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Abstract Machine tool chatter is an unfavorable phenom-

enon during metal cutting, which results in heavy vibration

of cutting tool. With increase in depth of cut, the cutting

regime changes from chatter-free cutting to one with

chatter. In this paper, we propose the use of permutation

entropy (PE), a conceptually simple and computationally

fast measurement to detect the onset of chatter from the

time series using sound signal recorded with a unidirec-

tional microphone. PE can efficiently distinguish the

regular and complex nature of any signal and extract

information about the dynamics of the process by indicating

sudden change in its value. Under situations where the data

sets are huge and there is no time for preprocessing and

fine-tuning, PE can effectively detect dynamical changes of

the system. This makes PE an ideal choice for online

detection of chatter, which is not possible with other

conventional nonlinear methods. In the present study, the

variation of PE under two cutting conditions is analyzed.

Abrupt variation in the value of PE with increase in depth

of cut indicates the onset of chatter vibrations. The results

are verified using frequency spectra of the signals and the

nonlinear measure, normalized coarse-grained information

rate (NCIR).

Keywords Metal cutting . Chatter . Time series . Permutation

entropy

1 Introduction

Metal cutting is a complex nonlinear dynamical process.

The machine, the cutting tool, and the work piece form a

complex system which has infinite number of degrees of

freedom. The cutting process under dynamical conditions

can behave in different ways for different modes of

vibration. Instability of cutting process causes self-excited

large-amplitude vibrations of the tool relative to the work

piece. This phenomenon, known as chatter, adversely

affects the performance and efficiency of the cutting

process, quality of the product and produces high level

of noise. This has negative influence on surface finish and

dimensional accuracy of the work piece, tool life, and even

machine life. Hence, it is important to detect the occurrence

of chatter at an early stage so that corrective measures can

be adopted by changing the cutting conditions. Various

factors leading to chatter onset are increase in depth of cut,

variation in cutting speed and variation in feed rate.

Extensive research using different sensor signals and

various signal processing techniques has been performed on

chatter detection. Signals acquired from force sensors [1, 2],

accelerometers [3], spindle drive current [4], audible sound

signal from a microphone [5], acoustic emission signals [6]

are used for study and analysis of cutting dynamics. Factors

that decide the sensor selection are bandwidth, sensitivity,

signal to noise ratio, and sensor placement. Audio signal

captured by a microphone is found to be the ideal
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compromise among these sensors [7]. A microphone can

effectively be used for chatter detection as the acoustic

pressure during machining is proportional to the displace-

ment of the tool [8]. Unlike other sensors, the use of a

microphone is simple and does not involve any positioning

problem. Audio signals are already in use with commercial

software like Harmonizer [9].

Linear signal processing techniques used for chatter

detection are power spectral analysis of cutting force [7, 10],

wavelets analysis [3], and statistical characterization [11]. It

is already established that turning process on a lathe

exhibits low-dimensional chaos [12]. Onset of chatter is

always accompanied by development of synchronized

oscillations which results in increased regularity or drop

in entropy rate [13, 14]. Therefore, quantitative measure for

detection of dynamical changes can be effectively used for

detection of chatter onset. Some of the important and

effective techniques to detect dynamical changes in real-

world systems are recurrence plots [15] and recurrence

quantification analysis [16, 17], cross correlation sum

analysis [18], and nonlinear prediction analysis [19].

Coarse-grained entropy rate (CER) [11], coarse-grained

information rate (CIR), and entropy from power spectrum

[13] of appropriate signals are proposed for automatic

chatter detection. These nonlinear methods are based on

phase space reconstruction by quantifying the distance

between nearest neighbors in phase space. The phase space

reconstruction of the time series data is computationally

expensive as it requires calculation of two parameters—

time delay and embedding dimension. Most of these

methods give significant results when the time series is

simulated from low-dimensional dynamical systems and

fails or misleads in the presence of noise. Hence, real-world

time series analysis of the data requires preprocessing for

noise elimination. Furthermore, embedding dimension and

time delay are critical parameters in reconstruction of state

space and the computation is time-consuming which

restricts its application on real-time basis. Hence, it is

essential to have a very fast algorithm which can process

the data at the same rate at which it is acquired.

Here, we propose the use of a fast nonlinear analysis

technique viz. permutation entropy (PE) [20], to detect the

onset of chatter from audio cutting signal captured using

unidirectional microphone. PE is a complexity measure

which is robust against dynamical as well as observational

noise [20]. It is a regularity statistic which relies on the

order relations between neighboring values of a time series

and is applicable to any real-world data. It gives quantita-

tive information about the complexity of a time series.

Thus, the variation of PE as a function of time can

effectively indicate dynamical change. With the onset of

chatter, strongly synchronized vibrations buildup and these

chatter vibrations present itself in the dynamics as a lowering

of dimensionality of the system and thereby an increase in

the predictability of the system dynamics [21, 22]. Accord-

ing to the properties of PE and chatter dynamics, PE is

expected to show relatively no change during chatter-free

cutting. As the chatter vibrations develop during the cutting

process, due to the increased predictability of the system

dynamics PE values are expected to decrease.

In this paper, we demonstrate the effectiveness of PE in

detecting the onset of chatter in two turning processes (a)

sudden increase of depth of cut (b) continuous increase of

depth of cut on mild steel work pieces. In both the cases,

the acquired audio signals are recorded in a standard PC

using a sound card. These signals are directly subjected to

PE analysis. The results show that PE drops at the onset of

chatter in both the cases. The results are verified using

normalized coarse-grained entropy rate (NCIR) [13] pro-

posed earlier for chatter detection, calculated from mutual

information of the fluctuations of the recorded signal. The

results of our study show concurrence of a drop of PE with

increase in NCIR. Calculation of NCIR demands state

space reconstruction whereas PE analysis could be done

directly on the acquired signal. Unlike other nonlinear

measures, PE analysis is computationally very fast which

makes it an ideal choice for online chatter detection.

2 Permutation entropy

Computation of PE is based on comparison of neighboring

values in the time series of any dynamical variable of a

system. It has been shown that any continuous time

series representing a dynamical system can be mapped

onto a symbolic sequence [20, 23, 24]. According to the

embedding theorem, any arbitrary time series X ¼

x1; x2; . . . . . . ; xTf g can be mapped on to an n dimensional

space with vectors Xi ¼ xi; xiþt ; xiþ2t . . . . . . ; xiþ n�1ð Þt

� �

where n is the embedding dimension and τ is the delay

time for embedding calculated using appropriate methods

like false nearest neighbor calculation and first minimum

of autocorrelation function [25]. For any arbitrary vector,

Xi, the components are n number of real values of the

time series xðtÞ; x t þ tð Þ; x t þ 2tð Þ . . . . . . ; x t þ n� 1ð Þtð Þf g

from time instant t to ‘t þ n� 1ð Þt’. Assuming τ=1 [14],

if the components of any arbitrary vector are arranged

in ascending order x t þ j1 � 1ð Þð Þ � x t þ j2 � 1ð Þð Þ �
. . . . . . � x t þ jn � 1ð Þð Þ, it will represent a pattern of

evolution. Whenever an equality occurs x t þ j1 � 1ð Þð Þ ¼

x t þ j2 � 1ð Þð Þ, components are arranged according to their

occurrence represented by the value of j as j1< j2 so that

x t þ j1 � 1ð Þð Þ ¼ x t þ j2 � 1ð Þð Þ can be arranged as x tþð

j1 � 1ð ÞÞ < x t þ j2 � 1ð Þð Þ. Therefore, any vector Xi can

be uniquely mapped onto a pattern which will be one of the

n! possible permutations which can be considered as a
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symbol. Thus, the reconstructed trajectory in the n

dimensional space represents a symbol sequence [23]. The

probability distribution of each pattern πi can be repre-

sented as

p pið Þ ¼
# tjt � T � n; xtþ1;......;xtþn

� �

has type pi
� �

T � nþ 1
ð1Þ

Permutation entropy of order n≤2 is defined as the

Shannon entropy of the n! patterns or symbolic sequences

and can be written as

HðnÞ ¼
X

n!

i¼1

p pið Þ log p pið Þð Þ ð2Þ

where the sum runs over all n! permutations or sequences.

H(n) lies between 0 and log(n!). For increasing or

decreasing sequence of values, H(n)=0, whereas for

random series where all n! possible permutations appear

with the same probability, H(n) = log(n!). For a time series

representing some dynamics, H(n)<log(n!). Therefore,

normalized PE per symbol of order n is given by H(n)/log

(n!). Thus, PE characterizes the system dynamics, with low

values indicating regular behavior. Any increase in PE

value will thus represent a tendency of increase in

irregularity in the dynamics. For detection of dynamical

changes from time series, it is first partitioned into non-

overlapping windows of suitable length T. PE for each

window is calculated using Eqs. 1 and 2. Any change in the

dynamics of the system will be reflected in the variation of

PE with respect to a moving window. For a reliable

estimation of PE, the window length T should be greater

than n! [20]. The order of PE should not be too small as this

will not give enough number of distinct states. Also, too-

large values of order n will demand large values of window

size which will not effectively detect dynamical changes

and also will create memory restrictions. Optimum values

of order of PE are reported to be around 5 to 8 [20, 23]. In

our analysis of chatter detection, window sizes of 1,024 and

2,048 showed similar results for PE of order 5, 6, and 7.

Therefore, PE of order 6 is used for a window size of 1,024

samples. PE is found to effectively detect bifurcation-like

transitions in model systems, and real-world dynamical

systems like epileptic seizure detection from EEG data,

voiced sound from audio signal data and also in tool flute

breakage detection in end milling. Chatter is a similar

dynamical transition where the low-dimensional chaotic

behavior of normal cutting process changes to a more

regular behavior where powerful synchronized oscillations

near one natural frequency of the system build up. This

significantly increases the mutual dependence of the

characteristic variables at successive times thereby increas-

ing the signal regularity and predictability. PE, as any other

entropy, measures the randomness of a given system with

added benefits of computational efficiency, robustness to

dynamical and observational noise. Hence, PE is expected

to decrease with onset of chatter.

3 Experimental set up and data acquisition

Single-point turning experiments without coolants are

performed on a lathe at a feed rate of 0.06 mm per rev

and 560 rpm. Samples of work pieces made of mild steel

are prepared on a three-phase, 3.7 kW, 1,400 rpm PSG

heavy-duty lathe using CNMG 120408 PM carbide inserts

with standard tool holder. Figure 1 shows the experimental

set up. The audio signals are captured using unidirectional

microphone CSM-990, AHUJA, with frequency response

20–18,000 Hz. The microphone is mounted on a stand

placed on the compound rest of the carriage of the lathe

machine so that it moves along with the tool. The distance

of the microphone from the work piece and the tool are

maintained at 10 mm and 40 mm respectively and is

covered with an absorptive material so that the acquired

signal is not affected by the chip. Even though cutting force

is an important variable for chatter detection and sensors

like Kistler dynamometers have been developed to measure

cutting force accurately, our study explores the possible use

of a simple, low-cost method using audio signals for

detecting chatter vibrations during machining. As the study

aims at process monitoring through qualitative detection of

synchronized large-amplitude vibrations, rather than mea-

suring, no particular efforts are made towards calibration of

sensor signals.

The experiments are carried out in two different cutting

conditions (a) a 403.2-mm-long work piece is machined

with 0.1 mm depth of cut for a length of 109.8 mm. The

depth of cut is suddenly changed to 2.6 mm and is

maintained for the next 293.4 mm. (b) A conical work

piece of 171.2 mm length and initial diameter of 58 mm is

machined with continuous increase in depth of cut from 0

to 0.8 mm. The audio signals are captured using unidirec-

tional microphone CSM-990, AHUJA, with frequency

response of 20–18,000 Hz. This signal is recorded in a

standard PC using a sound card with data preprocessing of

Fig. 1 Experimental set up
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low-pass anti-aliasing. These signals are sampled at 11 kHz

to generate the time series. Fifteen records are acquired for

each cutting process and the corresponding time series are

used for PE analysis. The program used for the PE analysis

is developed by our group.

4 Results and discussion

The proposed method of chatter detection is verified on two

types of cutting data. In each case, PE analysis is carried

out on the acquired signals. For this, the time series is first

partitioned into non-overlapping windows of 1,024 samples

acquired within a time span of 93.1 ms. Variation of PE

with respect to moving windows is used for detection of

onset of chatter.

In the first experiment, a constant depth of cut of 0.1 mm

is maintained up to a length of 109.8 mm of the work piece

and suddenly changed to 2.6 mm at this point. Above this

point, constant depth of cut of 2.6 mm is maintained up to a

length of 403.2 mm. The sampled audio signal is converted

to a time series of 800001 samples corresponding to a

length of 403.2 mm. The time series is partitioned into non-

overlapping windows of 1,024 samples. PE value is

calculated for every window. Figure 2 shows the variation

in PE with respect to length of the work piece. For a length

of work piece below 109.8 mm corresponding to 0.1 mm

depth of cut, it can be observed that there is no significant

change in dynamics as indicated by PE values. Between

110.11 and 113.7 mm length of the work piece, a sharp

decrease in PE value is observed. This drop in PE indicates

increase in regularity of the dynamics thereby indicating the

onset of chatter. Above 113.7 mm, PE value fluctuates

within a large scale compared to the chatter-free region.

The time required for the detection of this change can be

calculated from the data acquisition time and calculation

time of PE. With the sampling rate of 11 kHz, the data

acquisition time of one data point is 91μs. The time

required for estimating PE values of one window is of the

order of nanoseconds and can be neglected compared to the

time required for acquiring the corresponding data points.

The sharp decrease in PE value is observed between

windows 213 and 220. These seven windows correspond

to 7,168 samples. Therefore, the change in dynamics can be

detected within 652 ms. Similar results are obtained with

the recordings of other trials also. To test the statistical

significance of difference in PE value of pre-chatter and

chatter regions, a one-way ANOVA test is used (Matlab’s

ANOVA routine). The mean, standard deviation, and p

values for all the cases are given in Table 1. From the

statistical analysis, it is observed that p values of all the cases

are found to be less than 1e−15, indicating that the null

hypothesis of the two samples of pre-chatter PE and chatter

PE coming from distributions with equal means should be

rejected. From these results, a simple threshold for PE of

sudden change in depth of cut can be set at a value of

0.8620.

The frequency spectrum of data with respect to length of

the work piece is shown in Fig. 3. The spectra for a length

112.9 mm of the work piece do not contain any dominant

peaks. Above this point, the spectra contain more number

of dominant peaks. The development of harmonic peaks is

indicative of more regular behavior which in turn represents

the presence of chatter vibrations. The above-results are

also verified using NCIR [14]. This is a coarse-grained

estimate of the mutual information of a time series with its

delayed values. For a time series x(t) and its time delayed

series x(t+τ), CIR is defined as the norm of mutual

information and is given by the equation

CIR ¼ I xðtÞ; x t þ tð Þð Þj j ¼
1

tmax

X

tmax

t¼Δt

I xðtÞ; x t þ tð Þð Þ Δt ð3Þ

The maximal time delay τmax is chosen such that

I xðtÞ : x t þ tð Þð Þ � 0 for τ≥τmax. CIR values are bounded

between 0 and log (Q), where Q represents the number of

bins used for probability estimation. For convenience, CIR

is normalized using log(Q). For highly regular and thereby

predictable systems, NCIR is close to 1 whereas for

irregular systems it is close to 0.

The software migram from CRP toolbox [26] is used to

calculate I xðtÞ; x t þ tð Þð Þ of Eq. 3 for CIR. Maximal time

delay of 50 and embedding dimension of 2 are used for

NCIR calculation [11, 13]. Figure 4 shows the variation of

NCIR with respect to length of the work piece. For the

initial range of cutting below the length of 109.8 mm of the
Fig. 2 Variation in PE with respect to length of the work piece for

sudden change in depth of cut from 0.1 to 2.6 mm
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work piece the NCIR values remains at low values. The

depth of cut is maintained at 0.1 mm in this range. At a length

of 110.9 mm, there is a steady increase in the NCIR values

for a small region up to a length of 115.1 mm. Above this

point, the NCIR values remain in the higher range with larger

fluctuations. Increase in NCIR values confirms the presence

of chatter vibrations as indicated by change in PE values.

Similar analysis is carried out on a second set of data

where the depth of cut is continuously varied from 0 to

0.8 mm over a 171.2-mm-long work piece thereby slow and

smooth increase in depth of cut is maintained throughout

the cutting process. Figure 5a and b shows the variation in

PE with respect to depth of cut from 0 to 0.4 mm and from

0.4 to 0.8 mm, respectively. It can be observed from Fig. 5a

that the PE values do not undergo any drastic variation

along this range of depth of cut. It is evident from this

figure that there is no significant change in the system

dynamics. In Fig. 5b, a sudden drop in PE value can be

observed at 0.46 mm depth of cut. This change in PE value

indicates a sudden change in dynamics to more regular

nature and thereby onset of chatter. Above this point, PE

values increases and reaches almost equal to previous

levels. This behavior is not sustained for long and is soon

followed by sharp jumps indicating bursts of chatter up to

0.49 mm. Again, there is a slow increase in PE to values

comparable to or even slightly higher than that of the

chatter-free region. Thus, the dynamics is regained slowly

after short bursts of chatter. The sudden drop in PE value

occurs within an interval of time required for acquiring

5,120 samples which corresponds to 466 ms. The chatter

detection speed of PE at this sampling rate is considerable

Fig. 3 Frequency spectrum in 3D perspective for sudden change in

depth of cut from 0.1 to 2.6 mm

Trials Mean Standard deviation p value* (1e−15)

Pre-chatter chatter Pre-chatter chatter

Trial 1 0.916 0.8161 0.0056 0.0145 0

Trial 2 0.9164 0.8216 0.0052 0.0153 0

Trial 3 0.9164 0.8136 0.0053 0.0184 0

Trial 4 0.916 0.8132 0.0054 0.0209 0

Trial 5 0.9181 0.8141 0.0036 0.0125 0

Trial 6 0.9149 0.811 0.0044 0.0207 0

Trial 7 0.9165 0.8185 0.0047 0.0157 0

Trial 8 0.9122 0.8126 0.004 0.0196 0

Trial 9 0.9141 0.8101 0.0048 0.0224 0.111

Trial 10 0.9121 0.8091 0.0043 0.015 0

Trial 11 0.9126 0.8089 0.0054 0.0175 0

Trial 12 0.9137 0.801 0.004 0.0136 0

Trial 13 0.9107 0.8135 0.0037 0.0151 0

Trial 14 0.9065 0.795 0.005 0.0211 0

Trial 15 0.9097 0.7957 0.006 0.017 0

Table 1 Results of one way

ANOVA test for sudden change

in depth of cut

Fig. 4 Variation of NCIR with respect to length of the work piece for

sudden change in depth of cut from 0.1 to 2.6 mm
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for use with an online setup. Similar results are obtained

with recordings of other trials also. The statistical signifi-

cance of difference in PE value of pre-chatter and chatter

regions is tested using one-way ANOVA routine of Matlab

and the results are given in Table 2. p values of all the cases

are found to be less than 0.05, indicating that the null

hypothesis of the two samples of pre-chatter PE and chatter

PE coming from distributions with equal means should be

rejected. From the results of this statistical analysis, a

simple threshold for PE for continuously increasing depth

of cut can be set at a value of 0.86.
Figure 6a shows the frequency spectra with respect to

depth of cut varying from 0 to 0.4 mm and Fig. 6b that of

0.4 to 0.8 mm. The spectra in Fig. 6a do not contain any

strong peaks which is typical of chatter-free dynamics. It is

Fig. 6 a Frequency spectra with respect to continuous increase in

depth of cut from 0 to 0.4 mm. b Frequency spectra with respect to

continuous increase in depth of cut from 0.4 to 0.8 mm

Fig. 7 a Variation in NCIR with respect to continuous increase in

depth of cut from 0 to 0.4 mm. b Variation in NCIR with respect to

continuous increase in depth of cut from 0.4 to 0.8 mm

Fig. 5 a Variation in PE with respect to continuous increase in depth

of cut from 0 to 0.4 mm. b Variation in PE with respect to continuous

increase in depth of cut from 0.4 to 0.8 mm

Table 2 Results of one way ANOVA test for continuous increase in

depth of cut

Trials Mean Standard deviation p value

Pre-chatter Chatter Pre-chatter Chatter

Trial 1 0.8852 0.8737 0.0157 0.0115 0.0297

Trial 2 0.8905 0.869 0.0138 0.0065 0

Trial 3 0.891 0.865 0.0154 0.0096 0

Trial 4 0.8958 0.8833 0.02 0.0086 0.0346

Trial 5 0.8959 0.8876 0.0098 0.0041 0.0053

Trial 6 0.8955 0.885 0.0134 0.0073 0.0122

Trial 7 0.8885 0.8711 0.0144 0.0074 0.0003

Trial 8 0.8944 0.8711 0.0117 0.008 0

Trial 9 0.8929 0.8727 0.0142 0.0083 0.0001

Trial 10 0.8933 0.8743 0.0211 0.0081 0.0029

Trial 11 0.8973 0.878 0.014 0.0084 0.0001

Trial 12 0.8935 0.8798 0.0142 0.0089 0.0037

Trial 13 0.898 0.8662 0.0206 0.0088 0

Trial 14 0.8934 0.8845 0.0138 0.006 0.0292

Trial 15 0.8941 0.8774 0.0135 0.0085 0.0004
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clear from Fig. 6b that at 0.46 mm depth of cut, the

harmonic contents in the signal are more pronounced than

in the other regions. This strong peak is very well indicative

of chatter regime. Figure 7a shows the variation of NCIR

for the above signal for depth of cut from 0 to 0.4 mm and

Fig. 7b shows the variation of NCIR for depth of cut from

0.4 to 0.8 mm. It can be inferred from the figure that NCIR

values show an increase at 0.46 mm depth of cut. This

gives an indication of the increase in information and

thereby an increase in the predictability which in turn

shows the increased regularity in the dynamics. The

increase of NCIR values in Fig. 7b confirms the change

in dynamics indicated by the drop in PE in Fig. 5b.

5 Conclusion

In this paper, the application of permutation entropy for the

detection of onset of chatter in turning using audible signal

is verified. Experiments are conducted on two different

cutting conditions, sudden step cut and taper cut. In both

the cases, higher values of PE with small variations indicate

chatter-free region. Here, the transition from chatter-free to

chatter regime is indicated by a sharp drop in PE value. In

the case of sudden change in depth of cut after the drop, PE

values remains in the lower range with larger fluctuations.

PE values of taper cut in the pre and post chatter regions are

in the higher range compared to that around the chatter

regime. The results of statistical analysis of the PE data of

various trials are used to define thresholds for both cases of

sudden change in depth of cut and continuous increase in

depth of cut. Considering the variation of PE with the

associated dynamics, it is suggested that for taking

conclusive decisions, crossing of thresholds should be

correlated with sudden drastic change in PE. Calculation

of PE algorithm is conceptually simple and computationally

very fast and it gives reliable results even in the presence of

noise. Unlike conventional nonlinear techniques for detec-

tion of dynamical changes, PE analysis does not demand

any preprocessing of data. This makes PE an effective

measure for large data sets where there is no time for

preprocessing and fine-tuning of the data. The results of PE

analysis are confirmed using frequency spectrum and

normalized coarse-grained information rate.

PE analysis of audible sound signal is a fairly low-cost,

non-contact, and non-destructive technique which enhances

its suitability for online detection of chatter without

disturbing the machining process. This method of chatter

detection can be applied on real-time turning process with

the help of suitable control mechanism [27].
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