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1. Introduction

Permutation group theory constitutes one of the origins of group theory, and is
currently a very developed mathematical area. From the rather rich literature on the
subject, we recommend the works [1-5].

Basic facts in this theory include that every permutation in the symmetric group S,
decomposes as a product (composition) of disjoint cycles and that each cycle is a product of
transpositions, with the immediate consequences that each permutation itself decomposes
as a product of transpositions. Moreover, it is well known that the adjacent transpositions
(i,i 4+ 1) are in fact enough to generate the whole of S,. In computer science, this is
represented by the rather famous bubble sort algorithm. Such adjacent transpositions are
the simplest form of y-cycles, which are cycles (i +1,i +2,...,i + m) with consecutive
entries. This terminology is introduced in this article by adopting the abbreviation of

‘consecutive’ by 7, as this is the Greek alphabet correspondent of ‘c’, which is the first letter

of ‘consecutive’. Although general y-cycles have a rather obscure presence in the literature
on permutation group theory, their importance has been recognized for a long time. For
instance, they are instrumental in the proof of the main results in Piccard’s work [6], namely,
that for any non-identity permutation o € S, (A;) (except three permutations in the Klein
group in the case of S,) there is at least one permutation T such that both permutations
generate S, (Ap).

An important result concerning y-cycles stated (though not proved) in the article [6] is
P4; we state it below in a slightly more particular form:

For any integers 0 < i < m < n such that
(i,m,n) & {(2,4,6),(3,4,6),(3,5,6)}

distinct y-cycles (1,2,...,m) and (i+1,i +2,...,n) generate S,, when m(n — i)
is even and A, otherwise.

Our paper develops new results on the generating power of y-cycles that provide
answers to questions left unanswered by P.4 of [6]. From the beginning, our endeavour was
an experimental mathematical one, as we were crucially assisted by proper programming
that contributed in various ways to the development of our results. By programming
computational experiments, we discovered new mathematical truths, were able to check
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some of our guesses, and arrived at more elegant proofs. Several of our guesses were actu-
ally invalidated by such experiments, leading to a better understanding of the conditions
underlying our results as well as to interesting new questions.

The programming part of this investigation was performed in a do-it-yourself style by
using the general purpose logic-based programming language Maude, described in the
book [7]. On the one hand, this allowed us to avoid the use of dedicated software programs
that are now popular with mathematicians (Maple, Mathematica, Wolfram, MATLAB, GAP,
etc.), which although powerful and useful in many ways lack transparency and provide
little access on the computational side. On the other hand, Maude is very different from
common programming languages such as C, Python, Java, etc., as it is very high-level
(in the sense of being closer to human mathematical language and thinking rather to a
machine). It is based upon a form of model theory, while its execution engine is based
upon the advanced computational paradigm of algebraic term rewriting. There is a good
analogy to make here; dedicated software is like climbing a mountain by cable car, while
our method it is more like climbing by foot equipped with very good mountain gear. On
the other hand, common programming is like going by foot with very poor gear. In terms
of connection with the mountain and nature, in terms of freedom to go anywhere and
explore anything, nothing compares to the second option.

The programming experience with Maude comes as close as possible to the common
mathematical problem solving experience while maintaining an intimate connection to
the computational aspects. By employing several of the uniquely powerful computational
paradigms implemented by Maude, most notably non-deterministic programming, we
were able to achieve programs that are both short and clear. In fact, the mix between
programming and mathematical reasoning involved in our endeavour can be a truly
unified and very satisfactory problem solving experience.

The contents of our paper are as follows:

1.  We provide a brief presentation of our method for computational experiments with
permutations. Maude can be understood mathematically through a few elementary
forms of model theory, which we present briefly.

2. We develop a general formula for factoring any y-cycle as a product of other y-cycles
of arbitrary fixed length. A corollary of this is a general result of the generating power
of y-cycles of fixed length. Although this can be derived from P4 of [6], our formulas
provide a very different proof route to this consequence.

3. We establish the exact generating properties of the three exceptions from P.4 of
Piccard’s article [6].

For all results, we make very explicit the role played by programming computational
experiments and even provide the programs. Being highly declarative and logic-based,
these programs are short and easy to read and understand, especially in light of the section
introducing our programming method.

2. Preordered Algebra and Its Computational Side

Programming in Maude is a fundamentally mathematical activity, as it consists essen-
tially of specifying logical theories in a form based on model theory. Maude is a complex
and sophisticated environment which can be understood and used in a myriad of ways. In
this project, we use it in a rather basic way, which can be understood in terms of preordered
algebra (abbreviated POA), a model theory which we present briefly now. More about the
POA model theory can be read in the monograph [8].

2.1. Preordered Algebra
The conceptual pillars of any model theory, including POA, are fourfold:

1. Signatures, which are language symbols that are structured in a certain way and that
vary across logical theories;

2. Sentences, which are logical formulas built with the symbols provided by the respective
signatures;
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3. Models, which are interpretations of the signatures in set theory and provide meaning
to logical theories;

4. A satisfaction relation M |= p between models (M) and sentences (p), which denotes
which axioms hold in which models.

Concretely, in POA these are as follows.

We let S* denote the set of all finite sequences of elements from S, with [] being
the empty sequence. A (n S-sorted) signature (S, F) is an S* x S-indexed family of sets
F = {Fys | w € §%, s € S} of operation symbols. We call o € Fj_,; (sometimes denoted
simply as F_,s) a constant symbol of the sort s. That was about signatures.

An (S, F)-term t of sort s € S is a structure of the form o(fy,...,t,), where o € Fy_ys
and ty,...,t, are (S, F)-terms of sorts s; ...s,, where w = s; ...s,. An (S, F)-equation is an
equality t = ' between (S, F)-terms t and t’ of the same sort. An (S, F)-rule is a sentence of
the form t — #/, with t and ¢’ being terms of the same sort. The POA atomic sentences are
either such equations or rules. A POA sentence for a signature (S, F) is of the form

VX 01N ... ANpn=p

where X is a finite set of variables and py, .. ., px, p are atomic sentences for the signature
(S, F + X) that adjoins the variables X as new constants to F. That was about sentences.

Given a sort set S, an S-indexed (or sorted) set A is a family { As }scs of sets indexed by the
elements of S. Given an S-indexed set Aand w = s;...s, € S*, welet Ay, = Ag) X - X Ag,;
in particular, we let A} = {x}, i.e., some one point set. An (S, F)-algebra (i.e., a model in
POA) A consists of:

¢ an S-indexed set A (the set A; is called the carrier of A of sort s), and
e afunction Ay : Ay — Asforeacho € Fy_s.

If o € F;, then A, determines a point in A;, which may be denoted A,. Any
(S,F)-term t = o(ty,...,tn), where o € F,_s is an operation symbol and t4,...,t, are
(S, F)-(sub)terms corresponding to the parity w, is interpreted as an element A; € As in an
(S, F)—algebra A by At = Ag’(Atl, oo /Atn)~

A model in POA for a signature (S, F), (M, <), called a preordered algebra, consists
of an (S, F)-algebra M and a family <= {<,;C M; x M; | s € S} of preorders such
that the interpretation of each operation in F is monotonic with respect to <. That was
about models.

The satisfaction relation between preordered algebras and sentences is the Tarskian
satisfaction defined inductively on the structure of sentences. Given a fixed arbitrary
signature (S, F) and a preordered (S, F)-algebra (M, <),

e (M,<)Et=tif My = My for equations,

e (M, L) Et—tif My < My for rules,

e (M, S)Ep1 Ap2if (M, <) | p1and (M, <) |= p2, and similarly for =, and

e foreach (S, F + X)-sentence (M, <) = VX - p, if (M, <) |= p for each expansion M’
of M with interpretations of the variables of X as elements of M.

On the one hand, programming in Maude consists of writing down specifications of
signatures and sentences according to syntactic rules that closely follow the mathematical
definitions above. On the other hand, there is the semantic aspect, meaning that one has to
make a permanent effort to ensure that what is written down accords with the intended
class of models to be specified. In general, this may be a subtle issue where the mathematics
of models and satisfaction play their role, however, trained mathematicians are in the best
possible situation to cope with this.

2.2. Term Rewriting in Maude

The above dealt with the specification part of Maude. However, in addition Maude is
a proper programming language with a powerful execution engine based on an advanced
computational paradigm, namely, algebraic term rewriting. Its implementation in Maude
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consists of a complex software structure employing state of-the-art technologies. Computa-
tion by term rewriting follows the principle of computation as logical inference. POA admits
an inference system that is sound and complete with respect to the model theory defined
above. This inference system is just an extension of Birkhoff’s famous set of rules for
equational deduction (presented in his work [9]) in a conditional form and with additional
rules for atomic transitions (which are similar to the rules for the atomic equations minus
the symmetry rule). Details of the POA inference system, including its soundness and
completeness, can be found in the monograph [8]. In this way, term rewriting in Maude
is an extension of the classical term rewriting paradigm from equational logic to POA,
which means that it can be used in two different ways corresponding to the two types of
atomic sentences.

1.  In order to compute equalities between elements of models using equations, terms
are reduced to normal forms; for this, it is important that the set of equations enjoy the
properties known as confluence and termination. The former means that when several
equations can be used in rewriting, the choice does not matter. The latter means that
the rewriting of any terms eventually comes to an end, and does not run indefinitely.

2. Inorder to compute elements along preorder relations in models. In a more computing
science-oriented terminology, elements of the models are states and the preorder
relations are transitions. This approach concerns which statesare reached from which
other states, and uses rules rather than equations. Here, neither the confluence nor
the termination property is required. Lack of confluence means an open door to
non-deterministic programming, a crucial distinctive computational paradigm that we
use in the present project.

2.3. Implications

To summarise, POA has three strongly interconnected levels. At the top, there is model
theory. At the bottom, there is term rewriting. In the middle, there is the sound and com-
plete inference system of POA that bridges the model theory and the computational side.

The ultimate effect of this conceptual structure is a highly declarative, compact, com-
putationally powerful and transparent programming and experimentation method. Trans-
parency has at least two positive consequences: higher confidence in the correctness of
the experiment and a great enhancement of understanding. These are two aspects that,
in general, the dedicated mathematical software systems lack. Thus, we think that, when
possible, it is worth avoiding opaque experimentation and instead aiming for transparent
alternatives even at the cost of greater programming effort. However, when complex and
sophisticated algorithms are unavoidable, i.e., for programming tasks that are too large or
even impossible due to lack of knowledge, dedicated pre-built software can represent an
alternative. What is most important when seeking transparency is to strike a right balance
between the two.

The computation as logical inference principle underlying Maude programming implies
that proofs that consist of a combination of mathematical reasoning and run on Maude
programs are in fact 100% mathematical proofs, as the parts relying on programming can
be considered simply as formal proofs. In this way,

“such a combination is just a mathematical proof consisting of more informal

parts (i.e., the mathematical arguments in a conventional style) and of purely

formal parts, and nothing else.”

Then, the transparency aspect additionally implies rather easy access to the formal
parts of such proofs.

3. 7-Cycles Generated by y-Cycles of Fixed Length

Let us recall a few basic notations and techniques from permutation group theory. We
denote the product of permutations in the same order as functional compositions; in other
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words, if o and T are permutations and i € {1,2,...,n}, then (¢7)(i) = o(7(i)). An easy
corollary of the decomposition

(1,02, ..., ix) = (i1,12) (in,3) - - - (i1, ix)

of a cycle as a product of transpositions is the decomposition

of a cycle as a product of subcycles. If ¢ = (i, iy, ..., i), then o' = (i, ix_1,...,i1).

In any group G, if S C G, then (S) denotes the subgroup of G generated by S, which is
the smallest subgroup of G that contains S. In any group G, the notation ¢* means Tot ™!
or the conjugation of o by 7. A few helpful properties of conjugations are (¢7)" = 7"
(as, in addition, conjugation is bijective, meaning that it is automorphism) and o™ = (¢")".
The conjugacy class of an element 7t is 7% = {o7to~! | ¢ € G}. For the particular case of
permutation groups, there is a helpful property for the cycles:

(il, iz, ce ,ik)T = (T(il),T(iz), PN ,T(ik)).
Definition 1 (y-cycles). In S, a y-cycle is a cycle of the form
(i+1,i+2,...,i+m—1,i+m)

where 0 < i < n —m. We may denote these cycles simply as [i + 1,1 + m| An m-y-cycle is a
y-cycle of length m. The ~y-cycles [1, m] are called initial while the [i, n] are called final y-cycles.

For instance, the 2-y-cycle [i,i + 1] is just the adjacent transposition (i,i + 1).

The following results are established in the literature and are used in what follows.
While the former is better known, the latter is much less known (it can be found in Conrad’s
work [10]).

Proposition 1. S,, is generated by the set of all adjacent transpositions. A, is generated by the set
of all 3-7y-cycles.

In the literature on group theory, these properties often receive unnecessarily difficult
proofs, especially the result for 3-y-cycles. However, both of them can be shown easily
through algorithmic reasoning by sorting the permutations (77) as follows. In the former
case, at each step we simply select any pair of adjacent elements that are not in order,
ie, (i) > (i + 1), and swap them. This algorithm terminates because at each step the
number of inversions is decreased. Moreover, it can only terminate when the permutation
is sorted. In the latter case, by successively applying 3-y-cycles we first bring 1 to its place
(i-e., such that 71(1) = 1), then we bring 2, 3, etc., until 1, 2, ..., n — 2 are all sorted. Now,
if t1(n —1) = n —1and 7t(n) = n the permutation is sorted; otherwise, it means that the
starting permutation was odd.

3.1. Computational Experiments with Fixed Length y-Cycles

The origin of our endeavour was not Piccard’s work [6] (in fact, we learned about
it at a rather late stage), but rather a misinterpreted version (perhaps due to poor trans-
lation) of a problem proposed in 1994 to the participants at the Russian Mathematical
Olympiad. In the end, the misinterpreted variant proved to be much more interesting and
challenging than the true version. In higher algebra terminology, this was equivalent to the
following question:

What is the subgroup of S, generated by all m-y-cycles?

In order to obtain an answer to this question, in the beginning we wrote a program
that generated all permutations in S, from m-y-cycles. By embedding  of S,,11 into S,
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now used in the proof of Theorem 1 below, and in the light of Proposition 1, we were able
to reduce the problem to the case n = m + 1. By running the program and by inspecting
the cardinality of the generated group, we noticed quickly that S, is generated when m
is even, while A, is generated when m is odd. With this understanding, we approached
larger values for m in order to check this truth more thoroughly. For this, we had to abandon
the generation of all permutation and instead rely on Proposition 1 to focus only on the
adjacent transpositions when m is even and on the 3-y-cycles when m is odd. This has
carried out with two rules, as follows:

*  Werepresented permutations as lists of numbers in the obvious way. For example, the
list (3524 1) represents the permutation (123 13). This choice of representation is
motivated by the fact that Maude provides unparalleled computational support for
lists through rewriting modulo associativity.

*  One rule (denoted r1) generates non-deterministically the inverses of all k-y-cycles. Its
corresponding logical formula is

VLIL Vb (L =k—1)= (1 (bL')I') = (1 (L'b) )

where [,I’, L’ are variables ranging over lists of naturals, b is a variable ranging over
the naturals, and #L' is the length of L.

*  The other rule (denoted r,) applies m-y-cycles non-deterministically, its corresponding
logical formula being

VLI, L b (B =m—1) = (I (L'b) 1) — (I (b L") I').

We use a “flag” (i.e., a variable that takes either 0 or 1 as its values) to ensure that the
former rule is applied exactly once at the beginning of the computation, while the latter can
be applied any number of times. In this way, we can generate all compositions between an
inverse of a k-y-cycle and any sequence of m-y-cycles. When this yields the identity, we
can find the respective k-y-cycle is a product of m-y-cycles. In the light of Proposition 1,
for our immediate purpose it is enough to run the program only for k € {2,3}, although
the program built in this way can be run more generally as well. For m = 3 and k = 2, this
process can be represented by the diagram below:

(2134) 2~ ...
71 X
n [p) 2
1221324 2. 251
(1243) ——> ./
[p)

This diagram can be interpreted in two ways. On the one hand, it is a fragment of any
model satisfying the two logical formulas above. On the other hand, the computational
angle shows the relevant fragment of the computation process. With Maude, these are the
two sides of the same coin.

The actual Maude programs can be found in Appendix A.

3.2. The Mathematical Results

After assuring confidence with respect to the generation of 5,1 and A, through
experimentation with the programs discussed above, we assessed how k-y-cycles fork = 1,2
are generated, and noticed immediately that this was always carried out in m + 1 steps.
Then, we looked into the actual decomposition of those k-y-cycles as products of m-y-cycles,
and by inspecting patterns we arrived at the following formulas:
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mT—i .
(i) If m is even, then (i,i + 1) = ( (z0) i1 Z even
(to)z t(to) 2, iodd.

q-‘
Q

NI~

N

bl

(t0)20%(10)" 3, ieven

m—i

ii) If mis odd, then [i,i + 2] = i _
) [ ] {(70)211'2(10) z, iodd.

where o = [1,m] and T = [2,m + 1] are the m-y-cycles of S, 1.

While working to prove these formulas, we came to understand that they hold more
generally as well, and thus arrived at the results of Proposition 2 and its consequences,
Corollary 1 and Theorem 1.

Proposition 2. In S, 1, let o = [1,m|, T = [2,m + 1], « = [1,m + 1]. Then, for each i and ¢
[i)i 4 €] = alola—(+0) = oi~1gl1=(+0),
Proof. We begin with the proof of the first equality by induction on ¢. For £ = 1, we have:

(Li+1) = [Li-1({-1Li+D)[i+1,m+1a"
U'“ltx_l — (XiO'tx_(H'l).

For the inductive step, we have:

(i,i+0+1) (Li+1)[i+1,i+0+1]
= aloa (g H1gly=(H++1) by the induction hypothesis
= gt (i)

The second equality is proven as follows:

. . R , .
wola= (0 = 4 (7% )=+ because o = 1%
ai(Tz)a—laf(iH)

g1l 1- (i)

O

Corollary 1. Under the notations used in Proposition 2, if m - { is even, then [i,i + ] € (0, T).
Moreover,

(to) 20t (t0)~ %, (i—1)(¢ —1) odd
- (t0) Ztl(re) 2, i(f—1)odd
[i,i+ (] = i, mA1—(i+0) .

(to)2o(to)™ 2, (i—1)lodd

(TO')%TZ(TU)M, i-£odd.

Proof. The key to the derivation of this consequence is the equation 7o = 2, which can be
checked easily. In order to use this, we have to see when the two exponents of « involved
in one of the two equations in the statement of Proposition 2 are even. Indeed,

e  when / is even, then either both i and i + ¢ are even or else bothi — 1 and i + ¢ — 1 are
even, and
e when / is odd, then m is even, which implies that either both i and m + 1 — (i 4 ¢) are
even or else both i — 1 and m + 2 — (i + I) are even; in this case, in order to invoke the
results of Proposition 2, we use a1 = 1.
O

Note that while the formulas of Corollary 1 are new, its first conclusion can be derived
from P4 of [6].
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The theorem below shows that all m-y-cycles generate either A, or S, depending on
the parity of m, thereby generalizing the results of Proposition 1.

Theorem 1. Fix integers m,n, with2 < m < n. Then,

Ay, ifmisodd,
<{[k+1,k+m]|k_0,1,...,n—m}>_{ ne ifmiso

Sp, if mis even.
Proof. For [i,i+¢] € S, ¢ =1,2,weconsiderk+1 <i,i+ ¢ < k+m+1 < n. By applying
Corollary 1 through homomorphic embedding & of S, into S, defined by

k+m(g—k), k+1<qg<k+m+1
h(m)(q) = { :

q, otherwise
the y-cycle [i,i + ¢] is generated by [k + 1,k + m] and [k + 2,k + m + 1]. This conclusion
follows from the results of Proposition 1. [J

4. The Three Exceptions

P4 of [6] is a general result for the subgroups of S;; generated by an initial and final
v-cycle that have a non-empty intersection. Three exceptions are stated therein where
the result does not hold. The aim of this section is to establish the nature of the actual
subgroups of S, generated by these exceptions.

We establish the following result through a combination of mathematical reasoning
with programming and with classification theory know-how. This exception from P.4 of
article [6] was actually discovered by us through programming independently before we
were made aware of the above publication.

Proposition 3. The subgroup G = ([1,4], [2,6]) of S¢ is isomorphic to Ss.

Proof. S5 was suggested to us by the cardinality of G, which we noticed when generating
its elements by programming. However, according to the database [11] there are 47 groups
with cardinality 120.

In order to establish the isomorphism to S5, we implemented the following steps:

1.  We computed the orders of all elements of G as follows. The program that computes
the subgroup of S, generated by [1, m] and [2, n] implements the logical formulas

Vx-VL L -#L=m—-1)= (xL)L' — (Lx) L

and
Vx,y-VL-x (yL) = x (Ly)

where x, y range over naturals and L, L over lists of naturals. Of course, the parts of
the POA models considered refer only to the case in which the terms of the equations
are permutations in S,. To these, we added another sentence used for specifying
powers of permutations:

VL,P-P— PolL

where P and L are lists of naturals (which are used only as permutations) and P o L
is their composition as permutations. We implemented these three POA sentences
as a Maude program, which is explained in detail in Appendix B. By running it
for m = 4 and n = 6, we obtained the list of all elements of G together with their
respective orders.

2. We noticed that the set of the orders of the elements of G is {1,2,3,4,5,6}. We ran the
program again in order to partition G into six order classes (the order class of v € G,
denoted O(7r), consists of all elements of G of the same order with 7).
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3. Then, with a simple Maude program implementing the logical formulas
VPP — [1,4/oPo[1,4] 'and VP -P — [2,6] 0 Po [2,6]

we pick one element from each of the six order classes and compute its conjugacy
class. For the orders 1, 3, 4, 5, 6, we have #7¢ = #O(7r), which implies ¢ = 0(n),
because it is always the case that 776 C O(7r). This consumed five short computations.
For the second order, we used a random permutation 7t from the respective order
class and obtained 7% = 15. Then, we tried randomly with another permutation,
' € O(m) \ 7%, and obtained #7/ ¢ = 10. It follows that the set of the permutations
in G of the second order is partitioned into two conjugacy classes. To summarise,
with seven short computations we were able to establish that G has seven conjugacy
classes of sizes 1(1), 10(2), 15(2), 20(3), 30(4), 24(5), and 20(6), where a(b) means that
the conjugacy class has size a and elements of order b.

4.  Finally, we relied on established knowledge about groups of order 120 as follows. Ac-
cording to the database [11], S5 is the only group with order 120 and seven conjugacy
classes, which means that G is isomorphic to Ss.

O

In the proof of Proposition 3, programming is involved at two points, once explicitly
and another time implicitly. On the one hand, we use highly transparent logic-based Maude
programming to establish the conjugacy classes of G. On the other hand, at the end of the
argument we rely on the result provided by the database in [11], namely, that S is the only
group with order 120 and seven conjugacy classes, which to our understanding has been
obtained through the GAP system [12]. We can say that this is an implicit involvement
of programming.

For the other two exceptions, we have two options: either to replicate the proof proce-
dure of Proposition 3 or else to approach them by conventional mathematical reasoning,
eventually by relying on the result of Proposition 3. The former option is straightforward,
while the latter requires mathematical effort, the result being uncertain. However, for
the case of the third exception there is no such dilemma, as we may note immediately a
symmetry with the case in Proposition 3, meaning that we can rely on that result.

Corollary 2. The subgroup ([1,5], [3,6]) of S¢ is isomorphic to Ss

Proof. Let 8 = (1,6)(2,5)(3,4). Then, [2,6] = ([1,5]f)~! and [1,4] = ([3,6]#)~!, hence,
([1,5],[3,6]) is isomorphic to ([1,4], 2,6]) through an automorphism of S¢. [

The remaining exception is less straightforward mathematically, and in this case it
makes a lot of sense to approach it in the style of Proposition 3. However, that would not
bring anything new to our exposition; therefore, in order to contrast the two approaches,
we approach it in a conventional way. However, this does not mean we start from scratch;
we rely on the result of Proposition 3, which is the most important result in this section and
a base for deriving the other results.

Corollary 3. The subgroup ([1,4], [3,6]) of S is isomorphic to Ss.

Proof. Letu = [1,4], v = [3,6] and a = [1, 6]. Because

it follows that

(,0) = (u,u”) = (w,u 0"y = (u, (u )Y = (1,(2,3,4,6,5)).
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Because u(>0) = 1 and (2,3,4, 6,5)(5'6) = [2,6], we obtain that (u, v) is isomorphic to
([1,4],[2,6]) through an automorphism of Sg. [

4.1. Grasping Concrete Isomorphisms

Proposition 3 tells us that there are isomorphisms G = ([1,4], [2,6]) — Ss. Now, we
establish them concretely.

On the basis of Proposition 3, let us consider an isomorphism ¢ : G — Ss. Note that,
as an isomorphism, ¢ preserves orders. In particular, it follows that the order of ¥[2, 6]
is 5, becuase in S5 all permutations of order 5 form a single conjugacy class (see the third
stage in the proof of Proposition 3) and there exists 7t € Ss such that (¢[2,6])" = a = [1,5].
Let ¢ = (—)™ o ¢ be the composition between ¢ and the automorphism defined by the
conjugation with 7. All we have to do now is establish the value of ¢[1,4].

By programming, we non-deterministically generate all permutations P of Ss as
candidates for ¢[1,4], and again by programming we check for each of them whether
permutations generated by P and « have the same order as the corresponding permutations
generated in S¢ by [1,4] and [2,6].

We try this gradually with permutations generated in 1, 2, and 3 steps. Upon inspecting
the results, it can be seen that all of them share five solutions, while in certain cases (for
example when Ps = P - [2,6]?) these five are all solutions. Then, we note that these are

{(1,4, 2,3)”‘k | k = 0,4}, which is expected, as for any solution P, because a* = &, we

automatically have P** for k = 0,4 as solutions as well. This means that up to a conjugation
by a* we have found only one possibility for ¢[1,4]; hence, we can formulate the following
consequence of Proposition 3:

Corollary 4. ¢[1,4] = (1,4,2,3) and ¢[2,6] = [1,5] define an isomorphism G — Ss. Moreover,
this is the unique such isomorphism up to a conjugation by a permutation in Ss.

Similar results may be established for the other two exceptions. This can be done
either directly, as for Corollary 4, or else as a consequence of Corollary 4 through the
isomorphisms of Corollaries 2 and 3, respectively. The program that establishes the value
of ¢[1,4] is presented in Appendix C.

5. Conclusions

We have introduced a new experimental mathematics method that combines con-
ventional mathematical development with preordered algebra based computation with
Maude programming language. The computation-as-logical-inference foundation of the
programming parts means that, as a whole, our proofs are merely mathematical proofs that
may contain a few formal parts. Moreover, the programming parts are highly transparent
thanks to the strong declarative character of Maude and because we use general purpose
programming rather than dedicated software.

In this way, we were able to discover formulas for generating any <-cycles from
arbitrary fixed length y-cycles, then applied this to show that all y-cycles of arbitrary fixed
length generate either S, or A, depending upon the parity of their length. Then, we turned
to the exceptions of an old general result on the generating power of two 7y-cycles. By our
method, we able to first discover and then prove that the subgroups generated within the
context of all three exceptions correspond to certain uncommon embeddings of S5 into Sg.
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Appendix A. Programs for Proposition 2 and Theorem 1

The program follows closely from the explanation in Section 3.1. However, there are
additional details that have to do with managing information rather than the computation
process. During the computation process, we maintain the following data:

1. The current value of the permutation that suffers the computation process. When this
becomes the identity permutation, the computation process stops

2. The value of m

3. Thevalue of k

4. The value of the flag that ensures that the k-y cycles are first generated in parallel,
then starts the non-deterministic sorting process that applies successive m-7y cycles

5. The inverse of the k-y cycle that is currently sorted.

These five pieces of information are stored as the data Config, which is built through
a 5-ary operation. The two Maude rules are the obvious Maude writing of the logical
formulas rq and 7, from Section 3.1 using the data in Config.

mod G-CYCLES is
protecting LIST{Nat} .
sort Config .
op <_I_I_lI_I_> : List{Nat} Nat Nat Nat List{Nat} -> Config .

vars L L? 1 1’ : List{Nat} .
vars k b m : Nat .

crl<1 (M L)1’ Im| k| OI|L > =>
<1 (@b 12 I m|lk |11 b)) 1°>
if size(b L’) ==k
crl <1 @ bb)L) Iml k| 1]L>=
<1 ® LY ImlkI|1]L>
if size(L’ b) ==m .

endm

Next is an example of how to use the program. For instance, the result of Theorem 1 is
obtained for n = 7 and m = 6 by launching the following command:

search [6] in G-CYCLES :
<12345671 6
<L’ | 6

nil > =>x%

210 |
2111124567 >.

This triggers the computation of the relevant part of the POA models defined by
G-CYCLES and then a search for the states (i.e., elements of the POA models) that match
the constraint specified in the target of the search, namely, that the result is the identity
permutation. The parameter [6] means that we are interested in ensuring that all six
adjacent transpositions are sorted, meaning that after reaching six solutions the computation
stops. Otherwise, the system may unnecessarily continue to build more of the POA model.
However, even them it eventually stops because, in this case, the model is finite. However,
this would take more time unnecessarily.

The slightly abbreviated form of the result of the run is:

Solution 1 (state 792)
states: 793 rewrites: 116631
L-->21345617

Solution 2 (state 896)
states: 897 rewrites: 134101
L-->1324567

Solution 3 (state 1006)
states: 1007 rewrites: 152447
L-->1243567
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Solution 4 (state 1104)
states: 1105 rewrites: 169041
L-->1235467

Solution 5 (state 1226)
states: 1227 rewrites: 189139
L-->12346517

Solution 6 (state 1300)
states: 1301 rewrites: 202229
L-->123457€6

From this output, it is easy to learn that all the adjacent transpositions have been
sorted. We can investigate further and inspect how they have been sorted, which in group
theoretical terminology means how they are generated. For instance, for the transposition
(3,4) we pick the indicated state (which is an element of the POA model) and run:

show path 1006 .

This yields an output that, in abbreviated form, looks like this:

state 0, Config: <1 234567 |6 2] 0] nil >

state 3, Config: <1243567 6121111243567 >
state 11, Config: <6 124357 |6 112111243567 >
state 28, Config: < 6712435 |6[|2]11]112435667>
state 61, Config: <367 1245 |6 2]|1]11243567>
state 128, Config: <3567 124|621 111243567 >
state 262, Config: <3456712|6[|2]1]1243567>
state 524, Config: <1345672|6[|2]1]1243567>
state 1006, Config: <1 234567 | 62111243567 >

Upon inspecting the progress of the computation, we arrive at the formula (3,4) =
(to)T(70)? (the notations are those from Section 3.2). In order to reach to the pattern of the
formulas from Section 3.2, we run several such examples.

Appendix B. Programs for Proposition 3

The first two modules contain simple recursive definitions of a couple of auxiliary
operations; L[k] computes the k-th element of the list L, while P o L computes the compo-
sitions of the permutations P and L represented as lists. These work only for values that
make sense.

mod LIST-AS-ARRAY is

protecting LIST{Nat} .

protecting INT .

op _[_] : List{Nat} Nat -> Nat .

vars x k : Nat .

var L : List{Nat} .

eq (x L)[1] = x .

ceq (x L)[k] = L[k + -1] if k > 1 .
endm

mod PERM-L-COMP is
protecting LIST-AS-ARRAY .
op _o_ : List{Nat} List{Nat} -> List{Nat} .
vars L P : List{Nat} .
var x : Nat .
eq P o nil = nil .
eq Po (L x)=(P olL) (P[x])
endm
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The next program implements the three logical formulas in the proof of Proposition 3
for computing the elements of S, generated by [1, m] and [2, n] together with their orders.
The program is developed to work in general for any values of m and n. In order to
happen in two stages, the computation is controlled by a flag (on the fourth position
of the configurations). First, we have the non-deterministic application of the first two
formulas from the proof of Proposition 3; then, for each permutation thus obtained, its
powers are computed until the identity permutation is obtained. In the first two fields of
the configurations, we store the values of the permutation computed in these two stages,
respectively. When the first stage stops, the value in the first field is frozen and then
duplicated in the second field in order to start the second stage of computation. The third
field stores the value of m. The fourth field has two roles: on the one hand, it acts as a flag
that keeps the computation inside the first stage (the value is 0), and on the other hand it
computes the actual order of the respective permutation in the second stage. The moment
the computation is switched from the first to the second stage, this value change from 0 to
1. Note that while the computation in the first stage is non-deterministic, the computation
in the second stage is deterministic.

mod ORDERS-PERM is

protecting PERM-L-COMP .

protecting SORTING .

protecting LIST-OF-NUMBERS-FROM-TILL .

sort Config .

op <_I_I_l_> : List{Nat} List{Nat} Nat Nat -> Config .

vars x y m k : Nat .

vars L L’ P : List{Nat} .

rl1 <x (yL) | nil [ m | 0>=>
<x (Ly)|lnil lm ] 0> .

crl < (x L)L’ | nil | m | 0> =>
<@L=x)L> | nil [ m| 0>

if size(x L) == m .
rl <L | nil |lm ]| 0>=>
<L | L |lm | 1>.
crl <L | P | m | k > =>

<KL|PoL|ml|lk+1>
if not sorted(P) .
endm

The elements of subgroup G and their orders are obtained by running a search for the
terminal elements of the generated POA model, hence, =>!.

search in ORDERS-PERM :
< from 1 till 6 | nil | 4 | O>=>! <L | P | 4] k>.

Then, we obtain the order classes by running six different searches, one for each of the
six orders obtained from the previous run. For instance, the following search provides all
permutations of order 4 in G:

search in ORDERS-PERM :
< from 1 till 6 | nil | 4 | O>=>! <L | P | 4] 4> .

The following program just computes the conjugacy class of a permutation P in G by
conjugating non-deterministically with the two generators [1,4] and [2, 6]. It is used in the
third stage in the proof of Proposition 3.

mod CONJUGACY-CLASS is
protecting PERM-L-COMP .
sort Config .
op <_> : List{Nat} -> Config .
var P : List{Nat} .
rl<P>=><(234156)0Po (4123586 >.
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rl1<P>=><(134562)0Po(162345)>.

endm

The program is run seven times, as explained in the proof of Proposition 3. For

instance, when establishing that the order class 4 consists of only one conjugacy class, we
perform the following search (the input permutation is chosen arbitrarily from the order
class 4 computed with ORDERS-PERM):

search in CONJUGACY-CLASS : <23 4156 > =>x<P>.

The result consists of 30 permutations, which shows that the conjugacy class coincides

with the order class.

Appendix C. Programs for Section 4.1

—_

The program implements computation in three stages:

Generate all permutations P of S5 non-deterministically.

For each P € S5, we inductively generate the pairs of elements (P5, Ps), P5 € (P, [1,5]),
Ps € ([1,4], [2,6]) such that ¢(P5) = Ps. This is achieved non-deterministically by two
rules, one for each of the two generators (on the one hand P and [1, 5], on the other
hand [1,4] and [2, 6]), and by relying on the basic fact that the generated group is just
the generated monoid. Moreover, during the generation process we keep trace of the
current corresponding element in the free monoid (with two generators, 1 for P and
[1,4] and 2 for [1,5] and [2, 6]).

For each pair (P5,Ps = ¢(DP5)), by one rule we establish whether they have the
same order by successively computing their powers Ls = P¥ and Lg = PF. If they
have different orders, then the whole computation branch for P halts; otherwise, we
continue by going back to stage 2 and generating a new pair (Ps, D).

We structure the values of these variables as follows:

< S|P|Ps|Ls|Ps| L | p>

where S is the pool set of numbers from {1,2,...,5} thatis used to generate permutations P.

mod ISO-TO-S5 is

protecting SET{Nat} .
protecting PERM-L-COMP .
protecting SORTING .
sort Config .
op <_l_I_I_I_I_1_> : Set{Nat} List{Nat} List{Nat}
List{Nat} List{Nat} List{Nat} List{Nat} -> Config .
var i : Nat .
var S : Set{Nat} .
vars p P P5 P6 L5 L6 : List{Nat} .

The following is the rule that generates permutations P. It non-deterministically

moves elements from the pool set S to the list P.

rl < (i, S) | P | nil | nil | nil | nil | nil > =>
< S | (A1 P) | nil | nil | nil | nil | nil > .

The following two rules initiate the computation of P5 and Pg; this is the base step of

the inductive generation process. The system applies them non-deterministically.

rl < empty | P | nil | nil | nil | nil | nil > =>
<empty | PIP | P | (234156) | (234156) 11 >.
rl < empty | P | nil | nil | nil | nil | nil > =>
<empty | P| (23451 | (23451 |

(134562 | (134562) | 2>.
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The inductive step in the generation of P5 and P is specified by the following two
rules, each corresponding to one corresponding pair of generators in Ss and in S¢. We set
an arbitrary bound to the size of the preordered algebra by constraining the size of the
elements in the free monoid.

crl < empty | P | P5 | L6 | P6 | L6 | p > =>
< empty | P| P5 o P | P5 o P |
P60 (234156) | P60o(234156) | (p1)>
if sorted(L5) and sorted(L6) and size(p) < 5 .
crl < empty | P | P5 | L6 | P6 | L6 | p > =>
<empty | P| P50 (23451) | P50 (23451) |
P60 (134562) | P60 (134562) | (p2)>
if sorted(L5) and sorted(L6) and size(p) < 5 .

At the third stage of the computation, we simultaneously compute powers P¥ and Pf,
while the minimum of the orders of P5 and P is not yet reached. When the first is reached,
the computation process is shifted to the stage 2 rules.

crl < empty | P | P5 | L5 | P6 | L6 | p>=>
< empty | P| P5 | L5 oP5 | P6 | L6 o P6 | p >
if (not sorted(L5)) and (not sorted(L6))
endm

By running this program for different pairs (Ps, Ps), we obtain the values of P for
which P5 and P have the same order. For instance, for P - [1,5]% and [1, 4] - [2,6]*> we run
the following search:

search in IS0-TO-S5 :
< (1,2,3,4,5) | nil | nil | nil | nil | nil | nil > =>%
< empty | P | P5 | L5 | P6 | L6 | 122>
such that sorted(L5) and sorted(L6)

Then, we obtain five solutions (the output is presented in an abbreviated form):

Solution 1 (state 3402)
states: 3403 rewrites: 550058
P-->45321

Solution 2 (state 3592)
states: 3593 rewrites: 588338
P-->15423

Solution 3 (state 3609)
states: 3610 rewrites: 591790
P-->25143

Solution 4 (state 3633)
states: 3634 rewrites: 596516
P-->42153

Solution 5 (state 3751)
states: 3752 rewrites: 620438
P-->43125

As mentioned in Section 4.1, these are just (1,4, 2, 3)"‘k fork =0,4.
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