistics to es-
timate the cross-frequency correlations properly. Besides, the
hypothesis of correlations on the amplitude spectrogram is
not verified on the whole frequency band for the tested data

http://www.lis.inpg.fr/pages_perso/bliss/
http://www.lis.inpg.fr/pages_perso/bliss/
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(a) SIR of the inputs
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(b) SIR of Murata et al.
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(c) SIR of Parra et al.

180160140120100806040200

Angles

180

160

140

120

100

80

60

40

20

0

A
n

gl
es

0

2

4

6

8

10

12

14

16

18

20

(d) SIR of proposed method

Figure 9: SIRs of the inputs and unmixed signals by BSS algorithms.

Table 1: SIRs averaged of the inputs and unmixed signals by BSS algorithms.

SIR (input signals) SIR (Murata) SIR (Parra) SIR (of the proposed method)

1.3 dB 8.5 dB 12.2 dB 16.8 dB

(see, e.g., the spectrogram of one source in Figure 1). The
results obtained with the Parra method [13] could be also
explained by its slow convergence method for the joint di-
agonalization part and not just because of the permutation
ambiguity. Parra and Spence’s method utilizes a joint diago-
nalization of time-shifted cross-power spectra which is car-
ried out by gradient-based optimization. The results are im-
proved, if not so much short signals are used (see the other
results at http://www.lis.inpg.fr/pages perso/bliss/). These
reasons prove the interest of the proposed method which is
able to provide high SIRs and SDRs in real-room conditions
even for quite short signals. Another interest is also its low

computation complexity, due to a simple and very fast al-
gorithm to perform joint approximate diagonalization [29].
In the case of two sources, the solution for solving the per-
mutation ambiguity is also simple as it is an iterative algo-
rithm where the number of iterations is exactly the number
of permutation corrections to adjust. The number of permu-
tation jumps is generally small, as in the diagonalization stage
we have made use of the continuity of the mixing filter fre-
quency response. For more than two sources, the permuta-
tion should be tested by pairs of outputs which could be dif-
ficult. It is clear that for a large number of sensors, methods
relying on beamforming are more suitable.

http://www.lis.inpg.fr/pages_perso/bliss/
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(a) SDR of Murata et al.
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(b) SDR of Parra et al.
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(c) SDR of proposed method

Figure 10: SDRs of the inputs and the unmixed signals by BSS al-
gorithms.

Table 2: Average of the SDRs of the unmixed signals by BSS algo-
rithms.

SDR (Murata) SDR (Parra) SDR (of the proposed method)

7.1 dB 9.7 dB 13.5 dB

5. CONCLUSION

We have developed a method for blind separation of speech
signals, which exploits the property of nonstationarity and
the presence of pauses. The separation itself is achieved by
joint diagonalization of the time varying spectral matrices
of the observation records. To solve the permutation ambi-
guity, which is the main and still largely open problem in
a frequency domain approach, we have introduced a new
method based on the time variations of the source energy
in different frequency bins. Sometimes, the correlation be-
tween the time variations of the signal energy in different
frequency bins does not hold for real data or short signals
even on neighbouring frequency bins. Thus, we assume only
that the energy can vary smoothly with frequency and that it
is continuous across the frequency axis. A measure of conti-
nuity of the speech spectrogram is computed over a limited
frequency band, which is sliding across the frequency axis.
This new kind of continuity is exploited to correct the block
permutation problem.

The method is compared to conventional approaches
with real-room recordings and the results show the improve-
ment of the separation in terms of SIR and SDR versus other
algorithms. However, there are some limitations on the im-
pulse responses of the mixing filters. The source signals must
be sufficient long and nonstationary enough. These condi-
tions ensure a good result in the separation stage, but not suf-
ficient to resolve the frequency permutation ambiguity. The
latter needs source signals to have different time variation
of energy distributions over frequency bins. For example, it
would be difficult to separate synchronous speakers with the
same periods of pauses and speech.
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