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Abstract: The excellent luminescence properties of perovskite quantum dots (PQDs), including wide
excitation wavelength range, adjustable emission wavelength, narrow full width at half maximum
(FWHM), and high photoluminescence quantum yield (PLQY), highly match the application re-
quirements in emerging displays. Starting from the fundamental structure and the related optical
properties, this paper first introduces the existing synthesis approaches of PQDs that have been and
will potentially be used for display devices, and then summarizes the stability improving approaches
with high retention of PQDs’ optical performance. Based on the above, the recent research progress
of PQDs in displays is further elaborated. For photoluminescent display applications, the PQDs
can be embedded in the backlighting device or color filter for liquid crystal displays (LCD), or they
may function as the color conversion layer for blue organic light-emitting diodes (OLED) and blue
micro-scale light-emitting diodes (µLED). In terms of next-generation electroluminescent displays,
notable progress in perovskite quantum-dot light emitting diodes (PeQLED) has been achieved
within the past decade, especially the maximum external quantum efficiency (EQE). To conclude, the
key directions for future PQD development are summarized for promising prospects and widespread
applications in display fields.

Keywords: perovskite; quantum dots; synthesis; photoluminescent displays; electroluminescent
displays

1. Introduction

Photoluminescence (PL) and electroluminescence (EL) are two fundamental excitation
modes for current self-emissive displays. EL displays are commonly driven by a given
electron current [1,2], whereas the PL type [3] is enabled by down-conversion luminescence
materials [4], such as phosphors [5] and quantum dots (QDs) [6,7]. These luminescence
materials can be flexibly integrated into light sources, backlight components, functional
films, or display panels. They, to a great extent, determine the display performance, and
thus need to provide high luminescence efficiency, high color purity, and good stability.
The well-known YAG:Ce3+ was initially used as the basic material of display phosphor
for backlighting devices [8]. However, the wide emission width of this phosphor provides
a limited color gamut of merely ~72% according to the National Television System Com-
mittee (NTSC) standard [9]. This can be markedly improved by narrow-band red and
green-emitting phosphors [10–12], such as the popular green phosphor Beta SiAlON:Eu2+
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(~525 nm/~50 nm), red phosphor K2SiF6:Mn4+ (~630 nm/~5 nm), etc. Even so, they are
still not qualified for next-generation high-resolution and wide-color-gamut displays.

In display fields, a new luminescence material is gradually replacing phosphors due
to its narrow emission width, saturated color, and tunable emission [13,14]. This material is
named QDs because of its quantum confinement effect and nanoscale dimension [15]. There
are roughly three kinds of QD materials for display application: II–VI semiconductor QDs,
III–V semiconductor QDs, including perovskite QDs (PQDs), of which the corresponding
representatives are shown in Figure 1a–c. Cadmium chalcogenide CdSe-based QDs with a
core-shell structure have been successfully commercialized in displays because of their high
PL quantum yield (PLQY, ~100%), color quality (FWHM, ~20 nm), and good stability [16,17].
However, the constituent toxic element, Cd, has raised environmental and health concerns.
For this reason, InP-based QDs with comparable efficiency and slightly lower color purity
have been developed as an alternative [18,19]. To guarantee their performance, the typical
InP QD structure is required, which consists of an InP/ZnSe/ZnS core–buffer shell–outer
shell structure. This causes the complex and time-consuming synthesis process. In addition,
raw materials, especially phosphorus precursor, are expensive.

As a novel kind of QDs, PQDs has gained increasing attention. Compared with
the above-mentioned QDs, PQDs exhibit inherent superiorities, including excellent lumi-
nescence performance, ease of synthesis, and conveniently tunable emission [20]. These
characteristics originate from their unique structural attributes and make them a promising
candidate in current and future displays. However, their intrinsic drawbacks also deserve
close attention, especially instability and large-scale synthesis [21]. These unresolved issues
hinder the breakthroughs in the display industry.
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Therefore, this review focuses on the critical demands in display fields, and provides a
comprehensive discussion to bridge the gap between fundamental knowledge and display
applications. The key content of this review can be divided into three parts. Firstly, the
basic synthesis methods of PQDs are concluded, which are deeply discussed from the
perspective of PQD’s structure and performance. Secondly, we summarize and clarify
the strategies for the stability improvement of PQDs in display applications, which is the
most difficult issue for display applications. Finally, the latest research progress of PQDs
in display fields is described, and the future development direction of PQDs and their
display applications are prospected. Beyond other reviews on PQDs, this review provides
inspiration for PQDs optimization in display fields, and promotes their application in
current and future displays.

2. Fundamental Structure and Optical Properties of PQDs
2.1. Fundamental Structure of PQDs

Halide perovskites have a general formula of ABX3, where A and B are, respectively,
monovalent and divalent cations, and X is a monovalent halide (Cl, Br, I) anion. The basic
structural unit of metal halide perovskites is shown in Figure 1d,e, where B-site cations,
usually Pb and Sn, will form inorganic octahedra with the six surrounding halide ions.
However, when the B site is a mixed cation such as B + and B’ 3+, the whole structure
will form a double-calcite structure with larger crystals. Cubic-phase perovskite (the most
regular perovskite) has a corner-sharing structure, which means that the cation at site A is
shared by eight neighboring cells, with the location of A at the apex of the cell [23].

The common metal halide perovskites can be further classified into either organic–
inorganic (hybrid perovskite quantum dots, HPQDs) or all-inorganic perovskite quantum
dots (IPQDs), depending on whether the A cation is an organic molecule such as methy-
lammonium (CH3NH3

+) and formamidinium (FA+), or an inorganic cation (commonly
Cs+). The optical and electronic properties of perovskites can be tunable by varying the
composition of constituted halide ions and the size of the cations [24,25]. In addition, the
dimensionality of perovskites can also be used to tune their optical properties, similar to
conventional metal chalcogenide semiconductors [26,27]. Moreover, the reported dimen-
sionality of perovskite can range from the 3D to 0D. Compared with the high-dimensional
one, the low-dimensional perovskite nanocrystals (NCs) exhibit very high PLQY partly
due to their defect tolerance [25–30], high exciton binding energy [31–33], high optical
absorption coefficient [34,35], and tunable carrier diffusion length [36–38].

2.2. Optical Properties of PQDs

After PQDs are excited by external energy, the electrons in the valence band leap into
the conduction band, and therefore holes are generated in the valence band. The three
types of luminescence are as follows [39]. (1) The electrons return to the valence band and
recombine with the holes to emit photons. (2) Electrons are trapped by a defect energy
band to emit light. (3) Electrons are trapped by a doped energy level and then emit light.

Four basic optical parameters, including emission stability [40], luminous inten-
sity [40–42], color diversity [43,44], and color purity [45], can be used to characterize
the luminescence properties of PQDs. It is remarkable that these basic characteristics also
determine their application feasibility in display devices. Among them, emission stability is
related to the crystal lattice of PQD materials, and luminous intensity is mainly determined
by PLQY. Color diversity can be regulated by changing the PQDs’ particle size, composi-
tion, and type of ionic elements, while color purity is associated with the FWHM of the
emission spectrum.

Compared with organic fluorescent dyes and rare-earth-doped phosphors, PQDs
show excellent optical properties in the following four aspects: wide excitation wavelength
range [22,40], high PLQY [40–42], adjustable emission wavelength [43,44], and narrow
emission FWHM [45].
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(1). Wide excitation wavelength range. The excitation spectra of both organic fluores-
cent dyes and rare-earth-doped phosphors are relatively narrow and may require the use
of excitation sources in specific bands to obtain a desired emission spectrum. By contrast,
the excitation spectrum of PQDs is continuous and can be excited by arbitrary light higher
than the bandgap energy. Therefore, the same excitation light source can simultaneously
excite PQDs with different band gaps, resulting in different fluorescent colors.

(2). High PLQY. PQDs with a high molar absorption coefficient have excitation
overlap regions so that they can absorb large amounts of excitation light for light conversion.
In addition, the defect energy levels caused by internal or surface defects in PQDs can be
eliminated by optimizing synthesis methods, modified ligands, and coating, so as to obtain
high quantum yield by radiation recombination.

(3). Adjustable emission wavelength. Due to the quantum confinement effect [46],
the energy band of the semiconductor is split into discrete energy levels, resulting in
different sizes of PQDs having different band gaps. In other words, by regulating the
particle size, the light-emitting color of PQDs can be easily tuned to the required wavelength
range for various applications. Different from other QDs, the luminescence color of PQDs
can also be changed by controlling the components of the halogen anions, which has the
potential to cover the entire visible spectrum.

(4). Narrow emission FWHM. For PQDs, the relaxation rate of electrons and holes
in the band is much higher than the composite rate of thermal excitons. It is hard to have
recombination between high-level electrons and holes. Thus, the luminescence spectra
of monodispersed PQDs are basically symmetrical. The FWHM is comparable to the
low-energy edge of the first exciton absorption peak, and the luminescence peak energy is
slightly lower than the first exciton absorption peak.

Based on the above excellent optical properties, PQDs show outstanding performance
to better meet the need in emerging display, as shown in Figure 2.
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3. Synthesis Methods of PQDs

The synthesis of CsPbX3 PQDs showing bright emission and a wide color gamut
was first reported by Loredana et al. in 2015, and it is widely known as the hot injection
method [47]. The Cs-oleate precursor was prepared in advance, and then injected into a
PbX2 (X = Cl, Br, I) solution dissolved in oleic acid (OA), oleylamine (OAm), and octadecene
(ODE) at high temperature and in a nitrogen atmosphere. After a few seconds, the tempera-
ture of the reaction system was quickly dropped to room temperature and the PQDs could
be obtained via centrifugation. By using this method, the cubic CsPbX3 QDs with a PLQY
of 50~90% and an FWHM of 12~42 nm were successfully synthesized (Figure 3a), which
paved a new way for the development of perovskite. The hot injection method introduces
OA, and OAm ligands, providing potential for subsequent studies of ligand modification.
In addition, this method facilitates the introduction of ions into perovskite lattice, laying
the foundation for the study of ion doping. In the same year, Nedelcu et al. [48] prepared
IPQDs by introducing different halogen elements into CsPbX3 QDs for an anion exchange
reaction (Figure 3b), and finally realized the full spectral luminescence (410~700 nm) with
the PLQY of 20~80%.
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Due to strict reaction conditions and a complex process, the hot injection method is
still difficult for mass production at present. In 2016, the room-temperature reprecipitation
method was proposed based on the differences in the solubility of ions in different sol-
vents [49]. OAm and OA as surface ligands and PbX2 and CsX as ion sources were dissolved
in dimethylformamide (DMF) at room temperature to serve as precursors. The precursor
at a supersaturated state was injected into the toluene solution and a large number of per-
ovskite crystals were precipitated (Figure 4a). The resulting perovskite had excellent optical
properties, with a PLQY of 80%, 95%, and 70% and a FWHM of 35 nm, 20 nm, and 18 nm
for red, green, and blue, respectively. In this method, ligands function to passivate the
QDs’ surface to reduce surface defects and inhibit nonradiative recombination to improve
the luminescence performance and lifetime. In addition, it is simple to operate without
high temperature and an inert gas environment, and it is less affected by the environment.
Therefore, it does have high repeatability compared with the hot injection method. In
the same year, Tong et al. [50] described a universal nonpolar solvent ultrasound method
which mixed precursors of cesium and lead halide with the end-sealing ligand (OAm and
OA) in ODE followed by sonication for 10 min (Figure 4b). The PLQY of the prepared red,
green, and blue perovskites, respectively, reached 90%, 92%, and 10%, and the synthesized
CsPbBr3 was highly monodisperse. This simple, fast, and ligand-modifiable method is
expected to achieve commercial production of perovskite.
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In 2017, the microwave-assisted synthesis of CsPbX3 NCs with different morphologies
was first reported by Pan et al. [51]. Cesium acetate, lead halide (PbX2, X = Cl, Br, I or their
mixtures), a certain amount of trioctylphosphine oxide (TOPO), OA, OAm, and ODE were
mixed in a microwave quartz tube and then put into a microwave reactor. Nanoplates
and nanocubes were obtained at low and high reaction temperature, respectively, while
nanorods could be formed by pre-dissolving precursors. This method provided uniform
particle size distribution, simple operation, no inert gas, and less environmental impact.
Compared with the hot injection method, it has a high repeatability and no other pre-
treatment. In the same year, the solvothermal method was proposed for the synthesis
of IPQDs [52]. Cs2CO3 and PbX2, used as precursors, were mixed with OA, OAm, and
ODE in the autoclave and maintained at 160 °C for a while (Figure 4c). CsPbX3 QDs and
ultrathin nanowires with uniform cubic phase were successfully prepared with the PLQY
reaching 80%. Although this simple preparation method could obtain high-quality IPQDs
with controllable morphology, the uncontrollable system temperature made it rarely used
in doping strategies and ligand modification.

The mechanochemical synthesis method was first proposed in 2017 [53]. Solid PbBr2,
ABr, and capping ligands were mixed and ground at room temperature for a while. Square
and rectangular (CsPbBr3), spherical (MAPbBr3), and parallelogram (FAPbBr3) nanopar-
ticles (NPs) were prepared through this solid-phase method. Although its PLQY of 13%
was significantly lower than in traditional liquid-phase method, it still showed certain
good characteristics such as high yield, simplicity, and fast synthesis process. Due to the
solid reaction system, the ligand modification strategy was hardly applied. For this reason,
the wet ball milling method for preparing colloidal nanocrystals was further proposed by
Kovalenko et al. in 2018 [54], which was composed of APbBr3 mixed with solvent and
oil-based ammonium bromide ligand. Figure 4d illustrates the working principle of the wet
ball milling method. In 2019, Palazon et al. [55] revealed the process mechanism, dynamics,
and possible side effects of dry ball milling. The changes of mechanochemical synthesis
with different time variations were studied in detail, and it was found that the drying and
rapid (5 min) process affected the excellent phase purity of IPQDs.

In 2018, Guo et al. [56] synthesized CsPbX3 microcrystals using chemical vapor depo-
sition (CVD) at room temperature. The working process was summarized as follows. PbX2
and CsX (X = Cl, Br, I) were mixed in a reaction chamber. The substrate could be made of
sapphire, SiO2, or Si. The products CsPbI3, CsPbBr3, and CsPbCl3 were grown at 580 ◦C,
620 ◦C, and 620 ◦C, respectively, with argon at the rate of 100 mL/min and the growth
time of 30 min. The fluorescence lifetime was 59.7 ns (CsPbI3), 36.9 ns (CsPbBr3), and
3.5 ns (CsPbCl3), respectively. By using this method, the white-light-emitting chips could
be successfully prepared on substrates. Though the large size (µm) and high precision of
the experimental equipment still limit its application, it does show a certain potential in
display backlights due to excellent performance of the crystal product.

In recent years, the synthesis of various kinds of nanocrystals with good homogeneity
using a fully automated microfluidic platform has become a hot research topic [57,58]. This
microfluidic platform allows the parameters of the synthesized nanocrystals to be varied
by changing the precursor molar ratio (e.g., Cs/Pb, FA/Pb, Cs/FA, and Br/I), growth
time (determined by flow rate and tube length), and temperature in a systematic and
independent way. Droplets are generated by adjusting the flow rates of the carrier phase
(50~200 µL/min) and that of the dispersed phase (1.2~50 µL/min) (Figure 4e left), and each
droplet can be viewed as a small hot-injection reaction system (Figure 4e right). In 2018,
Lignos et al. [58] further explored the synthesis of colloidal QDs in the near infrared using
a microfluidic platform. The synthesis results showed that untreated colloidal QDs had an
emission FWHM within 45~65 nm. The NCs could further narrow the PL FWHM to 40 nm
after a series of post-treatments (e.g., isolation, size selection, and purification), while the
synchrotron X-ray scattering clearly showed a cubic structure of CsxFA1−xPb(Br1−yIy)3
NCs. Finally, the electroluminescent devices prepared by this colloidal QDs obtained a
5.9% EQE.
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(d) Wet ball milling method. Adapted with Open Access from [54]. Copyright 2018, American Chem-
ical Society. (e) Automatic microfluidic method. Adapted with Open Access from [58]. Copyright
2018, American Chemical Society.

To sum up, efficient, convenient, and low-cost synthesis methods have been proposed
for PQDs, which lay a foundation for its potential applications in displays. Table 1 summa-
rizes the characteristics, advantages, and disadvantages of the existing perovskite synthesis
methods, with references attached.

Table 1. The existing synthesis methods of PQDs.

Methods Principle Results Drawbacks Reference

Hot injection High temperature
High yield, good properties,
suitable for ion doping and

ligand modification, widely used
Complex process [26]

Anion exchange Doping Full-spectrum luminescence,
easy X-position doping Multi-step process [47]

Room-temperature re-
precipitation Different solubility

Easy operation, high
repeatability, suitable for

ligand modification
Uneven size [48]

Ultrasonic method Ultrasonic treatment Easy operation, suitable for
ligand modification High cost [49]

Microwave-
assisted synthesis Microwave treatment

Easy operation, high
repeatability, suitable for

ligand modification
High cost [50]
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Table 1. Cont.

Methods Principle Results Drawbacks Reference

Solvothermal
synthesis

Mixed high
temperature

Easy to synthesize,
controllable morphology

System temperature unevenness,
not suitable for ion doping and

ligand modification
[51]

Mechanochemical
synthesis Mixed grinding High yield, easy to synthesize Not applicable to

ligand modification [52]

Wet ball milling Mixed grinding Easy to synthesize Low synthetic efficiency [53]

Dry ball milling Mixed grinding,
solvent-free Fast, high synthetic purity Easy to generate surface defects [54]

Chemical
vapor deposition

Chemical
reaction, deposition Excellent performance Large size, precise equipment [55]

Microfluidic platform Carrier
spacing reaction Automatic, homogeneity Immature [57]

4. Performance Improvement of PQDs

Although PQDs show high PLQY, low Auger recombination loss, and large exciton
binding energy, the poor humidity resistance and thermal stability of PQDs greatly limit
their practical application in the display field. Effective stabilization measures inevitably
result in a decline in optical performance. This section focuses on the strategies to improve
the stability and optical performance of PQDs.

4.1. Ion Doping of PQDs

An ion doping strategy has become an important way to improve the oxygen/moisture
resistance and luminescence properties of PQDs, which initially came from the doping
strategy of semiconductor QDs. ABX3 has three different lattice positions, and different
lattice positions have different effects on the material. Taking CsPbBr3 as an example, Cs
has little effect on its electronic structure. However, the 4p orbital of Br and the 6p orbital of
Pb contribute greatly to the valence band and conduction band of the crystal, respectively.
In addition, the excitation and recombination of electrons and holes are carried out in an
octahedron [58]. Therefore, inorganic octahedrals are very important for the luminescence
of PQDs, and different ionic doping will have different effects on the properties of PQDs.

The A-site has a great influence on the structure and stability of PQDs. Considering
the valence distribution of perovskite lattice, monovalent cations (such as BA+ [59]) are
mostly used as A-site doped ions. Because of the strong oxidation resistance, alkali metals
(Na+ [60], K+ [61,62], Rb+ [63], etc.) are regarded as ideal doping ions at the A-site. In
2018, Liu et al. [61] doped CsPbCl3 with K+. The introduction of K+ reduced the defects of
perovskite and narrowed the FWHM of the emission peak. With the increase of doping
concentration, the PLQY increased from 3.2% to 7.2%, and the average lifetime was also
improved. In the same year, Huang et al. [62] adopted Rb+ doping and found that when
the proportion of Rb+ was close to 75%, the PLQY of PQDs could be effectively improved.
Among them, the PLQY of blue PQDs changed most significantly, from 45% to 86%. Rb+

doping also effectively improved the UV light stability and thermal stability of perovskite.
The B-site contributes greatly to the conduction band of QDs, which mainly affects

their photoelectric properties. The strategy of B-site doping can reduce the lead content
to a certain extent, which is very important for PQDs. Commonly used doped ions in-
clude Eu3+ [61], Bi3+ [64,65], Tm3+ [66], Cu2+ [67], Zn2+ [68], Fe2+ [69,70], Mn2+ [64,66,71]
(Figure 5a), CO2+ [72], etc. In 2018, Liu et al. [61] doped with Eu3+ to increase PLQY from
10.3% to 31.2%. In 2019, Bi et al. [67] doped Cu2+ ions into PQDs to improve its thermal
stability and optical properties. The prepared PQDs showed bright blue photolumines-
cence (PL) at 450~460 nm, with a quantum yield of more than 80% and excellent thermal
stability (Figure 5b). In 2019, Hu et al. [69] doped with Fe2+ to improve the size unifor-
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mity and PLQY of CsPbCl3 QDs, which also could reduce the defect recombination and
non-radiation recombination of PQDs and prolong the average fluorescence lifetime. In
2021, Gualdrón-Reyes et al. [73] used 7% Sr instead of Pb to achieve FAPb1−xSrxI3 PQDs
with 100% PLQY and high stability for 8 months under a relative humidity of 40~50%, and
T80 = 6.5 months. These are among the highest values reported for halide PQDs under
air ambient conditions until now. FAPb0.93Sr0.07I3 PQDs also showed light brightening
enhancement under UV irradiation for 12 h and the PLQY recovered to 100% in 15 days
after synthesis. Among many doped ions, Mn2+ was the most concerned. The doping
of Mn2+ could bring new energy levels and match the energy band structure of CsPbX3,
which can realize the band edge luminescence and doped luminescence of CsPbX3 QDs
at the same time [71]. The doped luminescence fluorescence lifetime of Mn2+ was up to
milliseconds, which was an important basis for display applications.
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Compared with IPQDs, organic perovskite prepared through a solution process could
well be integrated into the silicon-based wafer. Organic molecules in perovskite materials
show high polarizability, but larger molecules are required in the process of high polar-
ization, and need to increase the hole space of perovskite. Given this, (DCl)(NH4)(BF4)3
was synthesized by introducing a BF4

− group at the X-site, showing a linear photoelec-
tric coefficient of 20 pm V−1, which was 10 times higher than that of metal halide per-
ovskite [74]. The photoelectric response of organic perovskite materials was close to LiNbO3
(Reff ≈ 30 pm V−1).

Multiple ion doping is another effective way to adjust exciton dynamics and real-
ize white light emission. CsPbCl3 QDs doped with Bi3+ and Mn2+ were synthesized by
Shao et al. [64]. By strictly controlling the concentration of doped ions, the white light
emission was composed of blue QD band edge luminescence, green Bi3+ doped lumines-
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cence, and red Mn2+ doped luminescence. It was the first time to achieve the white light
emission with a single component; at the same time, the correlated color temperature (CCT)
could be adjusted from 4250 K to 19,000 K. In 2019, Luo et al. [66] synthesized doped
CsPbBr2.2Cl0.8 QDs with Tm3+ and Mn2+, and introduced the 1G4 level of Tm between
the conduction band of the QD and the 4T1 level of Mn, which effectively promoted the
energy transfer of exciton from the QD body to the Mn2+ doped level (Figure 5c). Sin-
gle component white-light QDs were obtained with a PLQY of 54%. The problem that
excessive Mn2+ led to a sharp decline in PLQY was solved. Doping Tm3+ significantly
improved the air stability and thermal stability of QDs, which was instructive for obtaining
single-component white-light QDs with high PLQY and further display application.

Table 2 summarizes the luminescence properties of PQDs realized by different types
of ion doping, including PL, FWHM, PLQY, and the lifetime after doping.

Table 2. Luminescence properties of different ion-doped PQDs.

Doping Excitation
(nm)

PL
(nm)

FWHM
(nm)

PLQY
(%) τ (ns) Stability Advantages Reference

A—site doping

BA+ − − − 49.44 24.58 Stable (50 days,
80% RH)

Reduced
dimensionality [59]

K+ 365 408 12.7 10.3 13.6 − Greatly
improved PLQY [61]

Rb+ 365 505–515 18–20 93 5.32 30% (100 ◦C, 24 h) Increased exciton
binding energy [63]

B—site doping

Eu3+ 365 408 11.3 31.2 15.24 − Greatly
improved PLQY [61]

Bi3+ 365 420–520 − 52 9.5 70% (30 days, air) Lead-free PQDs [64]

Tm3+ 365 − − 54 4.8–5 Stable (80 ◦C, 24 h) Introduction of new
energy level [66]

Cu2+ 365 450–460 15–26 >80% 2.3–5 90% (30 days,
60% RH, 25 °C)

Eliminating
halide vacancies [67]

Zn2+ 365/380 395–550 47 79.05 − 63.77% PLQY
(50 days, air) Lead-free PQDs [68]

Fe2+ − 401–403 13.8–14.6 6.2 14.6 − Size homogeneity
improvement [69]

Mn2+ 365 − − 65 − −
Toxic ions reduction

and PLQY
improvement

[71]

Co2+ 365 516 18–20 89 17.93 90% (50 days) Defect passivation [72]

Sr − 589,
583, 530 − 100 −

Stable for 8 months
(40–50% RH,
6.5 months)

Defect passivation [73]

X—site doping

BF4
− − 515 − − − − Increased hole space

of perovskite [74]

Multiple ion doping

Bi3+,
Mn2+ 365 420–520 − 52 9.5 70% (30 days, air) Wide range of CCT [64]

Tm3+,
Mn2+ 365 − − 54 4.8–5 Stable (80 ◦C, 24 h) Promotion of exciton

energy transfer [66]
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4.2. Ligand Modification of PQDs

As mentioned above, OA and OAm are mostly used as ligand materials during the
synthesis of PQDs. These long-chain organic ligands are attached to the surface of PQDs
and have a strong protective effect on PQDs. However, OA and OAm can easily fall off after
proton exchange, resulting in the degradation of the optical properties and color stability
of PQDs [75]. In addition, the insulation of long-chain organic ligands will hinder charge
transmission, leading to the poor conductivity of the material, which limits its application
in the display field. Therefore, choosing appropriate ligands to replace long-chain organic
ligands is an important way to ensure the stability and promote the application of PQDs.

The volume and chain length of ligands have a significant impact on the optical
properties and stability of PQDs. In 2018, Song et al. [76] utilized the synergy effect with
three short ligands: tetraoctylammonium bromide (TOAB), DDAB, and octanoic acid.
This effectively enhanced charge injection and transportation in QD films. The highest
EQE of the prepared LED devices reached 11.6%. In 2019, SCN− was used as ligands
to modify the surface of CsPbX3 [77], which reduced Pb2+ surface defects and improved
PLQY. The performance of LED devices prepared by modified IPQDs was improved by
25%. In the same year, Park et al. [78] found that small ligands surrounding the surface of
IPQDs could effectively passivate the surface and reduce aggregation (Figure 6a). Finally,
the IPQDs optimized by DDAB ligands was used to construct an efficient green LED
with the current efficiency (CE) of 31.7 cd/A and the EQE of 9.7%, which is 16 times
higher than the perovskite LED with traditional OAm ligands. In 2020, Huang et al. [79]
synthesized DDAB-capped CsPbI3 QDs. The introduced DDAB could firmly be combined
with the surface of PQDs and effectively passivate surface defects. The DDAB-CsPbI3 NCs
retained PLQY > 80% for at least 60 days. In 2021, Li et al. [80] explored the influence of
DDAB on the optical performance of CsPbBr3 QDs. They also studied DDAB-CsPbBr3
QDs synthesized from different molar ratios of Pb:DDAB (Figure 6b). In the same year,
Yang et al. [81] fabricated CsPbBr3 QDs using a one-step microwave method, where α-
phase poly(vinylidene fluoride) (PVDF) acted as the surface-capping ligands. The PLQY of
PVDF-CsPbBr3 QDs reached up to 98% (much higher than pristine PQDs with OA/OAm
as capping ligands). Moreover, these PQDs had excellent stability in the desired cubic
phase structure and enhanced PL stability under ambient conditions.

Replacing organic ligands with inorganic materials is also an effective measure to
improve the conductivity of IPQDs. In 2018, Song et al. [82] adopted an organic–inorganic
hybrid ligand (OIHL) to passivate IPQDs to control its surface state and subsequently
construct an efficient LED device. The inorganic ZnBr2 ligand could enhance the radiation
recombination and carrier transport of IPQDs. In addition, it was also found that other
metal bromides (MnBr2, GaBr3 and InBr3) could play the same role (Figure 6c). In 2020,
Yang et al. [83] introduced K+ to partially replace organic ligands, which not only inhibited
non-radiative recombination to obtain blue CsPb(Br/Cl)3 with the PLQY of 38.4%, but also
improved the charge carrier transport performance of IPQDs. They finally obtained a stable
and efficient blue perovskite LED with an EQE of 1.96%.

Compared with the direct substitution of ligands, the change in chemical bonds be-
tween ligands is also worth considering. Jang et al. [84] found that the formation of chemical
bonds could effectively improve the stability of PQDs. They reported extremely stable
crosslinked perovskite NPs, in which the unsaturated hydrocarbons in both the acid and
base ligands of NPs were chemically crosslinked with a methacrylate-functionalized matrix,
preventing decomposition of the perovskite crystals. Counterintuitively, water vapor per-
meating through the crosslinked matrix could chemically passivate surface defects in the
NPs and reduce non-radiative recombination. Green-emitting and white-emitting flexible
large-area displays were demonstrated which were stable in air and water for >400 days.
The design strategies provided a meaningful breakthrough toward the commercialization
of perovskite NPs in display applications.
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4.3. Coating of PQDs

The dynamic characteristics and low lattice energy of PQDs lead to their dissolution in
almost all polar solvents, even in water. This problem continues to plague researchers until
there is a strategy to completely encapsulate PQDs with inert shell materials. Compared
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with the ion doping and ligand modification strategies mentioned above, the coating
strategy is more straightforward to improve performance by isolating as much water
and oxygen as possible. So far, the silica (SiO2) coating method has been widely used in
traditional QDs [85–87], such as lanthanide-doped QDs and magnetic nanocomposites.
It is worth noting that SiO2 is an inorganic oxide with chemical stability and optical
transparency within the whole visible spectrum. Coating PQDs with SiO2 not only retains
the optical properties of luminescent materials, but also protects the materials from the
dissolution by polar solvents. The silica coating for CsPbX3 QDs is a typical process using
Stöber [88] or reverse microemulsion methods [89]. Hu et al. [90] proposed a simple and
easy method to grow silica shells on CsPbX3 QDs in situ without using any water. During
the preparation process, the amorphous SiO2 layer was rapidly formed on PQDs through
high-temperature injection of the silica precursor tetraethyl orthosilicate (TEOS). Compared
with pristine CsPbBr3 QDs, the performance of the prepared CsPbBr3/SiO2 composites
has been significantly improved, such as luminous intensity, nonblinking properties, and
optical stability.

In addition to the silica coating strategy, Chen et al. [91] prepared CsPbX3/ZnS het-
erostructures using a simple liquid-phase process in which QDs can be maintained in the
air for 12 days. Li et al. [92] proposed a method to obtain monodisperse CsPbBr3/TiO2
core/shell NCs. The prepared monodisperse CsPbBr3/TiO2 nanocomposites have excel-
lent water stability and PL intensity. In addition, atomic layer deposition (ALD) is an
advanced method of depositing single-atom thickness films to achieve high-quality thick-
ness control [93,94]. Xiang et al. [95] coated nanoscale alumina on the CsPbBr3 QDs-silica
luminescent sphere via atomic layer deposition (ALD) technology to selectively passivate
the surface defect sites of CsPbBr3 QDs (Figure 7a). The inorganic alumina coating layers
can effectively reduce the ion migration and crystal deformation of CsPbBr3 QDs.

At present, PQDs can be coated with various mesoporous materials, such as TiO2,
AlOX, SiO2, and so on. Wang et al. [96] mixed green CsPbBr3 PQDs with mesoporous silica
whose pore size was approximately 12~15 nm, as shown in Figure 7b. In addition, mixing
green QD-containing mesoporous silica nanocomposites with red PQDs can prevent the
anion-exchange effect, improve thermal and optical stability, and finally realize on-chip
LED devices with 113% NTSC. Dirin et al. [97] reported that PQDs were formed in situ
assisted with mesoporous silica. High-quality PQDs were obtained by infiltrating the
perovskite precursor solution into the mesoporous material and drying. Malgras et al. [98]
controlled the growth of the material and found that its emission spectrum under normal
environmental and light conditions remained almost unchanged.

Inorganic salts could be another choice to coat PQDs to improve their stability.
Yang et al. [99] selected NaNO3 as a coating material for CH3NH3PbBr3 QDs. The precur-
sor was dissolved in DMF solvent and then transferred to the toluene solvent. After that,
CH3NH3PbBr3/NaNO3 NCs were obtained through a one-step reprecipitation procedure,
and their thermal stability and photostability were greatly improved. Dirin et al. [100] used
a multi-step method to obtain effective and stable PQDs through a microcarrier-assisted
inorganic shell, in which PQDs were first anchored on a salt carrier and then coated with an
inorganic shell through the surface-mediated reaction of the precursor. The thermostability
could be significantly improved from the obtained powder. Wei et al. [101] integrated
CsPbBr3 into CaF2 NPs, which greatly improved the stability to moisture, light radiation,
and anion exchange.

Embedding PQDs into a polymer matrix to obtain stable QD films is one of the
most popular technologies, because it does not require expensive vacuum equipment.
Shen et al. [102] synthesized polymer-coated CsPbBr3 QDs in situ on a template. The con-
jugated linoleic acid (CLA) was used as a ligand to passivate the surface defects of QDs,
and the CLA crosslinking was triggered under light excitation to form polymer coating
and improve the stability of QDs. The FWHM of the prepared composite was narrow, and
the PLQY could reach 79.16%. More importantly, the PL intensity could be maintained at
77% after soaking in water for one week due to the protection of the hydrophobic polymer
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layer. Cai et al. [103] reported an easy synthesis of water-resistant CsPbBr3 PQDs loaded
poly(methyl methacrylate) (PMMA) composite microspheres (CsPbBr3@PMMA). Tradi-
tional OA was replaced with methacrylic acid (MAA), and the double bonds from methyl
methacrylate (MMA) helped CsPbBr3 PQDs be polymerized into PMMA (see Figure 7c).
Furthermore, a wide-color-gamut (~129%) white LED was demonstrated by combining the
green-emitting CsPbBr3@PMMA composite microspheres and red-emitting K2SiF6: Mn4+

with a blue LED, which could be used as backlight for liquid crystal displays (LCD).
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The glass embedding method is another feasible way to stabilize CsPbX3 QDs during
synthesis [104]. The size of the prepared CsPbX3 QDs can be regulated through melt
quenching and subsequent thermal treatment, and finally surrounded by a solid glass
matrix. These stable CsPbX3 NCs could be easily integrated into display or lighting
applications. Hou et al. [105] prepared a composite material based on a metal-organic
framework (MOF), zeolitic imidazolate framework (ZIF) glass, and all-inorganic perovskite.
It was proved that the interface development process during liquid-phase sintering played
an important role in stabilizing the optically active phase of CsPbX3. The rigid, hydrophobic
agZIF-62 provided protection for CsPbI3, leading to stable PL emission for (CsPbI3)0.25
(agZIF-62)0.75 after extended (~20 h) sonication in various nonpolar, polar protic, and polar
aprotic organic solvents. In addition, the composite also exhibited stability against 10,000 h
immersion in water, storage under ambient conditions for 650 days, mild heating, and
continuous laser excitation for >5000 s.

Table 3 summarizes the coating of PQDs realized with different encapsulation materi-
als and methods.



Nanomaterials 2022, 12, 2243 15 of 27

Table 3. Luminescence properties of PQDs realized with different packaging materials and methods.

Wrapping Excitation
(nm) PL (nm) FWHM

(nm)
PLQY
(%) τ (ns) Stability Advantages References

CsPbBr3/SiO2 350 533 18 − 48.3 73.8% (75% RH, air, 12 h);
36.4% (60 ◦C, 15 h)

Anion exchange
prevention and

stability
improvement

[90]

CsPbX3/ZnS 365 − − 70 − − More stable, tunable [91]

CsPbBr3/TiO2 405 518 32 − 2.1 Stable for 12 weeks (water);
≈75% (UV, 24 h)

Suppress anion
exchange and

photodegradation
[92]

CsPbBr3/Al2O3 365 516 23 65 36.57 PL stable (96 h, water); 80%
(450 nm, 200 mW/cm2, 40 h) Defect passivation [95]

CsPbBr3/
Mesoporous

silica
365 457–698 13–35 − − 80% (365 nm, 6 W UV, 96 h) Prevent ion exchange

and increase stability [96]

MAPbBr3/NaNO3 365 525–526 24 42 155.5 30% (100 ◦C, 5 h); 80% (365
nm/6 W UV, 14 h) Improved stability [99]

CsPbBr3@SiO2/
Poly-CLA 365 511 20 79.16 218.11 77% (water, 1 week) Improved stability [102]

CsPbBr3@PMMA 395 514 26 32.8 122.2 91% (water, 7 days); stable
(water, 1 month)

Improved water
resistance and

storage stability
[103]

CsPbI3/ZIF glass − − 42 >65%
17.6

(aver-
age)

80% (water, 10,000 h) no CsPbI3
phases change (air condition)
active phase preserved (after

77 K) Over 80% (after 100 ◦C in
air or 80 ◦C in air for

1000 cycles) 90% (57 mW/cm2

over 5000 s)

Improved stability [105]

5. Progress of PQDs in Displays

PQDs has been used for LCD backlights as a semiconductor photoluminescent material.
The basic principle is similar to traditional QDs based on their PL characteristics [106]. The
white backlight source could be obtained through PQD color conversion and blue LED
excitation, and then full-color display can be realized by the color filters inside the LCD
panel. PQDs can also be used in a QD color filter (QDCF), which is directly collocated with
blue light sources to realize a full-color display. In addition, using green and red QD color
conversion layers (QDCCLs) integrated into the display panel is another color realization
strategy for self-emissive displays [107–110]. The green and red emission can be obtained
with the excitation of the blue OLED or blue LED [111,112]. The display applications based
on the PL characteristic of PQDs are shown in Figure 8 for clear comparison. Electrically
driven QLED based on electroluminescent (EL) properties will be discussed further.
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5.1. Display Applications Based on PQD Photoluminescence
5.1.1. PQD Backlight

The LCD’s color gamut is mainly determined by the backlight and color filter, and the
FWHM of the light-emitting material determines the color coordinates of the backlight. In
traditional white LED backlights, the spectrum is composed of blue (~450 nm) and yellow
light (~580 nm) with a wide spectrum. However, in QD-based backlight, the spectrum is
composed of three narrow emission peaks of red, green, and blue (RGB).

Compared with most traditional luminous materials, PQDs have the characteristics of
higher efficiency and narrower FWHM, which would become a representative material in
displays in the future. Taking the edge-lit LED backlight as an example, the PQD’s backlight
technology can be divided into four types according to the encapsulation methods.

(1) On chip (chip direct contact). As shown in Figure 9a, PQDs replaces the traditional
phosphor materials and are directly encapsulated on the blue LED chips to obtain a white
light source [113]. Although this structure has the merits of easy realization and low cost,
it requires a highly stable performance of PQDs to ensure efficient luminescence. This is
mainly because the PQDs have to be directly in contact with the LED chip. A normally
working LED chip will emit dramatically increased heat. The above PQDs have to main-
tain stability at a temperature even higher than 150°C, which is still a huge challenge to
PQDs currently.
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(2) On edge (glass tube encapsulation). As shown in Figure 9b, PQDs are encap-
sulated into a long glass tube, and placed on the side of a light guide plate with a blue
LED light bar. In this structure, PQDs are not in direct contact with a blue LED chip,
so the influence of thermal radiation and light radiation from LED chips can be greatly
reduced. It has been used for display backlights in 2013, which was called “QD optical tube
technology” developed by QD vision in the United States [114]. However, the existing QD
glass tube encapsulation technology has the problems of low luminous efficiency (LE) and
unfavorable assembly operation, which limits its large-scale application and development.
In addition, it is still uncertain whether the environmental isolation level of ordinary glass
can meet the need of PQDs.

(3) On surface (optical film or plate integration). As shown in Figure 9c, the PQD
film can be placed directly above the light guide plate, and the blue LED is placed on
the side of the backlight module. The blue light emitted by the LEDs is shaped into a
uniform blue surface light through the joint action of the light guide plate and the bottom
reflection film. The blue surface light source then excites PQD film to form a white backlight
source. Another on-surface configuration may be the PQD diffuser plate, which should be
used for direct-lit mini-LED backlights [115,116]. Because PQDs are far enough from blue
LED, they are hardly affected by the thermal radiation and light radiation of the LED chip.
Meanwhile, the multi-layer structure also provides a potential to isolate the PQD layer
from the environment. The key problem is how to balance the ratio of the three primary
colors for a white backlight with a higher stability and a wider color gamut.
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(4) In dot (micro-structure integration). As shown in Figure 9d, the micro-structure
is fabricated by a screen printing or an inkjet printing process which contains the mixture
of red/green QDs and ink, then the mixed QD slurry is printed on the bottom surface
of the light guide plate for light mixing and diffusion [94,106,117]. The red and green
emissions are converted by red and green QDs under the excitation of the edge-lit blue
LED. These micro-structural arrays can be optimized for better uniformity and extraction
efficiency [118]. Uniform white light could be achieved by adjusting the proportion of
the red and green QDs in the mixture. The current challenge is the ink configuration and
environmental exposure.

These photoluminescent PQD devices face their own respective problems. The “on
chip” solution is more straightforward and easier to prepare, so it has become the primary
choice for researchers. The “on chip” backlight can achieve good white light with color
mixing in a limited encapsulation space. In 2015, Zhang and co-workers [25] developed
white down-converted (DC) LEDs with a wide color gamut by using HPQDs MAPbBr3
(green-emitting) and rare-earth K2SiF6:Mn4+ phosphors (red-emitting) as color down-
converters. This device had CIE coordinates of (0.33, 0.27), 130% NTSC, and an LE of
48 lm/W at 4.9 mA, which could well match the need of display backlights. To further
improve the stability, Wang et al. [96] reported an “on chip” structure by introducing
mesoporous silica composites. It should be noted that the prepared white-light device
demonstrated 113% NTSC after passing through a color filter without the anion exchange
issue. In 2022, Wang et al. further showed that the PLQY improvement of full-visible-
spectrum IPQDs could be successfully attained by a renewable and low-cost anion exchange
resin. The PLQY of three-primary-color IPQDs could be dramatically improved to 93.69%,
89.99%, and 65.03%. Meanwhile, the prepared LED by “On chip” solution provides high
brightness and a wide color gamut simultaneously [115]. Although the important display
parameters, including the color restoration and stability improvement, have been the focus
of attention, the potential of different PQD photoluminescent devices still deserves to be
further explored.

5.1.2. PQD Color Conversion Layer

Color definition of LCD is realized through the backlight and color filter in the liquid
crystal panel. In addition to backlight, PQDs can also be introduced into a color filter as
CCLs, as shown in Figure 8b–d. By employing blue OLED or micro-LED as the excitation
source, almost all blue light is converted into desired red or green light by PQDCCLs to
realize full-color displays. The blue light should be absorbed as much as possible to reduce
eye damage. Therefore, by using PQDs as CCLs, the first consideration is how to maintain
the high PLQY while ensuring stability.

Yang et al. [119] compounded PQDs and thermoplastic elastomer into a stretchable
and self-healing filter film. Furthermore, they fabricated and sequentially stacked green
(MAPbBr3) and red (CsPbBr0.6I2.4) composite films, which can be excited by a blue LED
to realize white light. It is worth mentioning that PQDs’ polymer films with humidity
self-healing properties have been further discussed by Cai et al. to support the potential use
of polymer conversion films in displays [120]. Yin et al. [121] developed vacuum drying
perovskite film preparation technology, and successfully prepared micron-level perovskite
films with uniform thickness. The perovskite film with a thickness of 3.8 µm was excited
by using 463 nm blue OLED or micro-LED. The brightness of the generated green emission
could reach 200 cd/m2 when the brightness of the excitation source was at 1000 cd/m2.
In addition, only 2% brightness attenuation was observed after 18 days of exposure to the
environment. In 2020, Hu et al. [122] used inkjet printing and UV-induced polymerization
to obtain micron-thick QD films with uniform surface morphology. By combining QD films
with blue OLED or micro-LED displays, green displays were successfully realized via color
conversion. Due to the applicability of wet preparation, replacing traditional QDs with
PQDs is also feasible, which can support the development of PQDCCLs.
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Photoluminescence displays or backlights occupied an important position for the po-
tential application of PQDs. The studies on traditional QD photoluminescence application
are increasingly mature these days. The opportunity of PQD’s deeper permeation into
displays is the way to replace traditional color conversion material and find effective ways
to enhance stability.

5.2. Display Applications Based on PQD Electroluminescence

In terms of PQD electroluminescence, quantum-dot light-emitting diodes (QLED) have
aroused worldwide concern for decades. They are naturally compatible with attractive
flexible or bendable display devices. The booming development of QLED requires the
exploration of more efficient emitters, such as PQDs. The characteristics, including high
radiative recombination, high defect tolerance, and excellent optical properties, have
allowed them to be a rising star as QLED emitters. Numerous studies have been devoted to
perovskite QLED (PeQLED) to enhance performance through composition design, surface
engineering, and device structure modification [82,123,124].

The first PeQLED was fabricated with MAPbBr3 QDs in 2014 by Schmidt et al. [30].
The demonstrated luminance of this device was extremely low, which was even lower
than 1 cd/m2. Later on, Huang et al. [125] employed size-tunable MAPbBr3 QDs to
fabricate QLED, which exhibited improved performance with a maximum brightness of
2503 cd/m2, current efficiency (CE) of 4.5 cd/A, power efficiency (PE) of 3.5 lm/W, and
1.1% EQE. Xing et al. [126] adopted the device structure of ITO/PEDOT: PSS/MAPbX3
QDs/TPBi/Cs2CO3/Al and obtained superior performance with CE of 11.49 cd/A, PE of
7.84 lm/W, and 3.8% EQE. Yan et al. [123] presented an efficient QLED based on MAPbBr3
QDs by achieving charge balance and suppressing the Auger recombination under a low
driving voltage. This device showed a maximum luminance of 43,440 cd/m2, a PE of
30.3 lm/W, and 12.9% EQE.

As an effective strategy, mixing cations have been employed to construct high-efficiency
PeQLED. Cho et al. [127] first reported the synthesis of MA1−xCsxPbBr3 QDs and the corre-
sponding MA0.7Cs0.3PbBr3-based QLED, which had a maximum luminance of 24,510 cd/m2,
a CE of 4.1 cd/A, and 1.3% EQE. Zhang [128] exploited the mixed cation FA0.8Cs0.2PbBr3
to fabricate QLED, which achieved a high luminance of 55,005 cd/m2, a CE of 10.09 cd/A,
and 2.80% EQE. Red FA0.87Cs0.13PbI3 NCs with γ-butyrolactone was utilized as a solvent
to realize a QLED with a maximum luminance of 218 cd/m2 and a peak EQE of 15.8% in
2019 [129]. Pan et al. [130] incorporated Ni2+ ions into CsPbClxBr3−x QDs by a supersatu-
rated recrystallization synthetic method and modulated the Cl/Br element ratios to obtain
an efficient blue PeQLED. The corresponding device presented a maximum luminance of
612 cd/m2 and 2.4% EQE (Figure 10).

Actually, surface ligand engineering plays an important role in the performance en-
hancement of PeQLED. Although surface capping ligands could remove surface trap states
to improve the stability of PQDs, they also form an insulating film to hinder the charge injec-
tion and transport inside the light-emitting layer of PeQLED. Therefore, appropriate surface
ligand modification benefits the performance enhancement of PeQLED. Lee et al. [131]
utilized a short amine ligand to enhance the efficiency of FAPbBr3-based PeQLED. The
reported FAPbBr3−n-butylamine-based PeQLED had a high performance with CE of
9.16 cd/A, a PE of 6.4 lm/W, and 2.5% EQE. Han [124] exploited 3,3-diphenylpropylamine
bromide (DPPA-Br) as surface capping ligands to fabricate uniform FAPbBr3 QDs. The
resulting PeQLED demonstrated an excellent performance with a maximum luminance
of 13,970 cd/m2, a CE of 66.3 cd/A, and 16.3% EQE. Song et al. [82] explored an organic-
inorganic hybrid ligand to passivate the surface trap state and enhance the carrier in-
jection of PQDs, including the use of ZnBr2, MnBr2, GaBr3, and InBr3. As a result, the
ZnBr2-passivated PeQLED showed superior performance with a maximum luminance of
76,940 cd/m2, a CE of 66.7 cd/A, a PE of 65.9 lm/W, and 16.48% EQE, while the MnBr2-
passivated PeQLED presented a maximum luminance of 100,080 cd/m2, a CE of 60.6 cd/A,
and 15.6% EQE (Figure 11). In 2021, Li et al. [132] used FABr to compensate the surface
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Bromine vacancy of inorganic cesium lead halide PQDs. The corresponding PeQLED with
FABr-treated CsPbBr3 QDs (green-emitting) achieved a promising EQE of 7.94% and a
luminance of 14,790 cd/m2, which was much higher than those of the pristine (1.78%,
4640 cd/m2) and the DDAB-treated samples (3.91%, 167 cd/m2). This methodology is also
suitable for the surface defect passivation of blue-emitting CsPbBr1.3Cl1.7 and red-emitting
CsPbBrI2 QDs. The results clearly highlighted that heterogeneous post-passivation could
boost the PL and EL performance of inorganic cesium lead halide PQDs simultaneously.
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Surface ligand passivation can improve the PLQY of QD, but their insulating nature
impedes the charge injection in a QD film and further negatively impacts the PeQLED’s
performance. Hence, appropriate ligand choice and effective ligand exchange play impor-
tant roles in building a high-efficiency PeQLED. Moreover, optimizing device inter-layer
structures with matched energy levels to increase radiative recombination efficiency is
another major method in the achievement of efficient PeQLED. Recently, Khan et al. [133]
optimized the device architecture and energy level matching of CsPbBr3-based PeQLED
through the introduction of Li-doped TiO2 nanoparticles as an electron transport layer
(ETL). Compared with the untreated device (3 V turn-on voltage and 5.6 cd/A CE), the
resulting device exhibited 2V turn-on voltage and an enhanced CE of 15.2 cd/A with the
Li-doped TiO2 ETL.

Other effective measures are proposed to improve PeQLED. Dong et al. [134] reported
PQDs resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer
shell comprised of cations and polar solvent molecules. The outer shell was electrostat-
ically adsorbed to the negatively charged inner shell. This approach produced strongly
confined PQD solids with improved carrier mobility (≥0.01 cm2 V−1 s−1) and reduced
trap density. Efficient blue and green PeLEDs can be fabricated by exploiting CsPbBr3
QDs with reduced trap density and improved mobility. Tsai et al. [135] demonstrated that
perovskite NCs stabilized in the MOF thin films could maintain decent PL and EL against
continuous ultraviolet irradiation, heat, and electrical stress. Bright and stable LEDs were
demonstrated with a maximum EQE of over 15% and a high brightness of over 105 cd/m2
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after stabilization. During PeLED operation, the nanocrystals can be well preserved, free of
ion migration or crystal merging through protection by the MOF matrix, leading to a stable
performance over 50 h.
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Figure 12 summarizes the development of EQE of full-color PeQLED devices. Up
to now, the maximum EQE values of red, green, and blue QLED have reached 21.6%,
23.4%, and 12.3%, respectively, which has increased by ~20% since 2015. However, so far,
the PeQLED’s lifetime is still far lower than the commercial standard of 10,000 h. The
main obstacle to the commercialization of PeQLED is its instability in the environment.
Consequently, improving the performance and stability of PQDs is still the main goal for
future development.
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6. Conclusions

In this paper, we summarize the synthesis methods of PQDs and analyze the effects
of ion doping, ligand modification, and coating engineering on PQDs. Furthermore, the
applications of PQDs in photoluminescence and electroluminescence displays are described
in detail. It is believed that the following aspects require more attention as regards the dis-
play future: (1) large-area and pixelated preparation of PQDs with excellent homogeneity;
(2) use of ligand modification, ion doping, or coating strategies to synthetically improve the
environmental stability of PQD while retaining high PLQY; (3) development of physical
and chemical properties to realize more diverse PQD display devices, such as flexible and
bendable displays; (4) lead-free PQDs with excellent luminescence efficiency and high
environmental friendliness to meet the needs of sustainable development.
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