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Abstract: Permutation methods for analysis of functional neuroimaging data acquired as factorially
designed experiments are described and validated. The F ratio was estimated for main effects and
interactions at each voxel in standard space. Critical values corresponding to probability thresholds were
derived from a null distribution sampled by appropriate permutation of observations. Spatially informed,
cluster-level test statistics were generated by applying a preliminary probability threshold to the voxel F
maps and then computing the sum of voxel statistics in each of the resulting three-dimensional clusters,
i.e., cluster “mass.” Using simulations comprising two between- or within-subject factors each with two
or three levels, contaminated by Gaussian and non-normal noise, the voxel-wise permutation test was
compared to the standard parametric F test and to the performance of the spatially informed statistic using
receiver operating characteristic (ROC) curves. Validity of the permutation-testing algorithm and software
is endorsed by almost identical performance of parametric and permutation tests of the voxel-level F
statistic. Permutation testing of suprathreshold voxel cluster mass, however, was found to provide
consistently superior sensitivity to detect simulated signals than either of the voxel-level tests. The
methods are also illustrated by application to an experimental dataset designed to investigate effects of
antidepressant drug treatment on brain activation by implicit sad facial affect perception in patients with
major depression. Antidepressant drug effects in left amygdala and ventral striatum were detected by this
software for an interaction between time (within-subject factor) and group (between-subject factor) in a
representative two-way factorial design. Hum. Brain Mapp. 22:193–205, 2004. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

The advantages of factorially designed experiments were
first articulated clearly by Fisher [1935] and have since been
endorsed widely by the biomedical scientific community.
Factorial designs generally provide a more powerful basis
for testing two or more experimental factors of interest (and
their interactions) than alternative approaches, such as mul-
tiple tests each of a single factor. Factors may generally code
fixed effects, random effects, or a mixture of both; in what
follows, we are concerned with fixed effect designs. Typi-
cally, each factor will comprise two or more levels of an
experimental or observational variable of interest and the
design will be balanced, i.e., there will be an equal number
of observations under all treatments or combinations of
factors at different levels. The levels of a factor can be
ordered or disjoint and the subjects may be measured re-
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peatedly on all levels of a (within-subject) factor or each
subject may be measured only on one level of a (between-
subject) factor. Ideally, the subjects will have been randomly
sampled from the population(s) of interest and randomly
assigned to a particular set of treatments. The most usual
method of analysing such data is by analysis of variance
(ANOVA), which additionally assumes that the measure-
ments are normally distributed and have equal variance
between levels of each factor. Homogeneity of variance is
particularly important for the condition of sphericity, which
is necessary for the validity of repeated measures ANOVA
[Mendoza et al., 1976]. The usual ANOVA statistic for hy-
pothesis testing is the F ratio between mean sum of squares
due to the factor in question and the mean sum of squares
due to error.

Although factorial designs have been used already quite
extensively in functional neuroimaging, it seems plausible
that not all conditions for validity of their analysis by para-
metric F tests will always be upheld. For this reason alone, it
may be useful to have tools for relatively “distribution-free,”
nonparametric analysis of factorially designed experiments.
Additionally, nonparametric methods may provide the free-
dom to test potentially more sensitive but theoretically less
tractable statistics than the F ratio estimated independently
at each voxel of an image.

Nonparametric methods of hypothesis testing based on
random resampling or permutation of the observed data
have been described previously in the context of linear
modelling of functional magnetic resonance imaging (fMRI)
time series [Bullmore et al., 1996, 2001a; Forman et al., 1995;
Locascio et al., 1997] as well as between-group comparisons
based on positron emission tomography (PET) data [Arndt
et al., 1996; Holmes et al., 1996], structural MRI [Bullmore et
al., 1999a, 2001b; Thompson et al., 2001], and functional MRI
data [Nichols and Holmes, 2002]. Moreover, there is prior
literature on development of permutation tests for factori-
ally designed experiments in biophysical and environmental
areas of application [Edgington, 1995; Good, 2000; Still and
White, 1981; Welch, 1990]. To the best of our knowledge,
however, these versatile techniques have not been validated
previously in relation to analysis of factorially designed
neuroimaging experiments.

We describe algorithms for testing by permutation the
statistical significance of main effects and interactions in any
two-way factorial design. The methods are validated by
comparison to parametric F-tests in voxel-level analysis of
simulated images and extended to cope with spatially in-
formed, cluster-level statistics. Exponential forms of the null
distribution for cluster extent statistics have been theoreti-
cally derived previously for brain mapping [Cao, 1999; Cao
and Worsley, 2001; Friston et al., 1994; Poline et al., 1997],
but often may be over-conservative [Ashburner and Friston
2000; Bullmore et al., 1999a]. We have reported previously
superior Type 1 error control by a permutation test (com-
pared to a theoretical test) of a cluster-level statistic for
analysis of a between-group difference in brain imaging
data [Bullmore et al., 1999a]. We report here the generalisa-

tion of this approach to an arbitrary two-way factorial de-
sign and evaluate its sensitivity compared to voxel-level
tests using receiver operating characteristic (ROC) curves
constructed by analysis of simulated images. Finally, we
illustrate application of the methods by analysis of a parallel
group, repeated measures, placebo-controlled pharmaco-
logic MRI study of antidepressant drug effects.

MATERIALS AND METHODS

Parametric and Permutation Tests for
Main Effects and Interactions

Notation

In a factorially designed experiment, imaging data are
acquired from subjects labeled k � 1,2,3,…,K within each
treatment. After appropriate preprocessing and time-series
modelling of each of these datasets, statistical maps of an
estimated standardised parameter �̂, describing some aspect
of functional response in each individual, are coregistered
into a standard stereotactic space. It is assumed that each
intracerebral voxel, v � 1,2,3,…,V, represents the same an-
atomic location within the parenchyma of the brain in every
individual. These images are then treated as dependent
variables in a univariate factorial analysis to assess at each
voxel the effects of the treatments under which the data
were collected. The treatments are specified by a combina-
tion of two fixed-effect factors A and B with levels indexed
by i � 1,2,3,…,I and j � 1,2,3,…,J, respectively, such that the
estimate of the response of the kth individual (at voxel v) is
denoted �̂ijk.

Estimation of F statistics

F statistics for main effects and interactions at each voxel
are calculated via sum-of-squares. Account is taken in these
calculations of whether the measures are independent or
repeated measures or a mixed design with independent
measures on one factor and repeated measures on the other
[for details of the calculations, see Coolican, 1999].

In a one-way design, the F ratio is a comparison of two
estimates of the sample variance, one from the variability
within each group, the other from the variability of the
means between each group. Under the null-hypothesis both
estimates of sample variance, i.e., sum-of-squares (SS) di-
vided by the appropriate degrees of freedom, are identical.
In a two-way factorial design the total variability, SStotal, is
partitioned into the variability of the treatments, SStreat, and
then partitioned further into the variability of each the main
effects of A (ignoring levels of B), SSA, and B (ignoring levels
of A), SSB, and the interaction between them, SSAB (Fig. 1a).
F ratios are then estimated for each main effect and interac-
tion with error variance in the denominator.

When all subjects undergo all treatments in a two-way
repeated measures design, calculations are made as if this
were a three-way design with subjects as a factor and each
individual a level of that factor (Fig. 1b). SStotal is partitioned
initially into between-subject variability, SSbet, and within-
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subject variability, SSwith, which is partitioned into the vari-
ability due to the treatments (SSA, SSB and SSAB) and esti-
mates of error SS for each main effect and interaction (SSerrA,
SSerrB and SSerrAB). The error variances are then compared to
the corresponding variance for each main effect and inter-
action to estimate the F ratios.

For a mixed design with repeated (factor A) and indepen-
dent (factor B) observations within- and between-subject
variability is partitioned further into variability for the ap-
propriate effect and error terms (Fig. 1c). SSwith thus has a
SSerr/with term and terms for the factors involving repeated
measures, SSA and SSAB, and the F ratios calculated for these
effects. SSbet is partitioned into an error term SSerr/bet and
term for the main effect of factor B, SSB and the correspond-
ing F value obtained.

Parametric tests for main effects and interactions

Tests against the parametric null-distribution were carried
out with the DCDFLIB software (Department of Biomathe-
matics, University of Texas). The validity of the parametric

test is predicated on the assumptions of random sampling
from the population, random assignment of subjects to treat-
ments, normally distributed observations, and that these
distributions should have homogeneous variance when ob-
servations are independent. For repeated measures, the as-
sumption of homogeneity of variance is implicit in the as-
sumption of sphericity [Mendoza et al., 1976].

Permutation tests for main effects and interactions

Informally, the null hypothesis to be tested by permuta-
tion of data acquired in a factorially designed experiment is
that the magnitude of an observed test statistic is not deter-
mined by the treatments experimentally associated with
each unit of observation �̂ijk, but would be reasonably likely
to occur under any arbitrary reassignment of observations to
treatments. To test this hypothesis operationally, observa-
tions are permuted randomly across levels of the factor of
interest and the test statistic is re-estimated after each per-
mutation. By repeating this procedure m number of times
and ordering the set of permuted test statistics that results,
the distribution of the test statistic under the null hypothesis
is sampled and from it critical values for valid hypothesis
testing are derived. In imaging, where test statistics may be
estimated at several thousand voxels, the computational
demands of sampling the permutation distribution may be
mitigated substantially by permuting the data a small num-
ber of times, for example m � 10, at each voxel and then
pooling permuted statistics over all voxels to construct a null
distribution of mV observations.

This procedure must be refined according to whether the
test is of a main effect or interaction, and whether the factor
to be tested is a between-subject or a within-subject factor. In
the latter case, the key issue is that repeated measurements
on the same individual will be correlated and cannot be
regarded as exchangeable.1 The permutation must therefore
be constrained so that each individual contributes only one
observation to each level of the permuted within-subject
factor.

For a test of significance of a main effect (in the absence of
an interaction), the permutation distribution is sampled sim-
ply by permuting observations within levels of the corre-
sponding factor. This supports an exact test of size �, i.e., the
number of (false) positive tests (FP) under the null hypoth-
esis is exactly as expected: FP � E(FP) � �V. If a significant
interaction has been detected, then subsequent testing for
main effects is by an approximate test based on unrestricted
permutation of the observations among all treatments
[Anderson and ter Braak, 2003]. An approximate test is valid
but possibly conservative in that the number of false positive
tests may be less than or equal to expectation, i.e., FP
� E(FP) � �V.

1A set of n units of observation of the random variable X is termed
exchangeable if the joint probability distribution p(X1, X2, X3,…Xn)
is invariant under permutation of the units; see Lindley and Novick
[1981] for detail.

Figure 1.
Representation of the partitioning of variability (sum-of-squares) in
a two-way ANOVA. a: Both factors are independent. b: Both
factors are repeated measures. c: Factor A is a repeated measure
and factor B is independent.
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In general, there are no exact permutation tests with F
statistics for interactions, although it is possible to construct
approximate tests [Anderson and ter Braak, 2003; Still and
White, 1981]. First the observations are replaced by residual
values, �̃ijk, given as,

�̃ijk � �̂ijk � �̂i � � � �̂ � j � � �� (1)

where � denotes the mean of the observations over the cor-
responding index and �� denotes the overall mean. F statis-
tics are then estimated for the residuals and tested against a
permutation distribution sampled by random reassignment
of residualised observations. If the interaction to be tested is
between two between-subject factors, then permutation is
unrestricted over all levels of both factors. If one or both of
the interacting factors are within-subject factors, then per-
mutation of the residuals is constrained within subject
across all treatments.

Cluster-level tests

Permutation distributions of F statistics for main effects or
an interaction, pooled across all voxels, were used to derive
a preliminary, voxel-level threshold at � � 0.05, which was
then applied to observed and permuted F maps identically.
The thresholding operation sets to zero any voxel with F less
than the corresponding critical value (CV), i.e., Fv � CV0.05,
and shrinks any suprathreshold voxel by subtraction of the
threshold. This procedure results in a set of suprathreshold
voxel clusters, each of which comprises the set of C voxels
that are spatially contiguous in three dimensions, in both the
observed F map and each of the permuted F maps. The sum
or “mass” of suprathreshold voxel statistics M is computed
for each cluster,

M � �
v � C

�Fv � CV0.05� (2)

in both the observed and permuted maps. The values of M
obtained from the permuted maps are then ordered to sam-

ple the permutation distribution from which critical values
are derived to test the significance of clusters in the observed
maps.

The validity of this test depends critically on the spatial
covariance structure of the observed F maps being retained
under permutation. This is achieved by ensuring that the set
of permutations used to generate the permuted F maps are
identical at each voxel. If different permutations are applied
at each voxel, then the spatial covariance structure of the
observed F maps will be destroyed or “whitened” and clus-
ters generated by thresholding of the permuted F maps will
tend to be smaller as a result. The null distribution of M will
underestimate the true probability of a cluster of arbitrary
size and there will consequently be uncontrolled Type 1
error on testing the observed cluster maps.

Operational details

Code was written in the C-language. Run-times were
dependent on the number of images in the experiment, but
were typically in the range of 3–5 min of processing time on
a 2.6-GHz Pentium III with 1 Gb of memory.

Simulated Data

Simulated images were composed by adding an effect to a
background of Gaussian or non-Gaussian noise. Gaussian
noise was generated with mean � 1,024, standard deviation
(SD) �N � 1/3 mean; non-Gaussian noise was generated by
taking the cube of the exponential of a canonical pseudo-
random variable on the interval [0,1]. Independent and re-
peated measures were simulated. In the latter case, a con-
stant value was added to all the voxels of a set of images, one
under each treatment, for a particular subject.

In a small region (1,024/136,800 voxels) an effect, i.e., an
offset in grey levels, was added (Fig. 2). The maximum value
(� � 1) of effect was a signal-to-noise ratio (SNR) of 2.5 db,
where

SNR � 10.log10� S2

�N
2 � (3)

Figure 2.
Illustrations of the simulated images with ef-
fect size � � 1.0. (left) Gaussian noise back-
ground and (right) non-Gaussian noise back-
ground. The effect region is indicated by the
superimposed outline.
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�N is the SD of the noise and S is the effect size. All
simulations were smoothed via the Fast Fourier Transform
with a 3-D Gaussian kernel of SD one voxel. The magnitudes
of the effects under the various treatments (�.SNR) were
chosen to simulate results of three separate two-way facto-
rial experiments, each comprising one two-level factor (I
� 2) and one three-level factor (J � 3), with six observations
under each treatment. As detailed in Table I, Study 1 simu-
lated main effects with no interaction; Study 2 simulated an
interaction with no main effects; and Study 3 simulated both
a main effect and an interaction.

Receiver operating characteristic curves

Comparative evaluation of hypothesis-testing methods
was based on construction of ROC curves. ROC curves are a
well-established method for comparing alternative methods.
Generally, ROC curves are monotonic and improved perfor-
mance is indicated by increasing area under the curve. For a
given size of test �, the number of true positives (TP) and
false negatives (FN) identified among voxels from the region
of simulated effect were recorded along with the numbers of
true negatives (TN) and false positives (FP) identified
among voxels comprising the background region of the
image. The relationship between true positive ratio TPR
� TP/(TP � FN) and false positive ratio FPR � FP/(FP
� TN) was explored in the range of sizes of test: 0.00001 � �
� 0.05.

Experimental (fMRI) Data

Experimental data were acquired as part of a pharmaco-
logic MRI study of antidepressant drug effects in patients
with major depression compared to healthy controls [see
Mitterschiffthaler et al., 2003]. Two groups of 10 subjects
were each scanned twice in two sessions 8 weeks apart.
Functional MR images were acquired in a two-way factorial
design comprising one between-subject factor Group with
two levels (depressed patients satisfying DSM-IV criteria for

major affective disorder and normal comparison subjects)
and one within-subject factor Time with two levels (Session
1 and Session 2). Patients with depression were untreated at
the time of the baseline scan but immediately afterwards
they began treatment with the antidepressant drug fluox-
etine (50 mg), which was continued for 8 weeks until the
time of the second scanning session. The Group � Time
interaction in this experiment is therefore an index of effects
of antidepressant drug exposure on functional brain activa-
tion.

The study was approved by the Ethics (Research) Com-
mittee of the South London and Maudsley NHS Trust and
all participants provided informed consent in writing.

At each scanning session, participants were shown a series
of 60 facial stimuli expressing variable degrees of sadness
randomly interspersed with 12 crosshair fixation trials. Each
trial was presented for 3,000 msec in an event-related design
with interstimulus interval randomly variable according to a
Poisson distribution with mean � 5,000 msec; total duration
of the experiment was therefore 9 min 36 sec. Participants
were asked to decide on the gender of each face and indicate
that decision by right-handed button press.

During stimulus presentation, gradient echo single-shot
echoplanar imaging was used to acquire 180 T2*-weighted
image volumes on a neuro-optimised 1.5-T IGE LX System
(General Electric, Milwaukee, WI) at the Maudsley Hospital,
South London, and Maudsley NHS Trust, London, UK. For
each volume, 16 non-contiguous axial planes parallel to the
intercommissural plane were collected with the following
parameters: TR � 2,000 msec, TE � 40 msec, slice thickness
� 7 mm, slice skip � 0.7 mm, in-plane resolution � 3 � 3
mm, and matrix size � 64 � 64.

After correction of slice timing differences and head
movement-related effects in the fMRI time series at each
voxel, linear regression was used to estimate experimentally
induced signal changes, �̂, for each individual [Bullmore et
al., 1999b; Bullmore et al., 2001a]. Regression analysis mod-
elled two mutually orthogonal aspects of brain activation at
each voxel: a face-processing effect due to differential acti-
vation between baseline trials and all facial trials and an
affective load-response effect due to differential activation
between facial trials of variable affective intensity. Before
model fitting, each contrast was convolved with two Poisson
kernels (	 � 4 or 8 sec) to model locally variable hemody-
namic response functions. The standardised linear model
parameter �̂ was calculated by dividing the estimated effect
size, b̂, from regression of the general linear model by its
standard error, i.e., �̂ � b̂/SE(b̂). This standardisation acts to
suppress signals with large residual variances that often
occur in regions of the image that are prone to artefact. The
statistic maps representing face-processing effects for each
individual in both scan sessions were registered into the
standard space of Talairach and Tournoux [1988] by affine
transformation to a template image [Brammer et al., 1997].
The analysis of affective load-response will not be discussed
further here.

TABLE I. Description of simulated experiments

Values of j

Values of i

i � 1 i � 2 i � 3

Study 1
j � 1 0.00 0.25 0.50
j � 2 0.50 0.75 1.00

Study 2
j � 1 0.00 0.50 1.00
j � 2 1.00 0.50 0.00

Study 3
j � 1 0.50 0.75 1.00
j � 2 0.50 0.25 0.00

Study 1, main effects with no interaction; study 2, interaction with
no main effects; study 3, one main effect and interaction. Table
values are the multiplicative factors 
 for a maximum effect signal-
to-noise ratio � 2.5 db.
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In short, preprocessing and time-series modeling of the
individual images resulted in a set of 40 statistic maps, each
representing the estimated face-processing effect at each
voxel under all treatments of a balanced 2 � 2 factorial
design. The F statistic for Group � Time interaction was
tested for significance by the permutation test of cluster
mass described above.

The rationale for using this experimental dataset to illus-
trate and validate these methods of factorial analysis is
two-fold: (1) functional MRI is being used increasingly to
investigate psychopharmacologic drug effects on brain func-
tion [see for example Bullmore et al., 2003; Honey et al.,
1999, 2003, and references therein] and such pharmacologic
MRI studies will invariably involve a factorial design of
some degree; and (2) more specifically, there are comparable
prior fMRI and PET studies of antidepressant drug effects
on brain activation estimated by region-of-interest (ROI)

analysis that provide a context for evaluation of the results
of whole-brain analysis reported here.

RESULTS

Simulated Data

ROC curves for each simulated experiment with two be-
tween-subject factors are shown in Figure 3, and for each
simulated experiment with two within-subject factors in
Figure 4. In both cases the noise was Gaussian. In general,
voxel-level tests for a main effect or interaction had the same
area under the curve whether the corresponding F statistic
was tested by permutation or against critical values of the F
distribution. This means that permutation and parametric
tests have virtually identical power to detect effects in these
simulated data, which both validated the algorithms for data
permutation and illustrated the robustness of the parametric

Figure 3.
Receiver operating characteristic (ROC) curves for simulated 2
� 3 factorial designs (see Table I) with independent measures on
both factors and Gaussian random noise background. a: Left and
centre, tests for factors A (two levels) and B (three levels), re-
spectively; right, test for an interaction but without the presence
of an effect. b: Left and centre, tests for factors A and B, respec-
tively, but without the presence of an effect; right, test for inter-

action. c: Left, test for factor A; centre, test for factor B but
without the presence of an effect; right, test for interaction. In
each simulation, the ROC curves are shown for voxel-wise F
statistics tested against the parametric F distribution (circles), a
null-distribution sampled by permutation (squares) and for a spa-
tial extent statistic, cluster mass, tested against its permutation
distribution (triangles).
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test in the context of a realistically small sample size. These
results were not changed substantially by substitution of
non-Gaussian noise (data not shown); parametric and per-
mutation tests at voxel level demonstrated near-identical
performance under these conditions.

It is also evident from inspection of the ROC curves that
the permutation test for main effects and interactions at the
cluster level had consistently superior sensitivity compared
to both voxel-level tests. True-positive and false-positive
rates in the ROC curves were based on the number of voxels
detected in the effect and non-effect regions of the simula-
tion, respectively. As the P-value was increased, clusters of
multiple voxels with a cluster-level statistic above the critical
value were included and abrupt changes in the ROC curve
resulted.

Significance testing for main effects (Studies 2 and 3) and
interaction (Study 1) in data for which no effect was simu-
lated were used to calibrate Type 1 error control. All tests
demonstrated exact or slightly conservative Type 1 error
control by this standard (Figs. 3 and 4).

Experimental Data

A cluster-level permutation test for Group � Time inter-
action identified a significant effect in the following left
brain regions: amygdala, ventral striatum, pregenual ante-

rior cingulate cortex (Brodmann’s area [BA] 24, 32), and
thalamus (Fig. 5). This interaction was characterised by in-
creased effect size in the depressed patients at baseline com-
pared to controls (t � �4.29, df � 36, P � 0.0001), which
“normalised” over the course of the experiment so that there
was no significant difference between groups at the second
(8-week) session (t � 3.157, df � 36, P � 0.0033; see Fig. 5 for
boxplot).

DISCUSSION

An algorithm for the analysis of any two-way factorially
designed neuroimaging experiment has been described, val-
idated by analysis of simulated data, and illustrated by
application to mapping of a pharmacologic MRI experiment.

Permutation tests for voxel-level analysis of main effects
and interactions have been shown to have virtually identical
performance compared to equivalent parametric F-tests of
the same data. This result validates the methods prescribed
for data permutation, including the operational refinements
required to test main effects of within-subject factors and
interactions between factors. It also indicates that our largely
pragmatic decision to sample the permutation distribution
by pooling permuted F statistics over all voxels in the image
does not seriously bias estimation of the null distribution for
a voxel-wise test.

Figure 3.
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We have also confirmed previous reports of radically
enhanced sensitivity by cluster-level analysis [Poline and
Mazoyer, 1993] and validated Type 1 error control for a
cluster-level permutation test of main effects and interac-
tions by analysis of factors in Gaussian and non-Gaussian
noise images with zero simulated effect. We have not com-
pared the cluster level permutation test for factorial effects
to a parametric alternative because, to the best of our knowl-
edge, no well-validated parametric test for cluster “mass”
statistics in brain mapping has yet been defined. A valida-
tion of a cluster size statistic [Hayasaka and Nichols, 2003]
has shown that parametric methods for this metric are valid,
although conservative, above certain image smoothness. In
the same study, permutation methods performed well for all
degrees of image smoothness and were robust when as-
sumptions underpinning the parametric test were violated.

Finally, we have illustrated the methods by analysis of a
representative pharmacologic MRI study. We chose this
dataset for illustrative purposes because factorial designs
are an inevitable aspect of pharmacologic MRI studies and,
more specifically, because there is prior data on antidepres-
sant drug effects in amygdala. Sheline et al. [2001] reported
a two-way factorial experiment in which two groups of
participants (patients with major depression and healthy
controls) were each scanned twice, at baseline and 8 weeks
later, during visual presentation of masked emotional faces.

The patients received treatment with sertraline (100 mg
daily), a selective serotonin reuptake inhibitor, for 8 weeks
beginning immediately after the baseline scan. By ROI anal-
ysis of voxel statistics, focused on the amygdala, Sheline et
al. [2001] demonstrated a treatment-related change in amyg-
dala activation by emotional face processing that was very
similar to the effect reported here, i.e., there was initially
increased left amygdala activation in the patient group that
normalised over the course of 8-week antidepressant treat-
ment. Our replication of this result by a whole-brain analy-
sis, without prior specification of anatomic ROIs, provides
some informal validation of our methods applied to exper-
imental data analysis. Moreover, the capacity of our analysis
to demonstrate a plausible additional locus of antidepres-
sant treatment effect in the left ventral striatum indicates the
potential benefits of using more sensitive cluster-level sta-
tistics to define regions of significant drug effect in a facto-
rially designed pharmacologic MRI experiment.

The use of permutation methods brings with it the oppor-
tunity to test statistics for factorial designs other than F.
These include metrics that are rank equivalent to F [Edging-
ton, 1995] but rather more rapid to calculate. The large
computational requirement of permutation methods has
been a criticism of permutation methods in general and
algorithms to speed up calculations have been sought. Con-
temporary processor clock speeds continue to increase un-

Figure 3.
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abated making this debate somewhat specious. With com-
pute power no longer at a premium there are many other
statistics that could be devised, accounting for unbalanced
designs [Good, 2000] or for exact tests of interactions [Pesa-
rin, 2001].

The key point with any statistic assessing main effects and
interactions in the context of the algorithm presented herein
is that it should be pivotal, that is, it should not depend on
the parameters of the distribution of the original observa-
tions from which it was calculated, especially the grey-level
mean of the images at that voxel. This is a necessary condi-
tion to pool F ratios from all permutations and all voxels,
allowing for a more accurate sampling of the null-distribu-
tion from which the initial probabilistic threshold CV0.05 is
found, and to apply this threshold uniformly to all voxels to
generate the 3-D clusters subsequently tested by M.

Implicit in the uniform voxel threshold is that the statistic
M is also pivotal with regard to its spatial distribution, i.e.,

it is assumed that the spatial covariance (smoothness) of the
statistic image is homogeneous. Regions of increased
smoothness are more likely to generate clusters of large M
(or indeed any other similar statistic) and thus detection of
significant effects in these regions is enhanced. Nevertheless,
the test remains valid overall, although specificity may be
nonuniform. Changes in the spatial smoothness in func-
tional images may be modality specific, for example, suscep-
tibility artefacts in MRI data. Image edges are a further
source of inhomogeneous smoothness, especially if the data
have been masked previously to process parenchymal re-
gions. Generally, however, such artefacts serve to reduce
smoothness and thus specificity in these regions.

Notwithstanding these issues, the broader class of statis-
tics that can be tested by permutation methods illustrates the
fundamental difference in the null hypothesis tested in com-
parison to parametric methods. In general, a parametric test
tests a specific and quantitative null hypothesis concerning,

Figure 4.
Receiver operating characteristic (ROC) curves for simulated 2
� 3 factorial designs (see Table I) with repeated measures on both
factors and Gaussian random noise background. a: Left and centre,
tests for factors A (two levels) and B (three levels), respectively;
right, test for an interaction but without the presence of an effect.
b: Left and centre, tests for factors A and B, respectively, but
without the presence of an effect; right, test for interaction. c:

Left, test for factor A, centre, test for factor B but without the
presence of an effect; right, test for interaction. In each simulation,
the ROC curves are shown for voxel-wise F statistics tested
against the parametric F distribution (circles), a null-distribution
sampled by permutation (squares), and for a spatial extent statistic,
cluster mass, tested against its permutation distribution (triangles).
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for example, the difference in means or variance of the
observations. In contrast, permutation methods, irrespective
of the test statistic, have a more informal null hypothesis:
namely, that there is no differential effect of any of the
treatments for any of the subjects [Edgington, 1995]. In this
case, therefore, the alternative hypothesis is that measure-
ments from at least one subject depend on the treatment.
This is just a re-expression of the statement that nonpara-
metric tests are assumption free, but it also raises an impor-
tant point about the scope of any subsequent interpretation
of results.

A frequent criticism of permutation methods is that the
results only apply to the dataset under scrutiny and cannot
strictly be generalised to the population from which the
sample of subjects was drawn. In contrast, using a paramet-
ric test, inference about the population can be made based
on the sample provided a number of specific assumptions
about the execution of the experiment are fulfilled: random
sampling, random assignment, normally distributed obser-
vations with equal variance. It is generally not too difficult to
violate one or more of these assumptions in practice and it
might be thought that permutation methods have the ad-
vantage in the analysis of such data. In fact, parametric
methods are robust to violations of these assumptions and
indeed perform slightly better than permutation methods
with small samples unless the distribution is highly non-

normal [Gonzalez and Manly, 1998; Routledge, 1997]. The
results produced by this work corroborate this finding even
with data with highly non-normal noise, although differ-
ences between inference techniques become less apparent
with larger sample sizes. Permutation tests, if properly con-
structed, will always provide good Type I error control and
reliable results, whereas parametric tests do so only under
restricted conditions.

Permutation tests are of course not entirely without as-
sumptions themselves. To construct a permutation test, the
appropriate exchangeable (independent) units are identified
and their labels randomly rearranged to construct the null
distribution. For this, we require random assignment of
subjects to treatments. If this cannot be assured then a per-
mutation test remains valid if the subjects are drawn ran-
domly from the population and the null hypothesis can be
formulated as: distributions from populations are the same.
For one observation per subject across the experiment, per-
muting values unrestrictedly within the levels of the factor
assessed main effects. With a repeated measures design,
permutations were restricted additionally within subject. In
either case, an exact test was possible. For interactions, no
exact test is possible with the F statistic as there are no
permutations other than the observed ordering that meets
the restriction of permuting within levels of the factors
[Anderson and ter Braak, 2003; Edgington, 1995]. In these

Figure 4.
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Figure 5.
Antidepressant drug effects on left amygdala and ventral striatum
identified by factorial analysis at cluster level of a pharmacologic
MRI experiment. Selected slices of data in standard space showing
loci of significant Group � Time interaction in an experiment
analysed as a 2 � 2 factorial design. Total activation elicited by the
sad facial affect paradigm in the significant region was extracted

and plotted as the figure inset. The software used a mixed re-
peated measures (Time) and an independent measures (Group)
design with permutation tests of the spatial extent statistic. The
probability threshold was set such that there was less than one
estimated false positive cluster in each map. There was one sig-
nificant 3-D cluster.

Figure 4.
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cases, approximate tests are the alternative. As demon-
strated by the simulations presented here, there is both good
nominal Type 1 error control (ROC curves on tested factors
where there was no simulated effect) and close correspon-
dence at voxel level between permutation and parametric
methods.

There is a clear need for software for the comprehensive
analysis of factorially designed neuroimaging experiments.
Permutation methods build in robustness to skewed or ex-
treme distribution of response data especially as the number
of subjects scanned increases. Further, they permit the use of
statistics such as the cluster-level metric described here,
which impart additional sensitivity to often low-power ex-
periments. Data from any imaging instrument may be used.
The variance of these measures is assumed to be homoge-
neous, although this may not be case from subject-to-subject
or even voxel-to-voxel. Future refinements of this method
will adapt to the nonhomogeneous case by adopting a
weighted least-squares approach to the calculation of F (or
other statistics).

This software is only designed for two factors with fixed
effects. It is, however, entirely possible to extended to addi-
tional factors with random effects [Anderson and ter Braak,
2003] and more complex versions of factorial designs such as
the Latin square or nested factors, or indeed, a whole range
of other experimental designs.
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