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Abstract. A finite subset of a Euclidean space is called Ramsey if for each k

and each ^-coloring of a sufficiently dimensional Euclidean space E there is

a monochromatic isometrical embedding from F to E . We show that if F

has a transitive solvable group of isometries then it is Ramsey. In particular,

regular polygons are Ramsey. We also show that regular polyhedra in R3 are

Ramsey.

1. Introduction

The question of what configurations F in a Euclidean space are Ramsey was

first raised by Erdös, Graham, Montgomery, Rothschild, Spencer, and Straus

[1]. They showed that in order for F to be Ramsey, it must lie on a sphere.

On the other hand, they showed that the property to be Ramsey is preserved by

finite Cartesian products and thus that vertex sets of bricks are Ramsey. Frankl

and Rödl [2] showed that all triangles and also infinitely many trapezoids are

Ramsey. They asked whether there is a Ramsey pentagon.

In this paper we show that a configuration F is Ramsey if it has a solvable

transitive group of isometries or, more generally, if it has a transitive group of

isometries which has a solvable subgroup with at most two orbits. In particular,

regular polygons and regular polyhedra in R   are Ramsey.

2. Preliminaries

2.1. Conventions and notations. N denotes the set of all natural numbers and

R denotes the set of all real numbers. We make the identification

« = {0, ... ,n- 1}.

The notation X ce Y for sets X, Y means that X is a subset of Y and that

X is finite. The cardinality of a finite set X is denoted by \X\. The image

of a mapping /: X —* Y is denoted by Im /. If R is a relation then xRy

means (x, y) e R. If E is an equivalence relation on X then X/E denotes

the set of equivalence classes corresponding to E . For a set A, let {An) denote
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the set of all subsets of A of cardinality n. The symbol \ denotes the set-

theoretical difference. For sets A, B, AB denotes the set of all mappings from

B to A. Thus, A" can be identified with the nth Cartesian power of A . For

a £ A", we write a = (a0, ... , an_x). If X ce R, X = {xx, ... , xk} and

Xj < • • • < xk , we write X = {xx < ■ ■ ■ < xk}. On Rn we have a scalar product

x • y = 2^,-€„ *, • y, > a norm ||x|| = x • x and the associated Euclidean metric.

For IÇR" and X £ R we put

X-X = {Xx\xeX}.

2.2. The configurations. In this paper, a configuration F is a finite subset of

a Euclidean space R" . Thus, every configuration has a structure of a (finite)

metric space. Thus, for configurations F CC R" , 77 ce R" we have the notion

of an isometry </>: F —> H (a, 1-1 correspondence preserving metric) and of

an isometrical embedding (¡> : F —> R" . To clean up the terminology, we present

the following well-known fact:

2.2.1. Observation. Let F ce Rm be a configuration and let <p: F —> R" be an

isometrical embedding. Further let n < m . Then there is a unique isometrical

embedding y/ : R" —> Rm such that the following diagram commutes:

Proof. Let F = {x0, ... , xk}. Without loss of generality, the set {x-xk\i £ k)

generates R" . Thus, without loss of generality, {x( - xk\i £ n} is a basis of

R". Put a; = x( - xk , b¡ = (f>(x¡) - 4>(xk) and define ip by

ÍM^ + EW =<t>(xk) + J2sibr
\ içn       J ¡en

Since <p is an isometry, we have ||a¿|| = 116,-H and \\ai-aJ\\ = \\b¡-bJ\\. Thus,

a; • a  = b( ■ bj and y/ is an isometrical embedding.   D

2.3. The group actions. Let X be a finite set, let b: X —> X be a bijection and

let a group G act on X. We adopt the following notation:

Orbè(x) = {//x|«eN},

OrbG(x) = {gx\g £ G}.

These sets are called orbits of x e X. The group G is called transitive if, for

some, x £ X (equivalently, for each x £ X), OrbG(x) = X. A configuration

F is transitive if it has a transitive group of isometries. We also define the

stabilizer

StG(x) = {g£G\gx = x}.
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Let EG he the equivalence relation on X given by

xEGy   if and only if   (3g £ G)(gx = y).

On the other hand, if E is an arbitrary equivalence relation on X, we say that

b respects E if

xEy =*■ bxEby.

In that case, b induces a bijection X/E —► X/E. By abuse of notation, we also

denote it by b. Similarly, we say that G respects E if every g £ G does. In

that case G acts on X/E. If G respects E, we put

StG(F) = {g£ C7|(Vx e X)gxEx} = {g£ G|(Vz e X/E)gz = z}.

Unlike StG(x), StG(F) is always a normal subgroup of G. We put

G/E = G/StG(E),

[J(E; G) = {(x,y) £ X2\(3g e G)(gxEy)}.

Choosing n £ N, x £ X ,we also put

\J(E;x,b,n) = Eu{(y,z)£ X2\(3i, j £ n)((yEb'x)&(zEbJx))}.

2.3.1.    Lemma. Let G acton X and let HCG be a normal subgroup. Then:

(2.3.1.1) G respects EH,

(2.3.1.2) G/EH is a factor group ofiG/H,  and

(2.3.1.3) \J(EH;G) = EG.

Proof. Let xEHy, i.e. hx = y. Then (ghg)~xgx = gy, where ghg~x £ H

since 77 is normal. (2.3.1.1) is proved. By definition, h £ H =$■ hxEHx . Thus,

77 C StG(EH) and (2.3.1.2) is proved. Finally, (3g £ G)(gxEHy) if and only

if (3g e G)(3h £ H)(hgx = y) if and only if (3g £ G)gx = y if and only if
xEGy, proving (2.3.1.3).   D

2.4. The Ramsey properties. Consistently with [1], we adopt the following ter-

minology. Let F be a configuration, let E be an equivalence relation on F

and let îêN. We say that F is Ramsey (resp. E-Ramsey, resp. s-Ramsey)

if for each k e N there is an m £ N such that for each mapping a : R" —> k

there is an isometrical embedding ff-»R" with the property that

o4> is a constant,

resp. xEy => acf>(x) = 0(f)(y),

resp. | Im rj<f>\ < s .

2.4.1. Proposition. Let F be an s-Ramsey configuration. Then there is an

equivalence relation E on F such that F is E-Ramsey and \F/E\ < s.

Proof. Suppose that F is F-Ramsey for no equivalence relation E with |F/F|

< s.   Then for each such relation  E there is a number kE  such that for

each m £ N there is a mapping cr™ : Rm —► kE with the property that for no
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isometrical embedding §: F -> Rw oEcj) is constant on equivalence classes of

E. Define

o»:*1-, n kE
\F/E\<s

by
(a  (x))E = aE(x).

Then there is no isometrical embedding <f> : F —► Rm such that

(2.4.1.1) |Imr7">|<s.

Indeed, put

E = {(x,y)eF2\om<t>(x) = em<f>(y)}

and suppose that (2.4.1.1) holds. Then

\F/E\ = | Im om(f>\ < s.

Thus, for some x, y e F, we have

(2.4.1.2) xEy

(2.4.1.3) o2<Kx)*e2#y)-

However, (2.4.1.2) implies am4>(x) = om(f)(y) and thus contradicts (2.4.1.3).   D

3. The product theorem

3.1. Definition. Let F, , F2 be configurations and let Ei he an equivalence

relation on Fi. Then Fx x F2 (with the Euclidean product of the metrics)

has the structure of a configuration. Moreover, it comes with an equivalence

relation Ex x E2 given by

(xx, x2)(F, x E2)(yx, y2)   if and only if   (xxExyx)&(x2E2y2).

Analogously, we define a power Fn of a configuration with a power E" of the

equivalence relation.

The following result strengthens two theorems from [1].

3.2. The Product Theorem. Let F,, F2  be configurations and let Ei  be an

equivalence relation on Fi suchthat Fi is E-Ramsey. Then FxxF2 is (ExxE2)-

Ramsey.

Proof. Assume that for both i e {1, 2} and for each k £ N there is an N¡(k) £

N such that for each mapping

a:RN<{k)->k

there is an isometrical embedding 4>: F¡ —► R^'1 ' with xF^ =^ o<f>(x) = o<j)(y).

Put

mx =Nx(k]F2'El1).
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By an easy compactness argument, there is an I ce R™1  such that for each

mapping

a:X^klF^

there is an isometrical embedding <j>: Fx -* X with xExy =*■ atf>(x) = 0(f>(y).

Put m2 = N2(k'   ). Now consider an arbitrary mapping

o:Rm'+m>^k.

nmi 1 X
a2:R 2-»k

':

First define a mapping

by putting

(a2(y))x = o(x0,.    ,xWi_,,v0,

By definition, there is an isometrical embedding

<t>2:F2-*Rm>

such that

(3.2.1) xE2y => o24>2(x) = a2<t>2(y).

Now define a mapping

by

ax:X^kCl1

(ax(x))y = <j(x0,...,xm¡_x,z0,...,zm2_x),

where y £ F2/E2 and z e y. By (3.2.1), the choice of z is immaterial. We

conclude that here is an isometrical embedding <px : F, —► X such that

(3.2.2) xExy^ox<j)x(x) = ox(i)x(y).

Now let i: X —» Rm' be the inclusion. Then obviously

(i4>x x<t>2):Fx xF2^Rmi+mi

is an isometrical embedding, while, by (3.2.1), (3.2.2),

x(Ex x E2)y => o(t<t>x x <¡>2)(x) = o(i<t>x x <j>2)(y).    O

3.3.    Theorem. Any 2-Ramsey transitive configuration is Ramsey.

Proof. Let F be a 2-Ramsey configuration. By Proposition 2.4.1, there is an

equivalence relation F on F such that F is F-Ramsey and \F/E\ < 2.

Without loss of generality we may assume \F/E\ = 2. Let G be a transitive

group of isometries of F . Put

(3.3.1) F/E = {zx,z2}

(3.3.2) t=|z,|-|StG(x)|   where x e F

Note that the choice of x e F in (3.3.2) is immaterial since G is transitive.
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Fix a k £ N. Now let m £ N satisfy the following statement (cf. [3]): For

any mapping
rm\

t: .

there is a subset M ç n such that

(3.3.3) \M\ = \G\

and

(3.3.4) t| I     I is constant.

By Theorem 3.2, Fm is Fm-Ramsey. Thus, there is an TV e N such that for

each mappinga2. R    —* k there is an isometrical embedding y/\ Fm —> R

with the property that

(3.3.5) xEmy => rj^(x) = a\p(y).

Choose z; 6 z} and define, for F e (7), w(F) e Fm by

(«(/»)),. = ?,   if/eF,

(m(F)) . = z2    if / £ m\P.

Define, further,

by

m
t: ;

t

x(P) = oy/(u(P)).

Choose an M ç n satisfying (3.3.3) and (3.3.4). Choose, further, a bijection

r. G —> M and define a mapping £ : F —> Fm by

(C(x)), = z2    if/0 71/,

Obviously, C enlarges distances by a constant factor of (|C7|) '  . We shall prove

(3.36) oy/Ç is constant.

Indeed, for each x £ F , the set

Px = {iem\(Ux))iezl}

satisfies Px ç M and |FJ = /. (The latter statement is by (3.3.2) and the

transitivity of G.) Now (3.3.6) follows from (3.3.4) and (3.3.5). We conclude

that (|G|)''   • F is Ramsey and hence so is F .   a

Exactly in the same way we can prove the following more general result.
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3.4. Theorem. Let F be a configuration and let Ex ç E2 ç F be equivalence

relations on F such that F is E2-Ramsey, \F/E2\ < 2 and let G be a group

ofiisometries of F which respects Ex. Then F is \J(EX ; G)-Ramsey.      D

4. The main result

4.1. Theorem. Let F be an E-Ramsey configuration and let b: F —> F be

an isometry which respects E. Then, for each z e F and each n £ N, f is

|J(F; z,b, n)-Ramsey.

Proof. An induction on n .

Assume F is F-Ramsey where E = \J(E; z, b, n - 1). Choose a k e N.

Put

(4.1.1) t = \Orhb(z)\.

Let (cf. [3]) m £ N be such that for each

( m \      i"-'
T(,-i)-k

there is an M ç m satisfying

(4.1.2) \M\ = t

and

J M y(4.1.3) t| I lis constant.

Now, by Theorem 3.2, there is an N £ N such that for each mapping

(4.1.4) a:RN^k

there is an isometrical embedding

(4.1.5) ip:Fm^RN

satisfying

(4.1.6) xEmy => o\p(x) = oy/(y).

Now fix mappings (4.1.4), (4.1.5). For {px < •■• <p,_x} = P £ ((™,)  and for

i em-I, define w;(F) e Fm by

(ui(P))i = b'z   for JiP,

(ut(P))p =b'+sz   for l<s<t-l.

Define x: (£,) - kn~x by

(t(P))¡ = oipui(P)   for i en-I.

Let M = {p0 < ■ ■ ■ < plX} satisfy (4.1.2) and (4.1.3). Define an embedding

6: F^Fm
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by

(0(x)). = z   for JiM,

<~4>(x))n =bsz   for0< 5<r- 1.

— 1 II
Obviously, <p enlarges distances by a constant factor of t . Moreover, we

have

xEy s» 4>(x)Em~<f)(y)

(since b respects E). Thus, by (4.1.6),

(4.1.7) xEy => ay/(f>(x) = ay/<f>(y).

We shall prove

(4.1.8) (V/e{l, ...,«- 1})       (oy/'4>(bi~Xz) = (oy/^(biz)).

Indeed, define, for i £ n - 1 and j £ n , u(i, j) £ Fm by

(u(i, j))r = b'z   for r £ M

(u(i,j))Ps = bj+sz   for re M.

We have, for i £ {1, ... , n - 1},

oip~$(b'~lz) by (4.1.6)

= oy/(u(i —1,/—1))

= oy/(ui_x(M\{minM})) by (4.1.3)

= (T^(w¡_1(7l/\{max7l/})) by (4.1.1), (i- 1) = i + (t - l)modi

and (4.1.6)

= oy/(u(i - 1, i)) by (4.1.6)

= oy/~4>(b'z),

concluding the proof of (4.1.8). By (4.1.7) and (4.1.8), tx'2 ■ F is tx'2

•\J(E; z, b, «)-Ramsey and hence F is \J(E; z, b, rc)-Ramsey. The induction

is complete.   D

4.2. Theorem. Let F be an E-Ramsey configuration and let G be a group

of isometries of F which respects E. Assume that G/E is cyclic. Then F is

(J(E ; G)-Ramsey.

Proof. The statement follows from Theorem 4.1 by induction on the number

of orbits of G/E .   D

4.3. Theorem. Let F be a configuration and let G be a solvable group of

isometries of F . Then F is EG-Ramsey.

Proof. The statement follows from Theorem 4.2 and Lemma 2.3.1.   G

4.4. Theorem. Any transitive configuration which has a solvable group of isome-

tries with < 2 orbits is Ramsey.

Proof. The statement follows from Theorems 3.3 and 4.3.   D
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4.5.    Corollary. Vertex sets ofiregular polygons are Ramsey.

4.6.   Corollary. Vertex sets of regular polyhedra in R   are Ramsey.

Proof. By the results of [1], we need only consider the cases of the dodeca-

hedron and icosahedron. The reader may notice that these two polyhedra do

not actually have solvable transitive groups of isometries. However, both of

them have groups of isometries which have two orbits and are isomorphic to

Z10 . If we label the vertices of the polyhedra as in Figure 1, the groups will be

generated by the permutations corresponding to

(1,2,3,4,5,6,7,8,9, 10)       (l\ 2', 3', 4', 5', 6', i, 8', 9', lu')

(1,2,3,4,5,6,7,8,9,10)       (a,b),

respectively.   D
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