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Abstract

We explore the framework of permutation-based p-values for assessing the performance of classi-

fiers. In this paper we study two simple permutation tests. The first test assess whether the classifier

has found a real class structure in the data; the corresponding null distribution is estimated by per-

muting the labels in the data. This test has been used extensively in classification problems in

computational biology. The second test studies whether the classifier is exploiting the dependency

between the features in classification; the corresponding null distribution is estimated by permut-

ing the features within classes, inspired by restricted randomization techniques traditionally used

in statistics. This new test can serve to identify descriptive features which can be valuable infor-

mation in improving the classifier performance. We study the properties of these tests and present

an extensive empirical evaluation on real and synthetic data. Our analysis shows that studying the

classifier performance via permutation tests is effective. In particular, the restricted permutation

test clearly reveals whether the classifier exploits the interdependency between the features in the

data.

Keywords: classification, labeled data, permutation tests, restricted randomization, significance

testing

1. Introduction

Building effective classification systems is a central task in data mining and machine learning.

Usually, a classification algorithm builds a model from a given set of data records in which the labels

are known, and later, the learned model is used to assign labels to new data points. Applications of

such classification setting abound in many fields, for instance, in text categorization, fraud detection,

optical character recognition, or medical diagnosis, to cite some.

For all these applications, a desired property of a good classifier is the power of generalization

to new, unknown instances. The detection and characterization of statistically significant predictive

patterns is crucial for obtaining a good classification accuracy that generalizes beyond the training

data. Unfortunately, it is very often the case that the number of available data points with labels is

not sufficient. Data from medical or biological applications, for example, are characterized by high
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Figure 1: Examples of two 16× 8 nominal data sets D1 and D2 each having two classes. The last

column in both data sets denotes the class labels (+, –) of the samples in the rows.

dimensionality (thousands of features) and small number of data points (tens of rows). An important

question is whether we should believe in the classification accuracy obtained by such classifiers.

The most traditional approach to this problem is to estimate the error of the classifier by means

of cross-validation or leave-one-out cross-validation, among others. This estimate, together with a

variance-based bound, provides an interval for the expected error of the classifier. The error estimate

itself is the best statistics when different classifiers are compared against each other (Hsing et al.,

2003). However, it has been argued that evaluating a single classifier with an error measurement

is ineffective for small amount of data samples (Braga-Neto and Dougherty, 2004; Golland et al.,

2005; Isaksson et al., 2008). Also classical generalization bounds are not directly appropriate when

the dimensionality of the data is too high; for these reasons, some recent approaches using filtering

and regularization alleviate this problem (Rossi and Villa, 2006; Berlinet et al., 2008). Indeed,

for many other general cases, it is useful to have other statistics associated to the error in order

to understand better the behavior of the classifier. For example, even if a classification algorithm

produces a classifier with low error, the data itself may have no structure. Thus the question is, how

can we trust that the classifier has learned a significant predictive pattern in the data and that the

chosen classifier is appropriate for the specific classification task?

For instance, consider the small toy example in Figure 1. There are two nominal data matrices

D1 and D2 of sizes 16× 8. Each row (data point) has two different values present, x and o. Both

data sets have a clear separation into the two given classes, + and –. However, it seems at first sight

that the structure within the classes for data set D1 is much simpler than for data set D2. If we train

a 1-Nearest Neighbor classifier on the data sets of Figure 1, we have that the classification error

(leave-one-out cross-validation) is 0.00 on both D1 and D2. However, is it true that the classifier is

using a real dependency in the data? Or are the dependencies in D1 or D2 just a random artifact of
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some simple structure? It turns out that the good classification result in D1 is explained purely by

the different value distributions inside the classes whereas in D2 the interdependency between the

features is important in classification. This example will be analyzed in detail later on in Section 3.3.

In recent years, a number of papers have suggested to use permutation-based p-values for as-

sessing the competence of a classifier (Golland and Fischl, 2003; Golland et al., 2005; Hsing et al.,

2003; Jensen, 1992; Molinaro et al., 2005). Essentially, the permutation test procedure measures

how likely the observed accuracy would be obtained by chance. A p-value represents the fraction

of random data sets under a certain null hypothesis where the classifier behaved as well as or better

than in the original data.

Traditional permutation tests suggested in the recent literature study the null hypothesis that

the features and the labels are independent, that is, that there is no difference between the classes.

The null distribution under this null hypothesis is estimated by permuting the labels of the data set.

This corresponds also to the most traditional statistical methods (Good, 2000), where the results on

a control group are compared against the results on a treatment group. This simple test has been

proven effective already for selecting relevant genes in small data samples (Maglietta et al., 2007) or

for attribute selection in decision trees (Frank, 2000; Frank and Witten, 1998). However, the related

literature has not performed extensive experimental studies for this traditional test in more general

cases.

The goal of this paper is to study permutation tests for assessing the properties and performance

of the classifiers. We first study the traditional permutation test for testing whether the classifier has

found a real class structure, that is, a real connection between the data and the class labels. Our

experimental studies suggest that this traditional null hypothesis leads to very low p-values, thus

rendering the classifier significant most of the time even if the class structure is weak.

We then propose a test for studying whether the classifier is exploiting dependency between

some features for improving the classification accuracy. This second test is inspired by restricted

randomization techniques traditionally used in statistics (Good, 2000). We study its relation to

the traditional method both analytically and empirically. This new test can serve as a method for

obtaining descriptive properties for classifiers, namely whether the classifier is using the feature

dependency in the classification or not. For example, many existing classification algorithms are

like black boxes whose functionality is hard to interpret directly. In such cases, indirect methods

are needed to get descriptive information for the obtained class structure in the data.

If the studied data set is known to contain useful feature dependencies that increase the class

separation, this new test can be used to evaluate the classifier against this knowledge. For example,

often the data is gathered by a domain expert having deeper knowledge of the inner structure of

the data. If the classifier is not using a known useful dependency, the classifier performance could

be improved. For example, with medical data, if we are predicting the blood pressure of a person

based on the height and the weight of the individual, the dependency between these two features is

important in the classification as large body mass index is known to be connected with high blood

pressure. However, both weight and height convey information about the blood pressure but the

dependency between them is the most important factor in describing the blood pressure. Of course,

in this case we could introduce a new feature, the body mass index, but in general, this may not be

practical; for example, introducing too many new features can make the classification ineffective or

too time consuming.

If nothing is known previously from the structure of the data, Test 2 can give some descriptive in-

formation for the obtained class structure. This information can be useful as such for understanding
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the properties of the classifier, or it can guide the search towards an optimal classifier. For example,

if the classifier is not exploiting the feature dependency, there might be no reason to use the chosen

classifier as either more complex classifiers (if the data contains useful feature dependencies) or

simpler classifiers (if the data does not contain useful feature dependencies) could perform better.

Note, however, that not all feature dependencies are useful in predicting the class labels. Therefore,

in the same way that traditional permutation tests have already been proven useful for selecting

relevant features in some contexts as mentioned above (Maglietta et al., 2007; Frank, 2000; Frank

and Witten, 1998), the new test can serve for selecting combinations of relevant features to boost

the classifier performance for specific applications.

The idea is to provide users with practical p-values for the analysis of the classifier. The per-

mutation tests provide useful statistics about the underlying reasons for the obtained classification

result. Indeed, no test is better than the other, but all provide us with information about the classifier

performance. Each p-value is a statistic about the classifier performance; each p-value depends on

the original data (whether it contains some real structure or not) and the classifier (whether it is able

to use certain structure in the data or not).

The remaining of the paper is organized as follows. In Section 2, we give the background to

classifiers and permutation-test p-values, and discuss connections with previous related work. In

Section 3, we describe two simple permutation methods and study their behavior on the small toy

example in Figure 1. In Section 4, we analyze in detail the properties of the different permutations

and the effect of the tests for synthetic data on four different classifiers. In Section 5, we give

experimental results on various real data sets. Finally, Section 6 concludes the paper.1

2. Background

Let X be an n×m data matrix. For example, in gene expression analysis the values of the matrix X

are numerical expression measurements, each row is a tissue sample and each column represents a

gene. We denote the i-th row vector of X by Xi and the j-th column vector of X by X j. Rows are also

called observations or data points, while columns are also called attributes or features. Observe that

we do not restrict the data domain of X and therefore the scale of its attributes can be categorical or

numerical.

Associated to the data points Xi we have a class label yi. We assume a finite set of known class

labels Y , so yi ∈ Y . Let D be the set of labeled data D = {(Xi,yi)}n
i=1. For the gene expression

example above, the class labels associated to each tissue sample could be, for example, “sick” or

“healthy”.

In a traditional classification task the aim is to predict the label of new data points by training

a classifier from D. The function learned by the classification algorithm is denoted by f : X →
Y . A test statistic is typically computed to evaluate the classifier performance: this can be either

the training error, cross-validation error or jackknife estimate, among others. Here we give as an

example the leave-one-out cross-validation error,

e( f ,D) =
1

n

n

∑
i=1

I( fD\Di
(Xi) 6= yi) (1)

1. A shorter version of this paper appears in the proceedings of the IEEE International Conference on Data Mining (Ojala

and Garriga, 2009). This is an improved version based on valuable comments by reviewers which includes: detailed

discussions and examples, extended theoretical analysis of the tests including statistical power in special case scenar-

ios, related work comparisons and a thorough experimental evaluation with large data sets.
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where fD\Di
is the function learned by the classification algorithm by removing the i-th observation

from the data and I(·) is the indicator function.

It has been recently argued that evaluating the classifier with an error measurement is ineffective

for small amount of data samples (Braga-Neto and Dougherty, 2004; Golland et al., 2005; Hsing

et al., 2003; Isaksson et al., 2008). Also classical generalization bounds are inappropriate when the

dimensionality of the data is too high. Indeed, for many other general cases, it is useful to have other

statistics associated to the error e( f ,D) in order to understand better the behavior of the classifier.

For example, even if a consistent algorithm produces a classifier with low error, the data itself may

have no structure.

Recently, a number of papers have suggested to use permutation-based p-values for assessing

the competence of a classifier. Essentially, the permutation test procedure is used to obtain a p-value

statistic from a null distribution of data samples, as described in Definition 1. In Section 3.1 we will

introduce two different null hypotheses for the data.

Definition 1 (Permutation-based p-value) Let D̂ be a set of k randomized versions D′ of the orig-

inal data D sampled from a given null distribution. The empirical p-value for the classifier f is

calculated as follows (Good, 2000),2

p =
|{D′ ∈ D̂ : e( f ,D′)≤ e( f ,D)}|+1

k+1
.

The empirical p-value of Definition 1 represents the fraction of randomized samples where the

classifier behaved better in the random data than in the original data. Intuitively, it measures how

likely the observed accuracy would be obtained by chance, only because the classifier identified in

the training phase a pattern that happened to be random. Therefore, if the p-value is small enough—

usually under a certain threshold, for example, α = 0.05—we can say that the value of the error in

the original data is indeed significantly small and in consequence, that the classifier is significant

under the given null hypothesis, that is, the null hypothesis is rejected.

Ideally the entire set of randomizations of D should be used to calculate the corresponding

permutation-based p-value. This is known as the exact randomization test; unfortunately, this is

computationally infeasible in data that goes beyond toy examples. Instead, we will sample from the

set of all permutations to approximate this p-value. It is known that the Monte Carlo approximation

of the p-value has a standard deviation of

√
p(1−p)

k
, see, for example, Efron and Tibshirani (1993)

and Good (2000), where p is the underlying true p-value and k is the number of samples used.

Since p is unknown in practice, the upper bound 1

2
√

k
is typically used to determine the number of

samples required to achieve the desired precision of the test, or the value of the standard deviation

in the critical point of p = α where α is the significance level. Alternatively, a sequential probability

ratio test can be used (Besag and Clifford, 1991; Wald, 1945; Fay et al., 2007), where we sample

randomizations of D until it is possible to accept or reject the null hypothesis. With these tests, often

already 30 samples are enough for statistical inference with significance level α = 0.05.

2. Notice the addition of 1 in both the denominator and the numerator of the definition. This adjustment is an standard

procedure to compute empirical p-values and it is justified by the fact that the original database D is as well a

randomized version of itself.
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We will specify with more details in the next section how the randomized versions of the origi-

nal data D are obtained. Indeed, this is an important question as each randomization method entails

a certain null distribution, that is, which properties of the original data are preserved in the random-

ization test, directly affecting the distribution of the error e( f ,D′). In the following, we will assume

that the number of samples k is determined by any of the standard procedures just described here.

2.1 Related Work

As mentioned in the introduction, using permutation tests for assessing the accuracy of a classifier

is not new, see, for example, Golland and Fischl (2003), Golland et al. (2005), Hsing et al. (2003)

and Molinaro et al. (2005). The null distribution in those works is estimated by permuting labels

from the data. This corresponds also to the most traditional statistical methods (Good, 2000), where

the results on a control group are compared against the results on a treatment group. This traditional

null hypothesis is typically used to evaluate one single classifier at a time (that is, one single model)

and we will call it as Test 1 in the next section where the permutation tests are presented.

This simple traditional test has already been proven effective for selecting relevant genes in

small data samples (Maglietta et al., 2007) or for attribute selection in decision trees (Frank, 2000;

Frank and Witten, 1998). Particularly, the contributions by Frank and Witten (1998) show that

permuting the labels is useful for testing the significance of attributes at the leaves of the decision

trees, since samples tend to be small. Actually, when discriminating attributes for a decision tree,

this test is preferable to a test that assumes the chi-squared distribution.

In the context of building effective induction systems based on rules, permutation tests have been

extensively used by Jensen (1992). The idea is to construct a classifier (in the form of a decision

tree or a rule system) by searching in the space of several models generated in an iterative fashion.

The current model is tested against other competitors that are obtained by local changes (such as

adding or removing conditions in the current rules). This allows to find final classifiers with less

over-fitting problems. The evaluation of the different models in this local search strategy is done via

permutation tests, using the framework of multiple hypothesis testing (Benjamini and Hochberg,

1995; Holm, 1979). The first test used corresponds to permuting labels—that is, Test 1—while

the second test is a conditional randomization test. Conditionally randomization tests permute the

labels in the data while preserving the overall classification ability of the current classifier. When

tested on data with a conditionally randomized labelling, the current model will achieve the same

score as it does with the actual labelling, although it will misclassify different observations. This

conditionally randomization test is effective when searching for models that are more adaptable to

noise.

The different tests that we will contribute in this paper could be as well used in this process of

building an effective induction system. However, in general our tests are not directly comparable to

the conditional randomization tests of Jensen (1992) in the context of this paper. We evaluate the

classifier performance on the different randomized samples, and therefore, creating data set samples

that preserve such performance would only produce always p-values close to one.

The restricted randomization test that we will study in detail later, can be used for studying

the importance of dependent features for the classification performance. Related to this, group

variable selection is a method for finding similarities between the features (Bondell and Reich,

2008). In that approach, similar features are grouped together for decreasing the dimensionality

and improving the classification accuracy. Such methods are good for clustering the features while
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doing classification. However, our aim is to test whether the dependency between the features is

essential in the classification and not to reduce the dimensionality and similarities, thus differing

from the objective of group variable selection.

As part of the related work we should mention that there is a large amount of statistical literature

about hypothesis testing (Casella and Berger, 2001). Our contribution is to use the framework of hy-

pothesis testing for assessing the classifier performance by means of generating permutation-based

p-values. How the different randomizations affect these p-values is the central question we would

like to study. Also sub-sampling methods such as bootstrapping (Efron, 1979) use randomizations

to study the properties of the underlying distribution, but this is not used for testing the data against

some null model as we intend here.

3. Permutation Tests for Labeled Data

In this section we describe in detail two very simple permutation methods to estimate the null

distribution of the error under two different null hypotheses. The questions for which the two

statistical tests supply answers can be summarized as follows:

Test 1: Has the classifier found a significant class structure, that is, a real connection between the

data and the class labels?

Test 2: Is the classifier exploiting a significant dependency between the features to increase the

accuracy of the classification?

Note, that these tests study whether the classifier is using the described properties and not whether

the plain data contain such properties. For studying the characteristics of a population represented

by the data, standard statistical test could be used (Casella and Berger, 2001).

Let π be a permutation of n elements. We denote with π(y)i the i-th value of the vector label

y induced by the permutation π. For the general case of a column vector X j, we use π(X j) to

represent the permutation of the vector X j induced by π. Finally, we denote the concatenation of

column vectors into a matrix by X = [X1,X2, . . . ,Xm].

3.1 Two Simple Permutation Methods

The first permutation method is the standard permutation test used in statistics (Good, 2000). The

null hypothesis assumes that the data X and the labels y are independent, that is, p(X ,y)= p(X)p(y).
The distribution under this null hypothesis is estimated by permuting the labels in D.

Test 1 (Permute labels) Let D = {(Xi,yi)}n
i=1 be the original data set and let π be a permutation

of n elements. One randomized version D′ of D is obtained by applying the permutation π on the

labels, D′ = {(Xi,π(y)i)}n
i=1. Compute the p-value as in Definition 1.

A significant classifier for Test 1, that is, obtaining a small p-value, rejects the null hypothesis

that the features and the labels are independent, meaning that there is no difference between the

classes. Let us now study this by considering the following case analysis. If the original data

contains a real (i.e., not a random effect) dependency between data points and labels, then: (1) a

significant classifier f will use such information to achieve a good classification accuracy and this

will result in a small p-value (because the randomized samples do not contain such dependency
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by construction); (2) if the classifier f is not significant in the sense of Test 1 (that is, f was not

able to use the existing dependency between data and labels in the original data), then the p-value

would tend to be high because the error in the randomized data will be similar to the error obtained

in the original data. Finally, if the original data did not contain any real dependency between data

points and labels, that is, such dependency was similar to randomized data sets, then all classifiers

tend to have a high p-value. However, as a nature of statistical tests, about α of the results will be

incorrectly regarded as significant.

Applying randomizations on the original data is therefore a powerful way to understand how

the different classifiers use the structure implicit in the data, if such structure exists. However,

notice that a classifier might be using additionally some dependency structure in the data that is not

checked by Test 1. Indeed, it is very often the case that the p-values obtained from Test 1 are very

small on real data because a classifier is easily regarded as significant even if the class structure is

weak. We will provide more evidence about this fact in the experiments.

An important point is in fact, that a good classifier can be using other types of dependency if

this exists in the data, for example the dependency between the features. From this perspective,

Test 1 does not generate the appropriate randomized data sets to test such hypotheses. Therefore,

we propose a new test whose aim is to check for the dependency between the attributes and how

classifiers use such information.

The second null hypothesis assumes that the columns in X are mutually independent inside a

class, thus p(X(c)) = p(X(c)1) · · · p(X(c)m), where X(c) represents the submatrix of X that contains

all the rows having the class label c ∈ Y . This can be stated also using conditional probabilities,

that is, p(X | y) = p(X1 | y) · · · p(Xm | y). Test 2 is inspired by the restricted randomizations from

statistics (see, e.g., Good, 2000).

Test 2 (Permute data columns per class) Let D = {(Xi,yi)}n
i=1 be the data. A randomized version

D′ of D is obtained by applying independent permutations to the columns of X within each class.

That is:

For each class label c ∈ Y do,

• Let X(c) be the submatrix of X in class label c, that is, X(c) = {Xi | yi = c} of size lc ×m.

• Let π1, . . . ,πm be m independent permutations of lc elements.

• Let X(c)′ be a randomized version of X(c) where each πj is applied independently to the

column X(c) j. That is, X(c)′ = [π1(X(c)1), . . . ,πm(X(c)m)].

Finally, let X ′ = {X(c)′ | c ∈ Y} and obtain one randomized version D′ = {(X ′
i ,yi)}n

i=1. Next,

compute the p-value as in Definition 1.

Thus, a classification result can be regarded as nonsignificant with Test 2, if either the features

are independent of each other inside the classes or if the classifier does not exploit the interdepen-

dency between the features. Notice that we are not testing the data but the classifier against the null

hypothesis corresponding to Test 2. The classification result is significant with Test 2 only if the

classifier exploits the interdependency between the features, if such interdependency exists. If the

dependency is not used, there might be no reason to use a complicated classifier, as simpler and

faster methods, such as Naive Bayes, could provide similar accuracy results for the same data. On

1840



PERMUTATION TESTS FOR STUDYING CLASSIFIER PERFORMANCE
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Figure 2: Scatter plots of original Iris data set and randomized versions for full permutation of the

data and for Tests 1 and 2 (one sample for each test). The data points belong to three different classes

denoted by different markers, and they are scattered against petal length and width in centimeters.

the other hand, this observation can lead us to find a classifier that can exploit the possibly existing

dependency and thus improve the classification accuracy further, as discussed in the introduction.

There are three important properties of the permutation-based p-values and the two tests pro-

posed here. The first one is that the number of missing values, that is, the number of entries in D that

are empty because they do not have measured values, will be distributed equally across columns in

the original data set D and the randomized data sets D′; this is necessary for a fair p-value compu-

tation. The second property is that the proposed permutations are always relevant regardless of the

data domain, that is, values are permuted always within the same column, which does not change

the domain of the randomized data sets. Finally, we have that unbalanced data sets, that is, data sets

where the distribution of class labels is not uniform, remain equally unbalanced in the randomized

samples.

In all, with permutation tests we obtain useful statistics about the classification result. No test

is better than the other, but all provide us with information about the classifier. Each p-value is

a statistic about the classifier performance; each p-value depends on the original data (whether it

contains some real structure or not) and the classifier (whether it is able to use certain structure in

the data or not).

In Figure 2, we give as an example one randomization for each test on the well-known Iris

data set. We show here the projection of two features, before and after randomizations according

to each one of the tests. For comparison, we include a test corresponding to full permutation of

the data where each column is permuted separately, breaking the connection between the features

and mixing the values between different classes. Note how well Test 2 has preserved the class

structure compared to other tests. To provide more intuitions, in this case a very simple classifier,

which predicts the class by means of one single of these two features would suffice in reaching a

very good accuracy. In other words, the dependency between the two features is not significant as

such, so that a more complex classifier making use of such dependency would end up having a high

p-value with Test 2. We will discuss the Iris data more in the experiments.

3.2 Handling Instability of the Error

A related issue for all the above presented tests concerns the variability of the error estimate returned

by a classifier. Indeed, applying the same classifier several times over the original data set D can
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return different error estimates e( f ,D) if, for example, 10-fold cross-validation is used. So the

question is, how can we ensure that the p-values given by the tests are stable to such variance?

The empirical p-value depends heavily on the correct estimation of the original classification

accuracy, whereas the good estimation of the classification errors of the randomized data sets is not

so important. However, exactly the same classification procedure has to be used for both the original

and randomized data for the p-value to be valid. Therefore, we propose the following solution to

alleviate the problem of having instable test statistic: We train the classifier on the original data r

times, thus obtaining r different error estimates E = {e1( f ,D), . . . ,er( f ,D)} on D. Next, we obtain

k randomized samples of D according to the desired null hypothesis and compute the p-value for

each one of those original errors e ∈ E. We obtain therefore r different p-values by using the same

k randomized data sets for each computation. We finally output the average of those r different

p-values as the final empirical p-value.

Note that in total we will compute the error of the classifier r+ k times: r times on the original

data and one time for each of the k randomized data sets. Of course, the larger the k and the larger

the r, the more stable the final averaged p-value would be. A larger r decreases the variance in the

final p-value due to the estimation of the classification error of the original data set whereas a larger

k decreases the variance in the final p-value due to the random sampling from the null distribution.

In practice, we have observed that a value of r = 10 and k = 100 produce sufficiently stable results.

This solution is closely related to calculating the statistic ρ, or calculating the test statistic U

of the Wilcoxon-Mann-Whitney two-sample rank-sum test (Good, 2000). However, it is not valid

to apply these approaches in our context as the r classification errors of the original data are not

independent of each other. Nevertheless, the proposed solution has the same good properties as the

ρ and U statistics as well as it generalizes the concept of empirical p-value to instable results.

A different solution would be to use a more accurate error estimate. For example, we could use

leave-one-out cross-validation or cross-validation with 100 folds instead of 10-fold cross-validation.

This will decrease the variability but increase the computation time dramatically as we need to

perform the same slow classification procedure to all k randomized samples as well. However, it

turns out that the stability issue is not vital for the final result; our solution produces sufficiently

stable p-values in practice.

3.3 Example

We illustrate the concept of the tests by studying the small artificial example presented in the intro-

duction in Figure 1. Consider the two data sets D1 and D2 given in Figure 1. The first data set D1

was generated as follows: in the first eight rows corresponding to class +, each element is indepen-

dently sampled to be x with probability 80% and o otherwise; in the last eight rows the probabilities

are the other way around. Note that in the data set D1 the features are independent given the class

since, for example, knowing that X
j1

i = x inside class + does not increase the probability of X
j2

i

being x. The data set D2 was generated as follows: the first four rows contain x, the second four

rows contain o, the third four rows contain x in the first four columns and o in the last four columns,

and the last four rows contain o in the first four columns and x in the last four columns; finally, 10%

of noise was added to the data set, that is, each x was flipped to o with probability of 10%, and vice

versa.

Observe that both D1 and D2 have a clear separation into the two given classes, + and –. How-

ever, the structure inside the data set D1 is much simpler than in the data set D2. For illustration
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1-Nearest Neighbor

Orig. Test 1 Test 2

Data Set Err. Err. (Std) p-val. Err. (Std) p-val.

D1 0.00 0.53 (0.14) 0.001 0.06 (0.06) 0.358

D2 0.00 0.53 (0.14) 0.001 0.62 (0.14) 0.001

Table 1: Average error and p-value for Test 1 and Test 2 when using the 1-Nearest Neighbor classi-

fier to data sets of Figure 1.

purposes, we analyze this with the 1-Nearest Neighbor classifier using the leave-one-out cross-

validation given in Equation (1). Results for Test 1 and Test 2 are summarized in Table 1. The

classification error obtained in the original data is 0.00 for both D1 and D2, which is expected since

the data sets were generated to contain clear class structure.

First, we use the standard permutation test (i.e., permuting labels, Test 1) to understand the

behavior under the null hypothesis where data points and labels are independent. We produce 1000

random permutations of the class labels for both the data sets D1 and D2, and perform the same

leave-one-out cross-validation procedure to obtain a classification error for each randomized data

set. On the randomized samples of data set D1 we obtain an average classification error of 0.53,

a standard deviation 0.14 and a minimum classification error of 0.13. For the randomized data

from D2 the corresponding values are 0.53, 0.14 and 0.19, respectively. These values result in

two empirical p-values of both 0.001 on both the data sets D1 and D2. Thus, we can say that the

classifiers are significant under the null hypothesis that data and labels are independent. That is, the

connection between the data and the class labels is real in both data sets and the 1-Nearest Neighbor

classifier is able to find that connection in both data sets, resulting into a good classification accuracy.

However, it is easy to argue that the results of Test 1 do not provide much information about

the classifier performance. Actually the main problem of Test 1 is that p-values tend to be always

very low as the null hypothesis is typically easy to reject. To get more information of the properties

of the classifiers, we study next the performance of the classifiers by taking into account the inner

structure of data sets D1 and D2 by applying Test 2. Again, we produce 1000 random samples of the

data sets D1 and D2 by permuting each column separately inside each class. The same leave-one-out

cross-validation procedure is performed for the randomized samples, obtaining for the data set D1

the average classification error of 0.06, standard deviation of 0.06 and a minimum value of 0.00.

For the data set D2 the corresponding values are 0.62, 0.14 and 0.19, respectively. Therefore, under

Test 2 the empirical p-values are 0.358 for the data set D1 and 0.001 for the data set D2.

We can say that, for Test 2, the 1-Nearest Neighbor classifier is significant for data set D2 but

not for data set D1. Indeed, the data set D1 was generated so that the features are independent

inside the classes, and hence, the good classification accuracy of the algorithm on D1 is simply due

to different value distributions across the classes. Note, however, that none of the features in the

data set D1 is sufficient alone to correctly classify all the samples due to the noise in the data set.

Thus using a combination of multiple features for classification is necessary for obtaining a good

accuracy, even though the features are independent of each other. For data set D2 we have that the

dependency between the columns inside the classes is essential for the good classification result,

and in this case, the 1-Nearest Neighbor classifier has been able to exploit that information.
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4. Analysis

In this section we analyze the properties of the tests and demonstrate the behavior of the different p-

values on simulated data. First, we state the relationships between the different sets of permutations.

4.1 Connection between Test 1 and Test 2

Remember that the random samples from Test 1 are obtained by permuting the class labels and the

samples from Test 2 by permuting the features inside each class. To establish a connection between

these randomizations, we study the randomization where each data column is permuted separately,

regardless of the class label. This corresponds to the full permutation presented in Figure 2 in

Section 3.1 for Iris data set. It breaks the connection between the features, and furthermore, between

the data and the class labels. The following result states the relationship between Test 1, Test 2 and

the full permutation method.

Proposition 2 Let Πl(D), Πc(D), Πcc(D) be the sets of all possible randomized data sets obtained

from D via permuting labels (Test 1), permuting data columns (full permutation), or permuting data

columns inside class (Test 2), respectively. The following holds,

(1) Πl(D)⊂ Πc(D)

(2) Πcc(D)⊂ Πc(D)

(3) Πl(D) 6= Πcc(D)

Note that Πl(D), Πc(D) and Πcc(D) refer to sets of data matrices. Therefore, we have that

permuting the data columns is the randomization method producing the most diverse samples, while

permuting labels (Test 1) and permuting data within class (Test 2) produce different randomized

samples.

Actually, the relationship stated by Proposition 2 implies the following property: the p-value

obtained by permuting the data columns is typically smaller than both the p-values obtained from

Test 1 and Test 2. The reason is that all the randomized data sets obtained by Test 1 and Test 2

can also be obtained by permuting data columns and the additional randomized data sets obtained

by permuting the columns are, in general, even more random. Theoretically, permuting the data

columns is a combination of Test 1 and Test 2, and thus, it is not a useful test. In practice, we have

observed that the p-value returned by permuting the data columns is very close to the p-value of

Test 1, which tends to be much smaller than the p-value of Test 2.

Considering Proposition 2, it makes only sense to restrict the randomization to classes by using

Test 2, whenever Test 1 has produced a small p-value. That is, it is only reasonable to study whether

the classifier uses feature dependency in separating the classes if it has found a real class structure.

4.2 Behavior of the Tests

To understand better the behavior of the tests, we study generated data where correlation is used

as the dependency between the features. Consider the following simulated data, inspired by the

data used by Golland et al. (2005): 100 data points are generated from two-dimensional normal

distribution with mean vector (1,0), unit variances and covariance ρ ∈ [−1,1]. Another 100 data

points are generated from similar normal distribution with mean (−1,0), unit variances and same
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— e( f ,D) × Test 1 • Test 2
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Figure 3: Average values of stratified 10-fold cross-validation error (y-axis) for varying values of

correlation between the features per class (x-axis). The solid line shows the error on the original

data, and symbols × and • represent the average of the error on 1000 randomized samples obtained

from Test 1 and from Test 2, respectively. Each average of the error on the randomized samples ×
and • is depicted together with the [1%,99%]-deviation bar. If the solid line falls below the bars the

null hypothesis associated to the test is rejected; if the solid line crosses inside or above the bars the

null hypothesis cannot be rejected with significance level α = 0.01.

covariance ρ. The first 100 samples are assigned with class label y = +1 with probability 1− t

and y = −1 with probability t. For the other 100 samples the probabilities are the opposite. The

probability t ∈ [0,0.5] represents the noise level. When t = 0.5, there is no class structure at all.

Note that the correlation between the features improves the class separation: if the correlation ρ= 1

and the noise t = 0, we have that the class y = x1 − x2 where x1, x2 are the values of the first and

second features, respectively.

For these data sets (with varying parameters of noise and correlation) we use as an error estimate

the stratified 10-fold cross-validation error. We study the behavior of four classifiers: 1-Nearest

Neighbor, Decision Tree, Naive Bayes and Support Vector Machine. We use Weka 3.6 data mining

software (Witten and Frank, 2005) with the default parameters of the implementations of those

classification algorithms. The Decision Tree classifier is similar to C4.5 algorithm, and the default

kernel used with Support Vector Machine is linear. Tuning the parameters of these algorithms is not

in the scope of this paper; our objective is to show the behavior of the discussed p-values for some

selected classifiers.

Figure 3 shows the behavior of the classifiers on data sets without class noise, t = 0, and with the

correlation ρ between features inside classes varying from −1 (negative correlation) to 1 (positive

correlation). The solid line corresponds to e( f ,D), that is, the error of the classifier in the original
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Figure 4: Average values of stratified 10-fold cross-validation error (y-axis) for the Decision Tree

classifier when noise varies on the original data set (x-axis) with four fixed correlation values be-

tween the features inside the classes. The solid line shows the error on the original data, and sym-

bols × and • show the average error on 1000 randomized samples from Test 1 and Test 2, respec-

tively. Each average of the error on the randomized samples × and • is depicted together with the

[1%,99%]-deviation bar below which the associated null hypothesis is rejected with significance

level α = 0.01.

data. The symbols “×” and “•” represent the average error obtained by the classifier on 1000

randomized samples from Test 1 and Test 2, respectively. When the solid line of e( f ,D) falls

below the [1%,99%]-deviation bars, the corresponding associated null hypothesis is rejected with

significance level α = 0.01. Actually, the correspondence between the confidence intervals and

hypotheses testing is only approximately true since the definition of empirical p-value contains the

addition of 1 in both the numerator and denominator. However, the practical difference is negligible.

First, note that the Decision Tree, 1-Nearest Neighbor and Support Vector Machine classifiers

have been able to exploit the dependency between the features, that is, the classification error goes to

zero when there is either a high positive or negative correlation between the features. However, with

Naive Bayes classifier the classification error seems to be independent of the correlation between

the features.

For all classifiers we observe that the null hypothesis associated to Test 1 (i.e., labels and data

are independent) is always rejected. Thus the data contains a clear class structure as expected since

there exists no class noise in the data. All classifiers are therefore significant under Test 1.

Another expected observation is that the null hypothesis for Test 2 (i.e., features are independent

within class) tends to be rejected as the magnitude of the correlation between features increases.

That is, the correlation is useful in classifying the data. When the magnitude of the correlation is

larger than approximately 0.4, the Decision Tree, Nearest Neighbor and Support Vector Machine

classifiers reject the null hypothesis. Thus these classifiers produce significant results under Test 2

when the features are highly correlated.

Finally, observe the behavior of Naive Bayes classifier for Test 2: the null hypothesis can never

be rejected. This is because Naive Bayes classifier explicitly assumes by default that the features

are independent, thus it always performs similarly on the original data and the randomized data sets,

which results in a very high p-value. Naive Bayes classifier is an example of such classifiers which

are not able to use the dependency between the features at all. Thus applying Test 2 for Naive Bayes

classifier will practically always produce a high p-value irrespective of the data.
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Finally, Figure 4 shows the behavior of the Decision Tree classifier when the noise t ∈ [0,0.5] is

increased on the x-axis. We also vary the correlation ρ between the features per class and show the

results on four cases: zero correlation, 0.5, 0.8 and total correlation. We observe that as the noise

increases the p-values tend to be larger. Therefore, it is more difficult to reject the null hypothesis

on very noisy data sets, that is, when the class structure is weak. This is true for both Test 1 and

Test 2. However, Test 1 rejects the null hypothesis even if there is 30% of noise. This supports the

fact already observed in related literature (Golland et al., 2005), that even a weak class structure is

easily regarded as significant with Test 1. Compared to this, Test 2 gives more conservative results.

4.3 Power Analysis of Test 2

The power of a statistical test is the probability that the test will reject the null hypothesis when the

alternative hypothesis is true. The power of the test depends on how much or how clearly the null

hypothesis is false. For example, in our case with Test 2, a classifier may rely solely on a strong

dependency structure between some specific features in the classification, or it may use a weak

feature dependency to slightly improve the classification accuracy. Rejecting the null hypothesis of

Test 2 is much easier in the former than in the latter case. Note, however, that a strong dependency

between the features is not always useful in separating the classes, as seen in Figure 2 with Iris

data set. So, the question with Test 2 is whether the classifier is exploiting some of the dependency

structure between the features in the data and how important such feature dependency is for the

classification of the data.

In general, the power of the test can only be analyzed in special cases. Nevertheless, such

analysis can give some general idea of the power the test. Next, we present a formal power analysis

in the particular case where we vary the correlation between the features that is useful in separating

the classes from each other. Note, however, that there exist also other types of dependency than

correlation. The amount of correlation is just easy to measure, thus being suitable for formal power

analysis.

We present the power analysis on similar data as studied in Section 4.2. The results in the

previous subsection can be seen as informal power analysis. In summary, we observed that when

the magnitude of the correlation in the data studied in Section 4.2 was larger than about 0.5 and

the classifier was exploiting the feature dependency, that is, a classifier different from Naive Bayes,

Test 2 was able to reject the null hypothesis. However, based on the data it is clear that even smaller

correlations increased the class separation and were helpful in classifying the data but Test 2 could

not regard such improvement as significant. The following analysis supports these observations.

Let the data set X consist of n points with two features belonging to two classes, +1 and −1.

Let a point x ∈ X be in class y = +1 with probability 0.5 and in class y = −1 with probability 0.5.

Let the point x ∈ X be sampled from two-dimensional normal distribution with mean (0,0), unit

variances and covariance yρ where ρ ∈ [0,1] is a given parameter. Thus, in the first class, y = +1,

the correlation between the two features is positive and in the second class, y = −1, it is negative.

Compared to the data sets in Section 4.2, now the covariance changes between the classes, not the

mean vector. An optimal classifier assigns a point x ∈ X to class y = +1 if x1x2 > 0 and to class

y =−1 if x1x2 < 0, where xi is the i-th feature of the vector x.

The null hypothesis of Test 2 is that the classifier is not exploiting the dependency between

the features in classification. To alleviate the power analysis, we assume that the classifier is able

to find the optimal classification, that is, it assigns the point x to class sgn(x1x2) where sgn(·) is
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the signum function. If the classifier is not optimal, it will just decrease the power of the test.

The nonoptimality of the classifier could be taken into account by introducing a probability t for

reporting a nonoptimal class label; this approach is used in the next subsection for power analysis

of Test 1 but is left out here for simplicity in the analysis. Under this optimality scenario, the

probability of correctly classifying a sample is

Pr(sgn(x1x2) = y) =
1

2
Pr(x1x2 > 0 | y =+1)+

1

2
Pr(x1x2 < 0 | y =−1)

= Pr(x1x2 > 0 | y =+1) = 2

∫ ∞

0

∫ ∞

0
Pr(x1,x2)dx1dx2

= 2

∫ ∞

0

∫ ∞

0

1

2π
√

1−ρ2
exp

[
−x2

1 −2ρx1x2 + x2
2

2(1−ρ2)

]
dx1dx2

=
1

2
+

1

π
arcsinρ, (2)

where Pr(x1,x2) is just the standardized bivariate normal distribution. The null hypothesis corre-

sponds to the case where the correlation parameter is zero, ρ = 0, that is, no feature dependency

exists. In that case, the probability of correctly classifying a sample is 1/2.

In our randomization approach, we are using classification error as the test statistic. Since we

assume that the optimal classifier is given, we use all the n points of the data set X for testing

the classifier and calculating the classification error. Under the null hypothesis H0 and under the

alternative hypothesis H1 of Test 2, the classification errors e( f | H0) and e( f | H1) are distributed

as follows:

n · e( f | H0)∼ Bin

(
n,

1

2

)
≈N

(n

2
,
n

4

)
,

n · e( f | H1)∼ Bin

(
n,

1

2
− 1

π
arcsinρ

)
≈N

(n

2
− n

π
arcsinρ,

n

4
− n

π2
arcsin2 ρ

)
,

where 1
2
− 1

π arcsinρ is the probability of incorrectly classifying a sample by Equation (2). The nor-

mal approximation N (np,np(1− p)) of a binomial distribution Bin(n, p) holds with good accuracy

when np > 5 and n(1− p)> 5. In our case, the approximation is valid if n( 1
2
− 1

π arcsinρ)> 5. This

holds, for example, if n ≥ 20 and ρ ≤ 0.7.

Now the power of Test 2 for this generated data is the probability of rejecting the null hypothesis

H0 of ρ = 0 with significance level α when the alternative hypothesis H1 is that the correlation

ρ > 0. Note that we are implicitly assuming that the classifier is optimal, that is, we are excluding

the classifier quality from the power analysis. Thus, the power is the probability that e( f | H1) is

smaller than 1−α of the errors e( f | H0) under the alternative hypothesis H1:

Power = Pr
(

e( f | H1)< F−1
e( f |H0)

(α)
)

≈ Pr

(
1

2
− 1

π
arcsinρ+

√
1

4n
− 1

nπ2
arcsin2 ρ ·Z <

1

2
+

1

2
√

n
Φ−1(α)

)

= Φ


2

√
narcsinρ+πΦ−1(α)√

π2 −4arcsin2 ρ


 , (3)
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Figure 5: Contour plots of the statistical power of Test 2 as a function of the number of rows n in the

generated data set and the correlation parameter ρ. Each solid line corresponds to a constant value

of the power that is given on top of the contour. The power values are calculated by Equation (3)

for two different values of significance level α.

where Fe( f |H0) is the cumulative distribution function of e( f | H0), Z is a random variable following

standard normal distribution and Φ is the cumulative distribution function of the standard normal

distribution. Note that we are using exact p-value instead of empirical p-value, effectively leaving

out the influence of variance by using k randomized samples; see Fay et al. (2007) for analysis of

resampling risk of using k samples. However, this has little effect to the power of the test. When the

correlation ρ = 0, the power is α, that is, when the null hypothesis is true, it is rejected incorrectly

about α of the times. Therefore, α is really the significance level of the tests.

In Figure 5 we present contour plots of the statistical power in Equation (3) for different values

of the two varying parameters. As expected, the higher the correlation ρ and the number of rows

n are, the higher the statistical power of Test 2 is. For example, if the data set contains about 1000

rows, we can infer with 90% probability that the classifier is exploiting the feature dependency of

approximately a correlation of 0.2 in the data. The results are also in line with the results from

Section 4.2 although the studied data sets are slightly different. When the significance level used is

α = 0.01 we can infer that the classifier is exploiting the feature dependency of correlation larger

than 0.4 approximately 90% of the times when the data set has 200 rows.

Notice that if we had not considered an “optimal” classifier, that is, if we had introduced a

probability t of assigning each observation to the incorrect label, then Equation (3) would depend

on three parameters. In that case, the higher t, the smaller is the power of the test; however, for

a fixed t we still would observe the same behaviour as in the contourplots above: the higher the

correlation ρ and the larger the n, the higher is the statistical power of Test 2. The error parameter t

is taken into account in the next section, where the power analysis of Test 1 does not depend on ρ
between the features.
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4.4 Power Analysis of Test 1

Let the data set X consist of n observations belonging to two different classes with equal probability.

We assume that we have a classifier f whose error rate is t ∈ [0,1], that is, the classifier assigns each

observation to the correct class with probability 1− t. Another way to see this is that the classifier

f is optimal but the original class label of each point is erroneous with probability t. We perform

power analysis of Test 1 for this general form of data.

Note that the results in Section 4.2 can be seen as informal power analysis of Test 1 on similar

setting as studied here. The results in Figure 4 can be summarized as follows. When the error rate

was smaller than t < 0.4, Test 1 was able to reject the null hypotheses. Note, however, that the error

rate t used in this section is not directly comparable to the error rate used in Section 4.2.

The power analysis of Test 1 proceeds similarly as in the previous subsection for Test 2. Under

the null hypothesis H0 and under the alternative hypothesis H1 of Test 1, the classification errors

e( f | H0) and e( f | H1) are distributed as follows:

n · e( f | H0)∼ Bin

(
n,

1

2

)
≈N

(n

2
,
n

4

)
,

n · e( f | H1)∼ Bin(n, t)≈N (nt,nt(1− t)) .

The null hypothesis H0 assumes that there is no connection between the data and the class labels

thus the probability of incorrect classification is 1/2 as the classes are equally probable. Note that

the null hypothesis corresponds to the case where the error rate of the classifier f is t = 1/2.

Now the power of Test 1 is the probability of rejecting the null hypothesis H0 with significance

level α when the alternative hypothesis H1 is true, that is,

Power = Pr
(

e( f | H1)< F−1
e( f |H0)

(α)
)

≈ Pr

(
t +

√
t(1− t)

n
Z <

1

2
+

1

2
√

n
Φ−1(α)

)

= Φ

(
(1−2t)

√
n+Φ−1(α)

2
√

t(1− t)

)
, (4)

where the same notation as in the previous subsection is used. First, note that when the null hypoth-

esis is true, that is, t = 1/2, the power of Test 1 calculated by Equation (4) equals the significance

level α as it should.

In Figure 6 we present contour plots of the statistical power of Test 1 calculated by Equation (4)

for different values of parameters. As expected, when the number of observations n increases or the

error rate t decreases, the power increases. Furthermore, the larger the significance level α is, the

larger the power of Test 1 is. When the parameter values are α = 0.01, n = 200 and t = 0.4, the

power of Test 1 is about 0.7 that is comparable to the results in Section 4.2.

In this section, we analyzed the behaviour and the power of the tests. Note that although we used

correlation as the only type of dependency between features in this section, there exist also other

forms of dependency that the classifier can exploit. As conclusions from the power analysis, the

more rows the data set has, the easier we can infer that the classifier is using the feature dependency

or some other properties in the data.
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Figure 6: Contour plots of the statistical power of Test 1 as a function of the number of rows n in

the generated data set and the probability of misclassification t. Each solid line corresponds to a

constant value of the power that is given on top of the contour. The power values are calculated by

Equation (4) for two different values of significance level α.

5. Empirical Results

In this section, we give extensive empirical results on 33 various real data sets from UCI machine

learning repository (Asuncion and Newman, 2007). Basic characteristics of the data sets are de-

scribed in Table 2. The data sets are divided into three categories based on their size: small, medium

and large. Some data sets contain only nominal or numeric features whereas some data sets contain

both kind of features (mixed). About one-third of the data sets contain also missing values. Notice

that in most data sets the features are measured in different scales, thus it is not sensible to swap the

values between different features. This justifies why it is only reasonable to consider column-wise

permutations, and why some recent data mining randomization methods (Gionis et al., 2007; Ojala

et al., 2009; Chen et al., 2005) are not generally applicable in assessing classification results.

In the experiments we use Weka 3.6 data mining software (Witten and Frank, 2005) that contains

open source Java implementations of many classification algorithms. We use four different types

of classification algorithms with the default parameters: Decision Tree, Naive Bayes, 1-Nearest

Neighbor and Support Vector Machine classifier. The Decision Tree classifier is similar to C4.5

algorithm. The default kernel used with Support Vector Machine is linear. Missing values and the

combination of nominal and numerical values are given as such as the input for the classifiers; the

default approaches in Weka of the classifiers are used to handle these cases. Notice that tuning the

parameters of these algorithms is not in the scope of this paper; our objective is to show the behavior

of the discussed p-values for some selected classifiers on various data sets.

We use different classification procedures and the number of randomized data sets for each

of the different size categories of the data sets (small, medium and large). For small data sets,

we use stratified 10-fold cross-validation error as the statistic and 1000 randomized data sets for

calculating the empirical p-values. For medium-sized data sets, we use the same stratified 10-fold

cross-validation error and 100 randomized data sets. Finally, for large data sets, we divide the data
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Data Set Rows Features Classes Missing Domain

S
m

al
l

Audiology 226 70 24 2.0% nominal

Autos 205 25 6 1.2% mixed

Breast 286 9 2 0.3% nominal

Glass 214 9 6 No numeric

Hepatitis 155 19 2 5.7% mixed

Ionosphere 351 34 2 No numeric

Iris 150 4 3 No numeric

Lymph 148 18 4 No mixed

Promoters 106 57 2 No nominal

Segment 210 19 7 No numeric

Sonar 208 60 2 No numeric

Spect 267 22 2 No nominal

Tumor 339 17 21 3.9% nominal

Votes 435 16 2 5.6% nominal

Zoo 101 17 7 No mixed

M
ed

iu
m

Abalone 4177 8 28 No mixed

Anneal 898 38 5 65.0% mixed

Balance 625 4 3 No numeric

Car 1728 6 4 No nominal

German 1000 20 2 No mixed

Mushroom 8124 22 2 1.4% nominal

Musk 6598 166 2 No numeric

Pima 768 8 2 No numeric

Satellite 6435 36 6 No numeric

Spam 4601 57 2 No numeric

Splice 3190 60 3 No nominal

Tic-tac-toe 958 9 2 No nominal

Yeast 1484 8 10 No numeric

L
ar

g
e

Adult 48842 15 2 0.9% mixed

Chess 28056 6 18 No mixed

Connect-4 67557 42 3 No nominal

Letter 20000 16 26 No numeric

Shuttle 58000 9 7 No numeric

Table 2: Summary of 33 selected data sets from UCI machine learning repository (Asuncion and

Newman, 2007). The data sets are divided into three categories based on their size: small, medium

and large.
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set into training set with 10 000 random rows and to test set with the rest of the rows. We use 100

randomized data sets for calculating the empirical p-values with large data sets. The reason for the

smaller number of randomized samples for medium and large data sets is mainly computation time.

However, 100 samples is usually enough for statistical inference. Furthermore, as seen in Section 4

the power of the tests is greater when the data sets have more rows, that is, with large data sets it is

easier to reject the null-hypotheses, supporting the need of fewer randomized samples in hypothesis

testing.

Since the original classification error is not a stable result due to the randomness in training

the classifier and dividing the data set into test and train data, we perform the same classification

procedure ten times for the original data sets and calculate an empirical p-value for each of the ten

results. This was described in Section 3.2. We give the average value of these empirical p-values as

well as the average value and the standard deviation of the original classification errors.

As we are testing multiple hypotheses simultaneously, we need to correct for multiple compar-

isons. We apply the approach by Benjamini and Hochberg (1995) to control the false discovery rate

(FDR), that is, the expected proportion of results incorrectly regarded as significant. In the exper-

iments, we restrict the false discovery rate below α = 0.05 separately for Test 1 and Test 2. In the

Benjamini-Hochberg approach, if p1, . . . , pm are the original empirical p-values in increasing order,

the results p1, . . . , pl are regarded as significant where l is the largest value such that pl ≤ l
m

α.

The significance testing results for the Decision Tree classifier are given in Table 3, for Naive

Bayes in Table 4, for 1-Nearest Neighbor classifier in Table 5 and finally for Support Vector Ma-

chine classifier in Table 6. The mean and the standard deviation of the 10 original classification

errors are given as well as the mean and standard deviation of the errors on the 1000 or 100 ran-

domized samples with Test 1 and Test 2. The empirical p-values corresponding to nonsignificant

results, when the false discovery rate is restricted below 0.05, are in boldface in the tables. With all

classifiers, the largest significant empirical p-value was 0.01. The smallest non-significant p-values

were 0.03 with Decision Tree and 1-Nearest Neighbor classifiers, 0.08 with Naive Bayes classifier

and 0.19 with Support Vector Machine classifier.

The results for the traditional permutation method Test 1 show that the classification errors with

most data sets are regarded as significant. These results show that the data sets contain clear class

structure. However, they do not give any additional insight for understanding the class structure in

the data sets.

There are two reasons why the simple permutation test, Test 1, regards the class structure of

the data sets as significant. Firstly, most of the data sets that are publicly available, as all the

data sets used in this paper, have already passed some quality checks, that is, someone has already

found some interesting structure in them. Secondly, and as a more important reason, the traditional

permutation tests easily regard the results as significant even if there is only a slight class structure

present because in the corresponding permuted data sets there is no class structure, especially if the

original data set is large.

Furthermore, the few results which were regarded as nonsignificant with Test 1 are with such

classifiers that have not performed well on the data. That is, the other classifiers have produced

smaller classification errors on the same data sets, and, in contrast, these results are regarded as

significant.

Next, we consider the results for permuting the features inside each class, that is, Test 2. The

results show that there are actually now almost equal amount of nonsignificant and significant results

with respect to Test 2. This means that in many data sets the original structure inside the classes is
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Decision Tree

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.22 (0.01) 0.82 (0.03) 0.001 0.23 (0.02) 0.482

Autos 0.19 (0.01) 0.76 (0.04) 0.001 0.38 (0.04) 0.001

Breast 0.26 (0.01) 0.30 (0.00) 0.001 0.29 (0.02) 0.116

Glass 0.33 (0.02) 0.72 (0.03) 0.001 0.34 (0.03) 0.457

Hepatitis 0.22 (0.02) 0.23 (0.02) 0.319 0.15 (0.03) 0.955

Ionosphere 0.10 (0.01) 0.38 (0.02) 0.001 0.07 (0.01) 0.964

Iris 0.05 (0.01) 0.67 (0.03) 0.001 0.05 (0.01) 0.765

Lymph 0.22 (0.02) 0.51 (0.05) 0.001 0.23 (0.04) 0.437

Promoters 0.21 (0.04) 0.50 (0.06) 0.002 0.22 (0.05) 0.377

Segment 0.13 (0.02) 0.86 (0.03) 0.001 0.17 (0.02) 0.132

Sonar 0.27 (0.02) 0.49 (0.03) 0.001 0.27 (0.03) 0.507

Spect 0.19 (0.01) 0.22 (0.01) 0.004 0.15 (0.02) 0.966

Tumor 0.58 (0.01) 0.82 (0.02) 0.001 0.60 (0.02) 0.138

Votes 0.03 (0.00) 0.42 (0.02) 0.001 0.03 (0.01) 0.791

Zoo 0.07 (0.01) 0.64 (0.03) 0.001 0.07 (0.01) 0.593

M
ed

iu
m

Abalone 0.79 (0.01) 0.89 (0.00) 0.01 0.67 (0.01) 1.00

Anneal 0.07 (0.01) 0.24 (0.00) 0.01 0.13 (0.01) 0.01

Balance 0.22 (0.01) 0.55 (0.02) 0.01 0.29 (0.02) 0.01

Car 0.08 (0.00) 0.30 (0.00) 0.01 0.26 (0.01) 0.01

German 0.29 (0.01) 0.32 (0.01) 0.01 0.28 (0.01) 0.66

Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.01 (0.00) 0.01

Musk 0.03 (0.00) 0.16 (0.00) 0.01 0.09 (0.00) 0.01

Pima 0.25 (0.01) 0.35 (0.01) 0.01 0.24 (0.01) 0.67

Satellite 0.14 (0.00) 0.81 (0.00) 0.01 0.07 (0.00) 1.00

Spam 0.07 (0.00) 0.40 (0.00) 0.01 0.06 (0.00) 1.00

Splice 0.06 (0.00) 0.60 (0.01) 0.01 0.07 (0.01) 0.01

Tic-tac-toe 0.15 (0.01) 0.36 (0.01) 0.01 0.30 (0.01) 0.01

Yeast 0.44 (0.01) 0.76 (0.01) 0.01 0.47 (0.01) 0.03

L
ar

g
e

Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00 (0.00) 1.00

Chess 0.46 (0.00) 0.89 (0.00) 0.01 0.77 (0.00) 0.01

Connect-4 0.25 (0.00) 0.34 (0.00) 0.01 0.33 (0.00) 0.01

Letter 0.16 (0.01) 0.96 (0.00) 0.01 0.38 (0.01) 0.01

Shuttle 0.00 (0.00) 0.21 (0.00) 0.01 0.01 (0.00) 0.01

Table 3: Classification errors and empirical p-values obtained with Decision Tree classifier for

Test 1 and Test 2. The empirical p-values are calculated over 1000 randomized samples for small

data sets and over 100 randomized samples for medium and large data sets. Classification on the

original data is repeated ten times. In the table, the average values and standard deviations of the

classification errors are given. Bold p-values correspond to nonsignificant results when the false

discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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Naive Bayes

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.27 (0.00) 0.79 (0.03) 0.001 0.26 (0.01) 0.869

Autos 0.43 (0.01) 0.79 (0.04) 0.001 0.22 (0.02) 1.000

Breast 0.27 (0.01) 0.33 (0.02) 0.001 0.24 (0.02) 0.959

Glass 0.52 (0.02) 0.81 (0.05) 0.001 0.45 (0.02) 0.994

Hepatitis 0.16 (0.01) 0.30 (0.05) 0.001 0.09 (0.02) 1.000

Ionosphere 0.17 (0.00) 0.46 (0.03) 0.001 0.01 (0.01) 1.000

Iris 0.05 (0.01) 0.67 (0.05) 0.001 0.01 (0.01) 0.999

Lymph 0.16 (0.01) 0.53 (0.05) 0.001 0.11 (0.02) 0.995

Promoters 0.08 (0.01) 0.50 (0.06) 0.001 0.07 (0.02) 0.746

Segment 0.21 (0.01) 0.86 (0.03) 0.001 0.13 (0.01) 1.000

Sonar 0.32 (0.01) 0.50 (0.04) 0.001 0.13 (0.02) 1.000

Spect 0.21 (0.01) 0.25 (0.03) 0.077 0.07 (0.01) 1.000

Tumor 0.50 (0.01) 0.81 (0.02) 0.001 0.49 (0.02) 0.751

Votes 0.10 (0.00) 0.44 (0.02) 0.001 0.00 (0.00) 1.000

Zoo 0.03 (0.00) 0.81 (0.05) 0.001 0.03 (0.01) 0.541

M
ed

iu
m

Abalone 0.76 (0.00) 0.88 (0.01) 0.01 0.56 (0.01) 1.00

Anneal 0.35 (0.01) 0.36 (0.04) 0.65 0.31 (0.01) 1.00

Balance 0.09 (0.00) 0.54 (0.02) 0.01 0.24 (0.01) 0.01

Car 0.14 (0.00) 0.30 (0.00) 0.01 0.24 (0.01) 0.01

German 0.25 (0.00) 0.33 (0.01) 0.01 0.23 (0.01) 1.00

Mushroom 0.04 (0.00) 0.50 (0.01) 0.01 0.00 (0.00) 1.00

Musk 0.16 (0.00) 0.34 (0.06) 0.01 0.02 (0.00) 1.00

Pima 0.24 (0.00) 0.37 (0.01) 0.01 0.22 (0.01) 0.99

Satellite 0.20 (0.00) 0.80 (0.02) 0.01 0.00 (0.00) 1.00

Spam 0.20 (0.00) 0.49 (0.05) 0.01 0.10 (0.00) 1.00

Splice 0.05 (0.00) 0.53 (0.01) 0.01 0.03 (0.00) 1.00

Tic-tac-toe 0.30 (0.00) 0.35 (0.01) 0.01 0.28 (0.01) 1.00

Yeast 0.42 (0.00) 0.71 (0.01) 0.01 0.42 (0.01) 0.36

L
ar

g
e

Adult 0.02 (0.00) 0.24 (0.01) 0.01 0.01 (0.00) 0.96

Chess 0.66 (0.00) 0.84 (0.00) 0.01 0.70 (0.00) 0.01

Connect-4 0.28 (0.00) 0.34 (0.00) 0.01 0.29 (0.00) 0.19

Letter 0.36 (0.00) 0.96 (0.00) 0.01 0.26 (0.00) 1.00

Shuttle 0.10 (0.01) 0.47 (0.24) 0.01 0.04 (0.01) 1.00

Table 4: Classification errors and empirical p-values obtained with Naive Bayes classifier for Test 1

and Test 2. The empirical p-values are calculated over 1000 randomized samples for small data sets

and over 100 randomized samples for medium and large data sets. Classification on the original data

is repeated ten times. In the table, the average values and standard deviations of the classification

errors are given. Bold p-values correspond to nonsignificant results when the false discovery rate is

restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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1-Nearest Neighbor

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.26 (0.01) 0.86 (0.03) 0.001 0.32 (0.03) 0.030

Autos 0.26 (0.01) 0.77 (0.03) 0.001 0.45 (0.03) 0.001

Breast 0.31 (0.02) 0.41 (0.03) 0.007 0.32 (0.03) 0.324

Glass 0.30 (0.01) 0.74 (0.04) 0.001 0.42 (0.03) 0.001

Hepatitis 0.19 (0.01) 0.33 (0.04) 0.002 0.14 (0.03) 0.970

Ionosphere 0.13 (0.00) 0.46 (0.03) 0.001 0.26 (0.01) 0.001

Iris 0.05 (0.00) 0.66 (0.05) 0.001 0.02 (0.01) 0.962

Lymph 0.18 (0.02) 0.53 (0.04) 0.001 0.20 (0.03) 0.307

Promoters 0.19 (0.02) 0.50 (0.06) 0.001 0.26 (0.04) 0.083

Segment 0.14 (0.01) 0.86 (0.03) 0.001 0.15 (0.02) 0.266

Sonar 0.13 (0.01) 0.50 (0.04) 0.001 0.27 (0.03) 0.001

Spect 0.24 (0.02) 0.32 (0.04) 0.011 0.18 (0.02) 0.970

Tumor 0.66 (0.02) 0.88 (0.02) 0.001 0.62 (0.02) 0.860

Votes 0.08 (0.01) 0.47 (0.03) 0.001 0.01 (0.00) 1.000

Zoo 0.03 (0.01) 0.75 (0.05) 0.001 0.04 (0.02) 0.333

M
ed

iu
m

Abalone 0.80 (0.00) 0.90 (0.00) 0.01 0.68 (0.01) 1.00

Anneal 0.05 (0.00) 0.40 (0.02) 0.01 0.08 (0.01) 0.01

Balance 0.20 (0.01) 0.57 (0.02) 0.01 0.35 (0.02) 0.01

Car 0.22 (0.01) 0.41 (0.05) 0.01 0.29 (0.01) 0.01

German 0.28 (0.01) 0.42 (0.02) 0.01 0.33 (0.02) 0.01

Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.01 (0.00) 0.01

Musk 0.04 (0.00) 0.26 (0.00) 0.01 0.53 (0.01) 0.01

Pima 0.29 (0.00) 0.45 (0.02) 0.01 0.27 (0.02) 0.88

Satellite 0.10 (0.00) 0.81 (0.01) 0.01 0.01 (0.00) 1.00

Spam 0.09 (0.00) 0.48 (0.01) 0.01 0.09 (0.00) 0.31

Splice 0.24 (0.01) 0.61 (0.01) 0.01 0.30 (0.01) 0.01

Tic-tac-toe 0.21 (0.02) 0.44 (0.07) 0.01 0.38 (0.02) 0.01

Yeast 0.47 (0.01) 0.78 (0.01) 0.01 0.52 (0.01) 0.01

L
ar

g
e

Adult 0.02 (0.00) 0.36 (0.00) 0.01 0.01 (0.00) 1.00

Chess 0.48 (0.00) 0.90 (0.00) 0.01 0.80 (0.00) 0.01

Connect-4 0.34 (0.00) 0.50 (0.00) 0.01 0.43 (0.00) 0.01

Letter 0.06 (0.00) 0.96 (0.00) 0.01 0.46 (0.00) 0.01

Shuttle 0.00 (0.00) 0.36 (0.00) 0.01 0.02 (0.00) 0.01

Table 5: Classification errors and empirical p-values obtained with 1-Nearest Neighbor classifier

for Test 1 and Test 2. The empirical p-values are calculated over 1000 randomized samples for

small data sets and over 100 randomized samples for medium and large data sets. Classification on

the original data is repeated ten times. In the table, the average values and standard deviations of

the classification errors are given. Bold p-values correspond to nonsignificant results when the false

discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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Support Vector Machine

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.20 (0.01) 0.83 (0.03) 0.001 0.20 (0.02) 0.443

Autos 0.30 (0.02) 0.73 (0.04) 0.001 0.26 (0.03) 0.873

Breast 0.30 (0.01) 0.31 (0.01) 0.191 0.25 (0.02) 0.970

Glass 0.42 (0.01) 0.65 (0.03) 0.001 0.43 (0.02) 0.363

Hepatitis 0.14 (0.01) 0.21 (0.00) 0.001 0.08 (0.02) 0.999

Ionosphere 0.12 (0.01) 0.37 (0.01) 0.001 0.08 (0.01) 0.995

Iris 0.04 (0.01) 0.67 (0.05) 0.001 0.02 (0.01) 0.990

Lymph 0.14 (0.01) 0.51 (0.05) 0.001 0.12 (0.03) 0.686

Promoters 0.09 (0.01) 0.50 (0.06) 0.001 0.10 (0.03) 0.455

Segment 0.12 (0.01) 0.86 (0.03) 0.001 0.12 (0.01) 0.529

Sonar 0.23 (0.02) 0.49 (0.04) 0.001 0.10 (0.02) 0.999

Spect 0.17 (0.01) 0.21 (0.00) 0.001 0.08 (0.02) 1.000

Tumor 0.53 (0.01) 0.77 (0.01) 0.001 0.53 (0.02) 0.406

Votes 0.04 (0.00) 0.39 (0.01) 0.001 0.01 (0.00) 1.000

Zoo 0.04 (0.00) 0.66 (0.04) 0.001 0.04 (0.01) 0.666

M
ed

iu
m

Abalone 0.75 (0.00) 0.84 (0.00) 0.01 0.57 (0.01) 1.00

Anneal 0.15 (0.00) 0.24 (0.00) 0.01 0.14 (0.01) 0.78

Balance 0.12 (0.01) 0.54 (0.03) 0.01 0.25 (0.01) 0.01

Car 0.06 (0.00) 0.30 (0.00) 0.01 0.25 (0.01) 0.01

German 0.25 (0.00) 0.30 (0.00) 0.01 0.22 (0.01) 1.00

Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.00 (0.00) 0.01

Musk 0.05 (0.00) 0.15 (0.00) 0.01 0.01 (0.00) 1.00

Pima 0.23 (0.00) 0.35 (0.00) 0.01 0.21 (0.01) 1.00

Satellite 0.13 (0.00) 0.77 (0.00) 0.01 0.00 (0.00) 1.00

Spam 0.10 (0.00) 0.39 (0.00) 0.01 0.04 (0.00) 1.00

Splice 0.07 (0.00) 0.48 (0.00) 0.01 0.06 (0.01) 0.99

Tic-tac-toe 0.02 (0.00) 0.37 (0.01) 0.01 0.30 (0.01) 0.01

Yeast 0.43 (0.00) 0.69 (0.01) 0.01 0.42 (0.01) 0.72

L
ar

g
e

Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00 (0.00) 1.00

Chess 0.66 (0.01) 0.85 (0.00) 0.01 0.72 (0.00) 0.01

Connect-4 0.24 (0.00) 0.45 (0.07) 0.01 0.29 (0.00) 0.01

Letter 0.19 (0.01) 0.96 (0.00) 0.01 0.32 (0.00) 0.01

Shuttle 0.04 (0.01) 0.21 (0.00) 0.01 0.04 (0.00) 0.45

Table 6: Classification errors and empirical p-values for the Support Vector Machine classifier for

Test 1 and Test 2. The empirical p-values are calculated over 1000 randomized samples for small

data sets and over 100 randomized samples for medium and large data sets. Classification on the

original data is repeated ten times. In the table, the average values and standard deviations of the

classification errors are given. Bold p-values correspond to nonsignificant results when the false

discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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pretty simple, or it is not used by the classification algorithm. That is, the classes differ from each

other, from the point of view of the classifiers, mainly due to their different value distributions of

the features and not due to some dependency between the features. Thus, in many data sets the class

structure is explained by considering the features independently of each other.

The results with Naive Bayes classifier are in line with the analysis in Section 4.2. That is,

practically all of the results are nonsignificant with Naive Bayes with Test 2 as it explicitly assumes

independence of the features. However, there are three data sets where the results are regarded

as significant with Test 2: Balance, Car and Chess. These three data sets seem to contain a good

balance between the features that makes the Naive Bayes classifier to perform better on the original

data than on the randomized data sets. That is, each instance contains usually at least one feature

which makes the classification easy whereas in the randomized data sets there are instances that do

not have separating values in any of the features. Thus, applying Test 2 to Naive Bayes classifier

does not tell whether the classifier uses the interdependency between the features but whether the

data are such that usually at least one feature in each instance has a clear separating value.

Compared to the other three classifiers, Naive Bayes is having both better and worse perfor-

mance with all kind of data sets. Surprisingly, however, Naive Bayes is performing better also in a

few such cases where the other classifiers are exploiting the feature dependency. For example, with

data sets Splice and Yeast the Naive Bayes classifier has the best accuracy although the Decision

Tree and 1-Nearest Neighbor classifiers are significant with Test 2. Thus if a classifier is using

the feature dependency in the classification, it does not directly imply that some other classifier

could not do better without using the dependency. In such case, however, it is likely that neither

of the classifiers are optimal and we could obtain even better performance by combining the good

properties of both the classifiers.

In the rest of this section, we will consider only the three other classifiers, namely Decision Tree,

1-Nearest Neighbor and Support Vector Machine classifiers. There is a clear difference between the

small and large data sets with these classifiers. The results with Test 2 for small data sets are almost

all nonsignificant whereas the results for large data sets are almost all significant. Only the Adult

data set from large data sets seems to contain simple class structure. Actually, the Decision Tree and

Support Vector Machine classifiers are able to classify correctly all the test samples on the original

Adult data set as well as on the randomized versions of the Adult data set of Test 2. The results with

the studied small UCI data sets are understandable, as many of them are known to contain fairly

simple structure.

The results with the three classifiers are close to each other with all tests. Surprisingly, however,

1-Nearest Neighbor classifier has been able to use the interdependency between the features the

most, that is, it contains the most of small, significant p-values with Test 2. However, other more

complex classifiers could be able to find more data sets where the dependency between the features

is useful in classification.

Let us now study the results with Test 2 in more detail. Consider the well-known Iris data set

that contains measurements of three different species of iris flowers from four features: the length

and the width of sepal and petal. It turns out that the classes are almost linearly separable given

the length of petal or given the width of petal. Although there is a high positive linear correlation

between the length and width of petal, it is not important for the classification result as both features

can explain the classes by themselves.

Actually, observe that for the Iris data set with Test 2, the classification error on the random-

ized samples is even smaller than in the original data set. This phenomenon is explained by the
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positive linear correlation between the length and the width of petal, which disappears after the

randomizations, as seen in Figure 2 in Section 3.1. Randomizations eliminate most of the rows

containing extreme values for both of the features inside the classes. Thus, the classifiers do not use

the dependency between these two features, as their correlation does not help in classifying the Iris

data. When this positive correlation is eliminated per classes, the separation between the classes

increases, and therefore, the classification accuracy is improved.

For most of the data sets where the empirical p-values are very high for the null hypothesis of

Test 2, there are either outliers inside the classes or positive correlation between some features that

is not used in the classification as it does not help in separating the classes. For example, the data set

Votes contains congressional “yes” and “no” voting records from republicans and democrats. There

are few voting cases where the opinion of the voter clearly reveals the political views. However,

there are some outliers, that is, people who have behaved more like democrats although they are

republicans, or vice versa, that vanish after randomization. Nevertheless, these reasons do not

remove the fact that the features independently classify the voting records.

Finally, we discuss the results for the Balance data set. With all classifiers the classification

results of the Balance data set are significant under the null hypothesis of Test 2, that is, the clas-

sifiers have exploited the dependency between the features. The structure of the data supports

this: The data contains four features of a balance scale: left-weight, left-distance, right-weight and

right-distance. The scale is in balance if left-weight times left-distance equals right-weight times

right-distance. There are three classes: the scale tips to the left, to the right, or is in balance. It is

clear that the dependency between the features is necessary for correct classification result.

Note however, that understanding the structure inside the data sets where the classification re-

sults are regarded as significant under the null hypothesis of Test 2 requires more study, that is,

we just know that the features do not explain the class structure independently. Analyzing the de-

pendency structure of the features is then a further task. But as seen, the null hypothesis of Test 2

explains about half of the good classification results in the 33 data sets.

We conclude the experiments with a summary about the running times of the methods. We used

MATLAB for producing the randomized data sets and Weka for performing the classification on a

2.2 GHz Opteron with 4 GB of main memory. The running times of producing one randomization

of each data set and the running times of calculating the classification errors on the original data sets

and on the randomized data sets are given in Table 7. The running times of producing the random-

ized data sets are negligible compared to the running times of calculating the classification errors

of the data sets, that is, training and testing the classifiers. There is, however, a small difference

between the running times of obtaining the classification errors on the original and the randomized

data sets. Usually, the classification is a little bit faster on the original data set than on the random-

ized data sets. Furthermore, the classification on randomized data sets of Test 2 is usually faster

than on randomized data sets of Test 1. The reason is that it is harder to teach a classifier on a

randomized data set which has usually a weaker class structure than the original data set. Among

the two randomization tests, Test 2 generally preserves the original class structure the most because

it preserves some connection between the data and the class labels.

6. Conclusions

We have considered the problem of assessing the classifier performance with permutation tests in

the statistical framework of hypothesis testing. We have described two different null hypotheses and
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Rand. Decision Tree Naive Bayes 1-Near. Neighbor Supp. Vect. Mach.

Data Set T1 T2 Or. T1 T2 Or. T1 T2 Or. T1 T2 Or. T1 T2

S
m

al
l

Audiology 0.0 0.0 1.9 2.0 1.5 1.8 1.8 1.8 1.8 1.5 1.8 39 36 36

Autos 0.0 0.0 0.5 0.5 0.5 0.5 0.4 0.4 0.5 0.4 0.4 3.2 2.2 2.3

Breast 0.0 0.0 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.4 1.1 0.9 0.7

Glass 0.0 0.0 0.4 0.4 0.3 0.3 0.3 0.2 0.3 0.2 0.2 2.4 2.3 2.3

Hepatitis 0.0 0.0 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.5 0.4 0.4

Ionosphere 0.0 0.0 1.2 1.0 0.9 0.8 0.7 0.7 0.9 0.8 0.9 1.2 1.3 1.0

Iris 0.0 0.0 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.5 0.6 0.4

Lymph 0.0 0.0 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.1

Promoters 0.0 0.0 0.8 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 1.0 0.9 0.8

Segment 0.0 0.0 0.5 0.6 0.4 0.4 0.3 0.3 0.4 0.3 0.4 3.6 2.4 2.3

Sonar 0.0 0.0 1.2 0.9 1.1 0.9 0.7 0.7 0.9 0.9 0.9 1.1 1.1 0.9

Spect 0.0 0.0 0.7 0.6 0.6 0.6 0.8 0.6 0.8 0.6 0.6 0.8 0.8 0.7

Tumor 0.0 0.0 0.9 0.8 0.8 0.8 0.7 0.6 0.8 0.8 0.8 30 21 26

Votes 0.0 0.0 1.0 0.8 0.7 0.9 0.9 0.7 1.0 0.9 0.8 1.2 1.1 1.1

Zoo 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 3.1 3.1 2.6

M
ed

iu
m

Abalone 0.0 0.0 7.0 8.9 6.7 3.1 3.0 3.0 7.6 7.8 7.8 54 78 60

Anneal 0.0 0.0 2.9 2.9 2.9 2.3 2.3 2.3 3.1 3.1 3.2 4.7 9.3 4.6

Balance 0.0 0.0 0.5 0.5 0.5 0.4 0.3 0.4 0.5 0.5 0.4 0.9 1.0 0.8

Car 0.0 0.0 1.4 1.5 1.4 1.4 1.4 1.3 1.8 1.8 1.7 5.1 8.0 7.7

German 0.0 0.0 1.8 1.5 1.5 1.6 1.2 1.5 2.0 2.1 2.1 9.4 6.3 9.8

Mushroom 0.0 0.0 21 24 21 20 21 20 68 70 70 60 1197 26

Musk 0.0 0.2 130 110 176 55 63 80 230 309 318 502 5816 86

Pima 0.0 0.0 0.8 0.7 0.9 0.7 0.7 0.5 0.8 0.7 0.8 0.9 0.8 0.9

Satellite 0.0 0.0 26 128 21 13 14 14 59 62 81 19 157 15

Spam 0.0 0.1 32 16 23 14 14 14 39 56 56 21 38 17

Splice 0.0 0.0 17 17 16 15 16 15 36 28 28 87 1922 95

Tic-tac-toe 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 3.1 3.5 6.6

Yeast 0.0 0.0 1.7 2.2 1.6 1.3 1.0 1.3 1.4 1.4 1.7 5.2 5.3 4.9

L
ar

g
e

Adult 0.0 0.4 55 60 58 56 62 67 315 325 304 77 134 63

Chess 0.0 0.1 71 57 54 45 54 59 131 105 111 93 89 102

Connect-4 0.0 0.9 379 380 292 387 391 291 1161 1297 1285 975 558 1066

Letter 0.0 0.1 37 45 42 32 45 34 95 103 99 43 50 45

Shuttle 0.0 0.2 176 139 142 141 143 138 339 419 319 149 170 140

Table 7: Average running times in seconds for obtaining one randomization version of each data set

for Test 1 (T1) and Test 2 (T2), as well as running times for obtaining one classification error for the

four studied classifiers on each original data set (Or.) and on each randomized version of each data

set (T1, T2). The running times are the average values over all the samples produced. Note that the

classification procedures for small, medium and large data sets differ from each other.
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shown how samples can be produced from the corresponding null models by simple permutation

methods. Each test provides an empirical p-value for the classifier performance; each p-value

depends on the original data (whether it contains the type of structure tested) and the classifier

(whether it is able to use the structure). The two null hypotheses can be summarized as follows: (1)

the data and the class labels are independent; and (2) the features are mutually independent given

the class label.

Each test evaluates whether a certain structure (label–class dependency or dependency between

features inside a class) is present in the data, and whether the classifier can use such structure

for obtaining good results. If the original data really contains the structure being tested, then a

significant classifier should use such information and thus obtain a low p-value. If the classifier is

not significant then it will not notice the structure from the original data and thus, get a high p-value.

On the other hand, if the original data does not contain any structure at all, then all p-values should

be very high.

We have performed extensive experiments both on synthetic and real data. Experiments showed

that the traditional permutation test (i.e., data and class labels are independent) is not useful in

studying real data sets as it produces a small p-value even if there is only a weak class structure

present. Compared to this, the new test proposed, that is, permuting the features inside a class, was

able to evaluate the underlying reasons for the classifier performance on the real data sets. Surpris-

ingly, however, in about half of the studied real data sets the class structure looks fairly simple; the

dependency between the features is not used in classifying the data with the four tested classifiers.

In such cases, there might be no reason to use the chosen classifier. That is, either the same or even

better performance could be obtained by using some simpler methods, or the classification perfor-

mance could be improved further by taking some useful unused feature dependency into account by

changing the classification algorithm.

Interpreting the descriptive information provided by Test 2 needs care. If the classifier is signif-

icant with Test 2, then the data really contains a feature dependency that the classifier is exploiting.

However, if the classifier is not significant with Test 2, that is, we obtain a high p-value, there are

three different possibilities: (1) there are no dependencies between the features in the data; (2) there

are some dependencies between the features in the data but they do not increase the class separation;

or (3) there are useful dependencies between the features in the data that increase the class sepa-

ration but the chosen classifier is not able to exploit them. In the third case, we would like to find

such a classifier that could use the feature dependency to improve the classification performance.

However, in general, when a high p-value is obtained with Test 2, we cannot know which of these

applies to the data and to the chosen classifier. Thus the best we can do is to continue the search for a

better classifier by assuming that any of them could be true. That is, we try more complex classifiers

that could use the possible existing feature dependency, as well as simpler classifiers that could per-

form better if no feature dependency exists. Nevertheless, the answer provided by Test 2 is definite,

that is, it tells whether the chosen classifier uses feature dependency to improve the classification

performance.

Future work should explore the use of Test 2 for selecting the best discriminant features for

classifiers, in similar fashion as Test 1 has been used for decision trees and other biological appli-

cations (Frank, 2000; Frank and Witten, 1998; Maglietta et al., 2007). Also, it would be useful to

extend the setting to unsupervised learning, such as clustering. In addition, more study is needed

for exploiting the descriptive information provided by Test 2. Specifically, how should we proceed

to improve and study the classification performance when a high p-value is obtained with Test 2?
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