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ABSTRACT

Peroxisome proliferator-activated receptors (PPARs)
are nuclear hormone receptors, initially described as
molecular targets for synthetic compounds inducing
peroxisome proliferation. PPAR-�, the best charac-
terized of the PPARs, plays a crucial role in adipo-
genesis and insulin sensitization. Furthermore,

PPAR-� has been reported to affect cell proliferation/
differentiation pathways in various malignancies. We
discuss in the present review recent advances in the
understanding of the function of PPAR-� in both cell
proliferation and adipocyte differentiation.
Journal of Molecular Endocrinology (2001) 27, 1–9

INTRODUCTION

Peroxisome proliferator-activated receptors (PPARs)
are members of the nuclear hormone receptor
family, the largest family of transcription factors
(Mangelsdorf et al. 1995). Three distinct members
of the PPAR subfamily have been described: �, �
(also called �, NUC-1 or FAAR) and �, all of them
being activated by naturally occurring fatty acids or
fatty acid derivatives. PPARs heterodimerize with
the retinoid X receptor and regulate transcription of
target genes through binding to specific response
elements or PPREs, which consist of a direct repeat
of the nuclear receptor hexameric DNA core
recognition motif spaced by one nucleotide. A
number of studies have addressed the important
role that PPAR-� plays in glucose homeostasis and
insulin sensitivity. However, in this review we
discuss recent data on the function of PPAR-� in
adipogenesis and carcinogenesis.

PPAR-� AND ADIPOGENESIS

Adipocyte differentiation is a highly regulated
process taking place from birth throughout adult

life. Adipose tissue is composed of adipocytes,
which store energy in the form of triglycerides and
release it as free fatty acids (for reviews see
Spiegelman & Flier 1996, Fajas et al. 1998).
Together with muscle, adipose tissue is the major
regulator of energy balance of the body. Excessive
accumulation of adipose tissue leads to obesity,
whereas its absence is associated with lipodys-
trophic syndromes. PPAR-� is highly expressed in
the adipose tissue and is required for its develop-
ment. During adipocyte differentiation, which
ensues from PPAR-� activation, expression of
numerous genes specific for fatty acid metabolism is
induced. In fact, functional PPREs have been
identified in several genes implicated in adipocyte
differentiation, most of them involved in lipid
storage and control of metabolism. Good examples
are aP2 (Tontonoz et al. 1994a), phosphoenol
pyruvate carboxykinase (Tontonoz et al. 1995), acyl
CoA synthetase (Schoonjans et al. 1993, 1995), fatty
acid transport protein-1 (Martin et al. 1997,
Frohnert et al. 1999), and lipoprotein lipase
(Schoonjans et al. 1996), which are all regulated by
the PPAR-� protein. However, the conclusive
demonstration of the crucial role that PPAR-� plays
in adipogenesis comes from recent observations in
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PPAR-� knock-out (KO) mice. PPAR-��/�mice
are completely devoid of adipose tissue and PPAR-�
+/�mice are characterized by a decreased adipose
tissue mass (Kubota et al. 1999, Miles et al. 2000).
Injection of PPAR-��/�embryonic mouse cells
into wild-type blastocytes produces chimeric mice
in which adipose tissue is composed exclusively of
PPAR-� +/+ cells, demonstrating that PPAR-� is
necessary to ensure development of this tissue
(Rosen et al. 1999). These in vivo results are further
supported by in vitro data showing that embryonic
stem (ES) cells lacking both copies of PPAR-� fail
to differentiate into adipocytes after appropriate
treatment, whereas ES cells expressing PPAR-�
readily differentiate. Moreover, when fibroblastic
cell lines (Tontonoz et al. 1994b) or muscle
precursor cells (Hu et al. 1995) were infected with
retrovirus expressing PPAR-�, cells differentiated
into adipocytes after the appropriate stimuli,
supporting an important pro-adipogenic role of
PPAR-�. It seems that this adipogenic property is
not unique since a whole range of transcription
factors affects adipogenesis when overexpressed (see
below).

In humans, genetic studies have further con-
tributed to determine the role of PPAR-� in fat
metabolism. Several mutations in the PPAR-� gene
have so far been described (Yen et al. 1997, Beamer
et al. 1998, Deeb et al. 1998, Ristow et al. 1998,
Vigouroux et al. 1998). A rare Pro115 Gln mutation
in the NH2-terminal ligand-independent activation
domain of PPAR-� was found in four very obese
subjects (Ristow et al. 1998). This mutation, which
inhibits the phosphorylation at Ser112, resulted in a
permanently active PPAR-� and led to increased
adipocyte differentiation and obesity (Ristow et al.
1998). Phosphorylation at Ser112 was proposed as a
mechanism by which growth factors and insulin,
through MAP kinase, decrease PPAR-� activity and
adipocyte differentiation (Hu et al. 1996, Adams
et al. 1997, Camp & Tafuri 1997). Furthermore, a
much more common Pro12 Ala substitution in the
PPAR-�2-specific exon B (Yen et al. 1997, Beamer
et al. 1998, Deeb et al. 1998, Vigouroux et al. 1998,
Hara et al. 2000), resulting in a less active PPAR-�
form, is associated with a lower body mass index
(BMI). These results, together with the observa-
tions made on the Pro115 Gln substitution, provide
strong evidence for a role of PPAR-� in the control
of adipogenesis in vivo, such that a more active
PPAR-� (Pro115 Gln) results in increased BMI
(Ristow et al. 1998), whereas the opposite is seen
with a less active PPAR-� (Pro12 Ala) (Deeb et al.
1998).

Despite the fact that it plays a critical role in
adipogenesis, PPAR-� is not the only factor

regulating the complex mechanisms that control
adipocyte differentiation. Numerous other positive
and negative signaling pathways contribute to this
process. During the first phases of adipogenesis, the
CCAAT enhancer binding proteins (C/EBP),
C/EBP-� and -� are induced in response to
adipogenic hormones such as insulin or glucocorti-
coids (Wu et al. 1995, 1996, Yeh et al. 1995). Both
C/EBPs will induce directly the transcription of
PPAR-� (Clarke et al. 1997). However, other
transcription factors might also be in part respon-
sible for triggering PPAR-� expression early in
adipogenesis, since studies in C/EBP-�, -� or -� KO
mice show that PPAR-� expression and adipocyte
differentiation are still occurring, although at a
lesser extent. Another protein also induced early
during adipocyte differentiation is the basic helix-
loop-helix protein ADD-1/SREBP-1 (Tontonoz
et al. 1993, Kim & Spiegelman 1996). This
transcription factor plays a pivotal role in choles-
terol homeostasis and also regulates the expression
of several genes in fatty acid metabolism, and hence
it is suggested that ADD-1/SREBP-1 might control
the generation of PPAR-� ligands that in their turn
enhance the transcriptional activity of PPAR-�
(Fajas et al. 1999). Furthermore, a recent study
showed that both ADD-1/SREBP-1 and the related
SREBP-2 can induce PPAR-� transcription
through binding to response elements in the
PPAR-�1 and -�3 promoter regions (Fajas et al.
1999). Finally, terminal adipocyte differentiation
requires the concerted action of PPAR-� and
C/EBP-� (Tontonoz et al. 1994, Hu et al. 1995, Wu
et al. 1999). PPAR-� controls not only the
expression of C/EBP-�, but C/EBP-�, in response,
also induces PPAR-� gene expression, via inter-
action with C/EBP response elements present in the
human (Saladin et al. 1999) and mouse (Zhu et al.
1995, Wu et al. 1999) PPAR-� promoter. This
interdependence or cross-regulation between
C/EBPs, PPAR-� and ADD-1/SREBP-1 is not only
required to induce adipocyte differentiation but also
to sustain the fully differentiated adipocyte pheno-
type. Although all the above transcription factors
stimulate adipocyte differentiation, evidence in
favor of negative regulation of adipogenesis is also
accumulating. It has been suggested that PPAR-�
expression and adipogenesis are inhibited by several
transcription factors of the GATA family. In
particular, constitutive expression of GATA-2 and
GATA-3 resulted in a decrease in PPAR-�
expression and a consequent inhibition of adipocyte
differentiation (Tong et al. 2000).

In addition to these transcription factors which
modulate adipogenesis, several secreted factors are
involved in the control of adipogenesis. This is the

  and others · PPAR-�: from adipogenesis to carcinogenesis2

www.endocrinology.orgJournal of Molecular Endocrinology (2001) 27, 1–9

Downloaded from Bioscientifica.com at 08/23/2022 11:26:01AM
via free access



case for two cytokines produced by the adipocytes:
leptin and tumor necrosis factor-� (TNF-�). Leptin
is considered to be an adipocyte-derived signaling
factor and is thought to have autocrine, paracrine
and endocrine actions mediated by specific
cytokine-like receptors. Its pleiotropic action
includes control of body weight and energy
expenditure (reviewed in Auwerx & Staels 1998).
Leptin gene expression is regulated in an opposite
fashion by PPAR-� and C/EBP-�, the first reducing
its expression (De Vos et al. 1996, Kallen & Lazar
1996, Zhang et al. 1996), whereas the second
induces its expression (He et al. 1995, Miller et al.
1996, Hollenberg et al. 1997). The decrease in
circulating leptin levels upon PPAR-� activation is
associated with an increase in food intake, which
will provide substrates, subsequently to be stored in
the adipocytes. Consistent with this hypothesis,
PPAR-� +/�mice receiving a high-fat diet have a
higher circulating leptin level than normal mice
(Kubota et al. 1999). Leptin expression is probably
less attenuated, due to the weaker expression of
PPAR-� in these PPAR-� +/�mice.

A similar hypothesis can be formulated in relation
to adipose tissue TNF-� production. TNF-� is a
potent inhibitor of adipocyte differentiation and ex-
posure of 3T3-L1 adipocytes to TNF-� results in
lipid depletion and a complete reversal of adipocyte
differentiation (Torti et al. 1985, reviewed in Beutler
& Cerami 1988). TNF-� exerts this anti-adipogenic
action in part by the down-regulation of the expres-
sion of adipogenic factors such as C/EBP-� (Ron
et al. 1992, Williams et al. 1992) and PPAR-� (Hill
et al. 1997, Peraldi et al. 1997, Xing et al. 1997).
Interestingly, obesity characterized by increased
adipose tissue mass is associated with increased
TNF-� expression in adipose tissue. Although the
exact role of high TNF-� levels in obesity is unclear,
it might constitute a regulatory mechanism to limit
further increase in adipose tissue mass. This increase
in TNF-� levels in obesity also interferes with the
insulin signaling pathways (Hotamisligil et al. 1993,
1995) contributing to the insulin resistance charac-
teristic of the obese state (Hotamisligil et al. 1994,
1996). Consistent with the opposing effects of
PPAR-� and TNF-� in adipose tissue, treatment of
obese animals with PPAR-� agonists reduces adipose
tissue expression of TNF-�, contributing to weight
gain (Hofmann et al. 1994, Okuno et al. 1998).
PPAR-� activation furthermore blocks the inhibi-
tory effects of TNF-� on insulin signaling (Peraldi
et al. 1997) as well as the TNF-�-induced glycerol
and free fatty acid release (Souza et al. 1998).

Very recently, a family of signaling factors, Wnts,
which play a major role in the regulation of cell
growth and development, have been implicated in

the inhibition of adipocyte differentiation. Ross
et al. (2000) demonstrated that forced expression of
Wnt-1 in 3T3-F442A cells inhibited the formation
of adipose tissue when these cells were grafted into
nude mice. Furthermore, 3T3-L1 cells ectopically
expressing a dominant negative form of TCF4, a
transcriptional mediator of the Wnt pathway,
undergo adipogenesis without any hormonal induc-
tion (Ross et al. 2000). Repression of PPAR-� and
C/EBP-� expression was suggested as the mech-
anism by which activation of the Wnt signaling
inhibited adipogenesis.

CELL CYCLE REGULATION DURING
ADIPOGENESIS

Cell proliferation and differentiation are considered
to be mutually exclusive events. However, a close
relationship has been established between both cell
processes during the adipocyte differentiation
program. One of the first events occurring during
adipogenesis is re-entry into cell cycle of growth-
arrested preadipocytes following hormonal induc-
tion. After several rounds of clonal expansion, cells
arrest proliferation again and undergo terminal
adipocyte differentiation. In the first hours of
adipocyte differentiation, an increase in the E2F
activity has been observed (Richon et al. 1997).
E2Fs are transcription factors which regulate the
expression of genes involved in DNA synthesis (for
reviews see Nevins 1992, Sardet et al. 1997, Helin
1998). Consequently, expression of these genes,
such as cyclin D1, c-Myc, or cyclin E, is increased
in the early stages of adipogenesis (Reichert & Eick
1999). Interestingly, blocking cell cycle re-entry
with a DNA synthesis inhibitor, prevents adipocyte
differentiation, suggesting that an active cell cycle
machinery is required for the differentiation process
(Richon et al. 1997). Similar results were obtained
when degradation of p27, a cyclin-dependent kinase
inhibitor, was prevented using a protease inhibitor.
As a consequence of p27 protein accumulation, cell
cycle re-entry was blocked, and thus differentiation
of preadipocytes was inhibited (Patel & Lane 2000).

The role of the retinoblastoma protein (RB)
family members, or the pocket proteins pRB, p130,
and p107, in adipocyte differentiation seems more
complex. The negative role of pocket proteins in cell
cycle progression, repressing the expression of the
E2F target genes has been demonstrated in several
settings. Pocket proteins are inactivated by phos-
phorylation by the cyclin-dependent kinases, result-
ing in the activation of the E2F target genes.
Consistent with an active cell cycle in the early
stages of adipogenesis, pocket proteins have been
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found to be hyperphosphorylated following hormo-
nal induction of preadipocytes (Richon et al. 1997).
However, an apparent paradox arises from the
finding that pRB inactivation, by SV40 large T
antigen, inhibits adipogenesis (Higgins et al. 1996).
Moreover, pRB-deficient fibroblasts fail to differen-
tiate into adipocytes when properly stimulated
(Chen et al. 1996). This apparent paradox was
explained by the participation of RB in the growth
arrest following clonal expansion. This suggests that
RB is involved in two phases of adipocyte
differentiation. First, inactivation of RB enables
clonal expansion, whereas growth arrest after this
expansion phase requires active RB, which posi-
tively influences adipocyte differentiation. Interest-
ingly, this function of RB can be compensated by
overexpression of both C/EBP-� and PPAR-�,
which would mediate the cell cycle arrest after
clonal expansion (Classon et al. 2000). A different
role, independent of the control of cell cycle, has
also been attributed to RB in another aspect of the
regulation of adipogenesis such as the enhancement
of the transactivation capability of C/EBP, via direct
protein–protein interaction (Chen et al. 1996). In
contrast to RB, the other members of the
retinoblastoma family, p130 and p107, have been
reported to negatively regulate adipogenesis.
Indeed, fibroblastic cells deficient in both p130 and
p107 differentiate into adipocytes whereas the
wild-type cells do not (Classon et al. 2000).
Furthermore, reintroduction of p130 and p107 into
these cells inhibits adipocyte differentiation. These
effects of p107 in adipogenesis have been suggested
to be mediated through down-regulation of PPAR-�
activity.

Undoubtedly there is a cross-talk between the cell
cycle and the adipocyte differentiation machinery.
How the shift in gene expression observed during
the transition between preadipocyte proliferation
and adipocyte differentiation is regulated needs,
however, further investigation.

ROLE OF PPAR-� IN THE CONTROL OF
CELL CYCLE

Studies based on tumor cell lines have implicated
PPAR-� in cell cycle withdrawal. One of the first
pieces of evidence implicating PPAR-� in the
control of cell cycle came from the observation that
PPAR-� activation decreased the binding of the
E2F/DP heterodimers to its target genes. This
decrease in E2F/DP activity is in part mediated by
PPAR-� through the down-regulation of the PP2A
protein phosphatase (Altiok et al. 1997). Inhibition
of E2F/DP activity can also be achieved via

activation of RB. Interestingly, PPAR-� ligands
were shown to inhibit phosphorylation of RB in
vascular smooth muscle cells (Wakino et al. 2000),
therefore contributing to maintain RB in its active
form. Consequently, the G1/S transition in these
cells was abrogated. Another suggested mechanism
involving PPAR-� in the mediation of cell cycle
arrest was provided by the study of Morrison &
Farmer (1999), who suggested a role of PPAR-� in
up-regulating the cyclin-dependent kinase inhibi-
tors p18 and p21 during adipogenesis. PPAR-�
hence could control the expression not only of genes
involved in the acquisition of a differentiated
phenotype but also of genes involved in the negative
regulation of cell cycle.

The anti-proliferative effects of PPAR-� go
further than participation in the cell cycle arrest
during the adipocyte differentiation process.
PPAR-� expression is not restricted to adipose
tissue, being expressed in several other cell types.
Furthermore, it has been reported that PPAR-�
expression is increased in several epithelial cancer
cells. Whereas the physiological function of PPAR-�
in normal epithelial cells is largely unknown,
PPAR-� activation was reported to inhibit the
proliferation of malignant cells from different
lineages such as liposarcoma (Tontonoz et al. 1997),
breast adenocarcinoma (Elstner et al. 1998, Mueller
et al. 1998), prostate carcinoma (Kuboto et al.
1998), colorectal carcinoma (Brockman et al. 1998,
Sarraf et al. 1998, Kitamura et al. 1999), non-small
cell lung carcinoma (Chang & Szabo 2000),
pancreatic carcinoma (Motomura et al. 2000),
bladder cancer cells (Guan et al. 1999), and gastric
carcinoma cells (Sato et al. 2000). In adipocytes,
macrophages, breast, prostate and non-small cell
lung cancer cells, thiazolidinediones are reported to
induce apoptosis (Chinetti et al. 1998, Elstner et al.
1998, Kuboto et al. 1998, Mueller et al. 1998,
Okuno et al. 1998, Chang & Szabo 2000). These
observations suggest that induction of differentia-
tion by activation of PPAR-� may represent a
promising novel therapeutic approach for cancer as
already demonstrated for liposarcoma (Demetri
et al. 1999) and in xenograft models of prostate
(Kuboto et al. 1998) and colon cancer (Sarraf et al.
1998). Going along with this hypothesis is the
observation that somatic mutations in the PPAR-�
gene are present in certain colon cancers (Sarraf
et al. 1999). The medical relevance of this last
observation is at present unclear, until more
biopsies have been analyzed. In addition, treatment
of patients with advanced prostate cancer with the
PPAR-� agonist troglitazone, resulted in a high-
incidence stabilization of prostate-specific antigen
levels (Mueller et al. 2000), an effect mediated at
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least in part by the inhibition of the androgen
receptor activation (Hisatake et al. 2000). Other
evidence for the involvement of PPAR-� in
tumorigenic processes comes from the identification
in a subset of thyroid follicular carcinomas of a
chromosomal translocation resulting in a fusion
protein PAX8-PPAR-� (Kroll et al. 2000). This
fusion protein behaves as a PPAR-� dominant
negative, which abrogates the effects of ligand
activation of the wild-type PPAR-� protein.

In sharp contrast with this, however, are the
studies showing that activation of PPAR-� promotes
the development of colon tumors in C57BL/
6J-APCMin/+ mice (APC is the tumor suppressor
protein in adenomatous polyposis coli) (Lefebvre
et al. 1998, Saez et al. 1998), a clinically relevant
model for both human familial adenomatous
polyposis and sporadic colon cancer (Groden et al.
1991, Nishisho et al. 1991, Miyoshi et al. 1992, Su
et al. 1992, Powell et al. 1993). Even if the exact role
of PPAR-� in the development of colorectal cancer
is not yet elucidated, several observations support
the idea that this receptor is involved in these
pathologies. First, PPAR-� is highly expressed in
the colon (Considine et al. 1996, Mansen et al. 1996,
Lefebvre et al. 1998). Secondly, the development of
colorectal cancer is influenced by prostaglandins
(Kinzler & Vogelstein 1996), which are potential
ligands of PPAR-�. Indeed, in mice with mutations
in the cyclooxygenase (COX)-2 gene or in animals
and humans treated with COX inhibitors, decreased
production of prostaglandins prevents or attenuates
colon cancer development (Thun et al. 1991, Jacoby
et al. 1996, Oshima et al. 1996). Finally, there is a
strong correlation between the intake of fatty acids
from animal origin (potential activators of PPAR-�)
and colon cancer (Giovanucci & Willet 1994, Wasan
et al. 1997). Activation of PPAR-� by two different
synthetic agonists increased the frequency and size
of colon tumors in C57BL/6J-APCMin/+ mice
(Lefebvre et al. 1998, Saez et al. 1998). Tumor
frequency was only increased in the colon (by 425%
for rosiglitazone-treated and by 183% for
troglitazone-treated animals), whereas the fre-
quency did not change in the small intestine,
coinciding with the colon-restricted expression of
PPAR-�. A similar increase in the frequency of
colon tumors was observed previously when these
mice were fed with a diet high in saturated fats
(Wasan et al. 1997), suggesting that PPAR-� could
be involved in establishing the link between a
high-fat diet and colon cancer (Giovanucci & Willet
1994). Treatment with PPAR-� agonists further-
more increased �-catenin levels both in the colon of
C57BL/6J-APCMin/+ mice and in HT-29 colon
carcinoma cells (Lefebvre et al. 1998). These

observations seem at odds with the above anti-
proliferative properties associated with PPAR-�
activation. It is, however, most likely that the
differences are mainly due to the differences in
model systems used. In fact, the C57BL/
6J-APCMin/+ mouse studies are an adequate
model to study the effects of PPAR-� on the
spontaneous development of colon cancers, whereas
the xenograft model is better suited to study the
anti-proliferative capacity of PPAR-� activation in
cancerous cells. Hence, the action of PPAR-� on cell
cycle, proliferation, differentiation and apoptosis
seems to depend on the cell type and/or the
mutational events that predisposes tissues to cancer
development.

Interestingly, a recent study also showed the
involvement of another isoform of PPAR, PPAR-�,
in the development of colorectal cancer (He et al.
1999). PPAR-� like PPAR-� is expressed in the
colon and can be activated by fatty acids. He et al.
(1999) showed that PPAR-� is a target gene for the
�-catenin/Tcf-4 transcription complex, which is
formed when the tumor suppressor protein APC is
mutated (Kinzler & Vogelstein 1996). These
investigators propose that PPAR-� can mediate the
pro-tumorigenic effects of fatty acids on colon
cancer formation. Non-steroidal anti-inflammatory
drugs, which perturb the production of endogenous
PPAR ligands, were suggested to inhibit PPAR-�
activity. At present it is unclear how these
observations on PPAR-� articulate with the above
discussed involvement of PPAR-� in cell prolifer-
ation and colon cancer. One hypothesis that
definitely merits further exploration relates to an
eventual role of PPAR-� in the control of PPAR-�
gene expression. Indeed, PPAR-� expression is in
part controlled by a PPRE in its own promoter
(Saladin et al. 1999). Therefore it is possible that
part of the pro-tumorigenic effects of PPAR-� are
mediated by PPAR-�.

All these in vivo and in vitro data related to the
effects of PPAR-� on cell cycle, apoptosis and
carcinogenesis definitely warrant follow-up. Careful
monitoring of type 2 diabetes patients chronically
treated with PPAR-� agonists is indicated. In
addition, these data dictate the need for additional
laboratory studies to address the role of PPAR-� in
tumorigenesis. Finally, it will be of interest to
evaluate a potential role of cofactors in these
phenomena and to determine if mutations or
modulation in expression of coactivators or co-
repressors, affecting their function, could be
involved in PPAR-�-dependent tumor formation. A
possible precedent for such a role of cofactors was
highlighted in estrogen receptor-dependent breast
cancers in which cofactors such as the coactivator
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amplified in breast cancer-1, a member of the
steroid receptor coactivator-1 family (Anzick et al.
1997), or nuclear corepressor were mutated or
down-regulated (Lavinsky et al. 1998, Takimoto
et al. 1999).

CONCLUSIONS

Differentiation of preadipocytes into adipocytes is
part of a metabolic response to nutritional and
hormonal signaling. This differentiation process
requires a cascade of changes in gene expression.
Both in vivo and in vitro data have substantiated the
important role of PPAR-� in mediating such
changes during terminal adipocyte differentiation.
Despite a large body of knowledge about the role of
PPAR-� in this differentiation process, a lot needs
to be learned. For instance, little is known about the
molecular mechanisms preceding PPAR-� expres-
sion and activation. The identification of transcrip-
tion factors triggering the expression of PPAR-�
and the onset of differentiation are of utmost
importance. Furthermore, we expect that studies in
genetically modified animals and of factors interact-
ing with PPAR-� will be helpful for a better
understanding of PPAR’s function. We also predict
that characterization of new PPAR-� modulators
and ligands might address some of the scientific
problems in the PPAR-� field. Although a wide
variety of fatty acids have been reported to be
capable of activating PPAR-� in vitro, it is at present
unknown which fatty acids are activating PPAR-�
in vivo. One important remaining question is
whether in tissues where PPAR-� is expressed,
adequate levels of natural ligands are present.
Finally, the observation that PPAR-� expression is
elevated in several human malignancies merits
further investigation to elucidate the role of
PPAR-� in such proliferative disorders.
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