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ABSTRACT

The role of reactive oxygen-induced oxidative damage to lipids (i.e., lipid peroxidation, LP) and pro-
teins has been strongly supported in previous work. Most notably, a number of free radical scav-
engers and lipid antioxidants have been demonstated to be neuroprotective in traumatic brain in-
jury (TBI) models. However, the specific sources of reactive oxygen species (ROS), the time course
of oxidative damage and its relationship to post-traumatic neurodegeneration in the injured brain
have been incompletely defined. The present study was directed at an investigation of the role of
the ROS, peroxynitrite (PON), in the acute pathophysiology of TBI and its temporal relationship to
neurodegeneration in the context of the mouse model of diffuse head injury model. Male CF-1 mice
were subjected to a moderately severe head injury and assessed at 1-, 3-, 6-, 12-, 24-, 48-, 72, 96-
and 120-h post-injury for neurodegeneration using quantitative image analysis of silver staining and
semi-quantitative analysis of PON-mediated oxidative damage to proteins (3-nitrotyrosine, 3-NT)
and lipids (4-hydroxynonenal, 4-HNE). Significant evidence of silver staining was not apparent un-
til 24-h post-injury, with peak staining seen between 72- and 120-h. This time-course of neurode-
generation was preceded by intense immunostaining for 3-NT and 4-HNE, which occurred within
the first hour post-injury. The time course and staining pattern for 3-NT and 4-HNE were similar,
with the highest staining intensity noted within the first 48-h in areas surrounding trauma-induced
contusions. In the case of 3-NT, neuronal perikarya and processes and microvessels displayed stain-
ing. The temporal and spatial coincidence of protein nitration and LP damage suggests that PON
is involved in both. However, lipid-peroxidative (4-HNE) immunoreactivity was broader and more
diffuse than 3-NT, suggesting that other reactive oxygen mechanisms, such as iron-dependent LP,
may also contribute to the more widespread 4-HNE immunoreactivity. This indicates that optimal
pharmacological inhibition of post-traumatic oxidative damage in TBI may need to combine two
functionalities: one to scavenge PON or PON-derived radicals, and the second to inhibit LP caused
by multiple ROS species.
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INTRODUCTION

THERE 1s Now compelling support for an important role
of reactive oxygen species (ROS) in the pathophys-
iology of acute TBI (Hall and Braughler, 1993; Hall,
1995a). Pioneering work by Kontos and colleagues
demonstrated an almost immediate post-injury increase
in brain microvascular superoxide radical production, as-
sociated with a compromise of autoregulatory function
in fluid percussion TBI models. As well, scavengers of
superoxide radical (O,7) have been shown to reduce
post-traumatic superoxide levels and protect against
the loss of autoregulatory competency (Kontos and
Povlishock, 1986; Kontos and Wei, 1986). Through the
use of salicylate trapping, rising levels of brain hydroxyl
radical (-OH) have been documented in mouse diffuse
and rat focal TBI models (Hall and Braughler, 1993; Hall
et al., 1994; Hall and Braughler, 1993; Smith et al., 1994;
Globus et al., 1995). As with the work of Kontos, the
cerebral microvasculature appears to be the initial site of
post-traumatic radical production. More recent work in-
dicates that increased ROS leakage from damaged mito-
chondria in the brain (Azbill et al., 1997; Matsushita and
Xiong, 1997; Sullivan et al., 1999a; Sullivan et al.,
1999b) or spinal cord (Azbill et al., 1997) is a major
source of trauma-induced radical production.

ROS-induced lipid peroxidation (LP) is the most stud-
ied mechanism of oxidative damage in models of TBI.
For example, through the use of a rat focal contusion
model, Smith and colleagues demonstrated an increase in
brain LP products (lipid hydroperoxides) that is measur-
able within 30 min post-injury. The LP increase followed
closely behind the increase in ‘OH (Smith et al., 1994).
Moreover, on the heels of the increased LP products,
there is an opening of the blood-brain barrier (BBB) sug-
gesting that the initial site of ROS-induced LP is the mi-
crovascular endothelium. Consistent with this hypothe-
sis, the 21-aminosteroid LP inhibitor tirilazad, which has
high affinity for cerebrovascular endothelium (Hall et al.,
1994), has been shown to attenuate post-traumatic BBB
opening (Hall et al., 1992; Smith et al., 1994). Later work
confirmed the post-traumatic increase in LP products in
rats after focal contusion injury and its association with
brain edema mechanisms (Nishio et al., 1997).

Several studies, using multiple TBI models, have
demonstrated that the LP inhibitor tirilazad is a potent neu-
roprotective agent (Hall et al., 1994). In addition, several
other radical scavengers and LP inhibitors have been re-
ported to be effective neuroprotectants in TBI models, in-
cluding the vitamin E analog U-78517F (Hall, 1995b); the
pyrrolopyrimidine U-101033E (Hall, 1997) and the spin-
trapping agents a-phenyl-tert-butylnitrone (PBN) (Awasthi
et al., 1997; Marklund et al., 2001) and OPC-14117 (Mori
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et al., 1998). Transgenic animals that over-express the an-
tioxidant enzymes Cu/Zn or Mn superoxide dismutase also
display less post-traumatic brain damage than in wild-type
mice (Chan et al., 1995; Mikawa et al., 1996). The clinical
relevance of ROS biochemistry is supported by the recent
demonstration that TBI patients with brain contusions dis-
play increases in LP products in erythrocytes and CSF at
2-8 days post-injury (Kasprzak et al., 2001). Furthermore,
treatment with tirilazad is capable of reducing mortality in
severely injured patients with traumatic subarachnoid hem-
orrhage (Marshall et al., 1998). Thus, ROS-induced LP and
the therapeutic potential of antioxidant drugs as neuropro-
tective agents is, perhaps, one of the best (albeit incom-
pletely) validated approaches to treat acute TBIL.

A principal mechanism of ROS formation and damage
has been shown to involve iron, particularly in the fer-
rous (Fe?™) form. Iron, released from iron storage pro-
teins (hemoglobin, ferritin, transferrin), can react with hy-
drogen peroxide (H,O,) leading to the formation of the
highly reactive hydroxyl radical (-OH) (i.e., Fenton re-
action). Hydroxyl radicals are potent initiators of perox-
idative damage to polyunsaturated fatty acids (Hall and
Braughler, 1993). However, about 12 years ago, Beck-
man and coworkers introduced the theory that the prin-
cipal ROS involved in producing tissue injury in a vari-
ety of neurological disorders is peroxynitrite (PON;
ONOO ), formed by the reaction of nitric oxide synthase
(NOS)-generated ‘NO radical and O, (Beckman, 1991;
Beckman et al., 1993). Since that time, the biochemistry
of PON (often referred to as a reactive nitrogen species)
has been further clarified. PON-mediated oxidative dam-
age is actually caused by PON decomposition products
that possess potent free radical characteristics. These
products are formed in one of two ways. The first in-
volves the protonation of PON to form peroxynitrous acid
(ONOOH), which can undergo homolytic decomposition
to form the highly reactive nitrogen dioxide radical
(*NO») and ‘OH. Probably more physiologically impor-
tant, PON will react with carbon dioxide (CO,) to form
nitrosoperoxocarbonate (ONOOCO,), which can decom-
pose into ‘NO, and carbonate radical (-CO3).

Each of the PON-derived radicals (-OH, ‘NO,, and
*CO3) can initiate LP cellular damage by the abstraction
of an electron from a hydrogen atom bound to an allylic
carbon in polyunsaturated fatty acids or cause protein car-
bonylationby reaction with susceptible amino acids (e.g.,
lysine, cysteine, arginine). Moreover, the aldehydic LP
products malondialdehyde (MDA) and 4-hydroxynone-
nal (4-HNE) can bind to cellular proteins compromising
their structural and functional integrity. 4-HNE is the
more interesting of the two aldehydes in that it is actu-
ally neurotoxic (Kruman et al., 1997). Additionally, -NO,
can nitrate the 3 position of tyrosine residues in proteins;
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3-nitrotyrosine (3-NT) is a specific biomarker of PON-
induced cellular damage. These oxidative mechanisms
undoubtedlyunderly the demonstrated neurodegenerative
effects of PON shown by several investigators in neu-
ronal cell culture models (Kruman et al., 1997; Neely et
al., 1999).

The present study was undertaken in a mouse model
of diffuse TBI to examine by immunohistochemistry the
temporal and spatial characteristics of protein nitration
and LP using 3-NT and 4-HNE as respective markers.
The first hypothesis to be tested was that both oxidative
markers would occur simultaneously implying that they
were initiated by a common ROS species, namely PON.
The second hypothesis to be tested was that these oxi-
dative damage indices precede the timing of neurode-
generation. Accordingly, the time course of protein ni-
tration and lipid peroxidative damage was compared to
the time course of silver staining in order to determine
the temporal relationship of oxidative damage mecha-
nisms to post-traumatic neurodegeneration.
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MATERIALS AND METHODS

Subjects

The present studies were conducted in adult male CF-1
mice (Charles River, Portage, MI) weighing 29-32 g. All
injury procedures were performed under isoflurane anes-
thesia and were approved by the Pfizer Global Research
& Development Institutional Animal Care and Use Com-
mittee (Ann Arbor Laboratories). Tissues were harvested
for histochemistry and immunohistochemistry using deep
pentobarbital anesthesia.

Mouse Model of Diffuse Closed Head Injury

The mouse model of diffuse head-injury was employed
as described (Hall, 1995b) with recent minor modifica-
tions (Kupina et al., 2001, 2002, 2003). Male CF-1 mice
weighing 29-32 g (6-8 weeks old) were fed and watered
ad libitum prior to injury. At the time of injury, each
mouse was anesthetized in a Plexiglas chamber contain-
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Time course of post-traumatic neurodegeneration, as assessed by area and volumetric measurement of silver staining

(deOlmos, 1994) , via quantitative image analysis (Kupina et al., 2002, 2003). The top panel (a) shows an anterior — posterior
distribution of staining in units of % area of staining in different brain sections. The bottom panel (b) graphically displays the %
volume of silver staining. Very little staining is apparent within the first 12 h post-injury. The % volume of neurodegeneration
is seen to increase at 24 h; however, the peak of neurodegenerationdoesn’t occur until 72 h after injury and persists until, at least,
120 h (values = mean = SEM for n = 5 at each time point). Typical examples of post-traumatic silver staining at 1, 24, 48, and
96 h post-injury are shown on the left (sections are counter-stained with neutral red).
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ing 2.5 % isoflurane (Anaquest) and then grasped by the
dorsal skin of the neck and its head placed firmly upon
the metal base of the injury device. A round, flat, 6-mm
diameter Teflon impounder was positioned firmly against
the top of the head, centered between the ears and eyes
(encompassing the area over the frontal and parietal
bones) and a 100-g stainless steel weight released at a
height of 10.5 cm. This injury is characterized as mod-
erately severe and results in a 20% mortality during the
first 5 min post-injury. In survivors, the resulting injury
creates a pattern of diffuse degeneration, which peaks at
72 h (Kupina et al., 2003). In order to prevent immedi-
ate post-traumatic hypothermia, injured mice were placed
in a Hova-Bator incubator (model 1583, Randall Burkey
Co.) set at 37°C until consciousness (return of righting
reflex and mobility) was regained (20-30 min). In a pre-
vious study (Kupina et al., 2001), rectal temperatures
taken 2-h following injury indicated TBI male mice to
be approximately 2°C cooler than sham-injured mice
(35.4 = 0.3°C vs. 37.7 £ 0.1°C, mean * SE). By 24-
and 48-h post-injury, TBI mice remain about 1°C cooler
compared to sham-injured mice (36.9 = 0.2°Cvs. 38.0 =
0.2°C, mean * SE).

Quantification of Neuronal Degeneration by
Silver Staining

Neurodegeneration in injured brains was detected by
the de Olmos amino cupric silver histochemical tech-
nique as previously described (Grafe and Leonard, 1980;
Yamamoto et al., 1986; de Olmos et al., 1994; Switzer,
2000; Kupina et al., 2002; Kupina et al., 2003). At the
intended time of sacrifice, the mice were deeply anes-
thetized with pentobarbital (200 mg/kg 1.P.) and trans-
cardially perfused with 0.9% sodium chloride and then
with a fixative solution containing 4% paraformaldehyde,
4% sucrose, and 0.01 M sodium cacodylate. Following
decapitation, the heads were stored in fixative for 24 h,
after which the brains were removed, placed in fresh fix-
ative and shipped (4°C) for histological processing (Neu-
roscience Associates, Inc., Knoxville, TN). Brains were
embedded into blocks of gelatin (maximum of 25
brains/block). Frozen sections were cut coronally, at a
thickness of 35 wm, silver stained for neuronal degener-
ation and counter-stained with Neutral Red to reveal neu-
ronal cell bodies.

Thirteen equidistant sections from each of the blocks
were used for analysis of silver staining. Brain sections
were photographed under a 1X objective lens and im-
ported, calibrated (using a slide micrometer) and saved
into the computer software program SigmaScan Pro 5
(SPSS, Inc., Chicago, IL). Utilizing a pre-programmed
software method of contrast-enhancement and densito-
metric thresholding, the percentage area of silver stain-
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ing in each brain section was calculated by dividing the
area of silver staining in each section by the area of the
total brain section and multiplying by 100. The densito-
metric thresholding of each tissue section was completed
by a blinded observer who visually compared each cap-
tured computer image with the matching microscope
slide. Densitometric thresholding, beyond background
noise, was not included. In an instance of unavoidable
inclusion of background noise, care was taken to include
the same elements in the thresholding of the total brain
section, thereby discounting the noise in the final calcu-
lation of the section’s total area of silver staining. Per-
cent measurements were used to compensate for differ-
ences in brain size between animals. Percent volume of
silver staining was estimated by the equation % V =t *
3 % a (s), where % V is percent silver stain volume, t is
the distance between sections analyzed (420 uM) and X,
% a (s) is the sum of percent area of silver staining in all
sections examined (13 for each brain).

Immunohistochemistry

Alternate sections were used for immunohistochem-
istry of oxidative damage markers. 3-Nitrotyrosine im-
munostaining was examined as first described by (Beck-
man et al., 1993) using a polyclonal rabbit antibody from
Upstate Biotechnology (Charlottesville, VA) (cat. no.
20-107). The concentration of the primary antibody was
1:1500. 4-Hydroxynonenal immunostaining was carried
out as first described by (Uchida and Stadtman, 1993) us-
ing a polyclonal rabbit antibody from Calbiochem (La
Jolla, CA) (cat. no. 393205). The employed concentra-
tion was 1:5000. For both immunostains, the DAKO En-
vison Kit (Carpenteria, CA) was employed which uses a
goat anti-rabbit IgG secondary antibody.

RESULTS

Time Course of Neurodegeneration

Figure 1 displays the time course of neurodegenera-
tion after moderately-severe diffuse TBI in male CF-1
mice quantified by image analysis of silver stained sec-
tions. This study mimics an earlier study which exam-
ined the post-traumatic time course in the currently em-
ployed model (Kupina et al., 2003), with the exception
of a broader investigation of earlier and later time points
post-TBI in the present instance. As shown in Figure 1a,
b, only a small amount of silver staining is apparent prior
to 24 h post-injury. However, between 24 and 72 h, a
progressive increase in neurodegeneration is observed
that peaks and plateaus between 72 and 120 h. In ante-
rior brain sections, the area of neurodegeneration is as
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FIG. 2. Examples of 3-NT and 4-HNE in
injured mouse brains at different times af-
ter moderately severe diffuse TBI. Each pair
of examples (adjacent sections, stained for
3-NT and 4-HNE, at each time point) shows
a90° (i.e., lateral) contusion that is intensely
co-stained for both 3-NT and 4-HNE. These
contusionsoccur in abouta third of the mice
subjected to this particular injury force
(Kupina et al., 2003). The staining for both
parameters is observed as early as 1 h post-
injury, and persists out to 96 h. The stain-
ing for 4-HNE is seen to extend much more
diffusely beyond the peri-contusion area in
; comparison to the 3-NT staining. Therefore,
96 hr 7 the distribution of lipid peroxidative dam-

~§£ 4 ”& age may be greater than for protein nitrative
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damage. In the sham (non-injured) animals,
greater 4-HNE staining is also apparent in
comparison to very limited 3-NT im-
[ munoreactivity. Control sections (24 h post-

o injury brain for 3-NT and 48 h post-injury
- 1 Ab Cco ntrOI brain for 4-HNE), which were not exposed
to the primary antibody, show the specificity
for the immunostains.
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P

FIG. 3. High power examples of 3-NT immunostaining in a 1-h post-injury brain showing that 3-NT is localized in neuronal
cell bodies and axonal/dendritic processes (a—c) and in microvessels (d).
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high as 35% (Fig. 1a). The peak volume of neurodegen-
eration in the forebrain is approximately 20% (Fig. 1b).
Histological examples are shown on the left of the fig-
ure illustrating the finding that a dramatic increase in sil-
ver staining occurs between 24 and 48 h after injury. It
should be noted that in each of the post-injury examples,
a large lateral (gliding) contusion is apparent. These con-
tusions are present in approximately a third of the mice
following the presently employed injury force (Kupina,
et al., 2003).

Time Course of Injury Due to Protein Nitration
and Lipid Peroxidation

A rapid post-traumatic increase in immunohistochem-
ical markers of oxidative damage was observed. As
shown in Figure 2, intense immunostaining was appar-
ent for both 3-NT and 4-HNE as early as 1 h after injury.
Both stains were particularly intense in the peri-contu-
sion areas at each of the examined time points. In the
case, of 4-HNE, the staining was more diffuse than that
seen for 3-NT. Even in sham (non-injured) brains, there
was much more evidence of diffuse 4-HNE modification
of brain proteins. However, the intensity of the diffuse
4-HNE staining was clearly increased between 1 and
24 h post-injury and persisted out to 96 h. 3-Nitrotyro-
sine staining was observed in both neurons (Fig. 3a—c)
and microvascular endothelium (Fig. 3d), as also reported
by others (Mesenge et al., 1998a). In the case of neurons,
rich staining was apparent throughout the cytoplasm of
both cell bodies and the proximal portions of axonal and
dendritic processes. Although neurons also displayed
considerable 4-HNE staining, evidence of this lipid per-
oxidative marker was seen throughout the neuropil, sug-
gesting that it may also be present in glial and mi-
crovascular cell types (Fig. 4).

To assess the degree of oxidative damage in the in-
jured brains, a semi-quantitative grading scale was de-
vised to measure the degree of immunoreactivity for 3-
NT and 4-HNE (Fig. 5). For both 3-NT and 4-HNE, a
score of 1 = minimal staining equivalent to that seen in
sham, non-injured brains; a score of 5 represented max-
imally intense staining. Using this scale, the 3-NT and 4-
HNE stained sections at the level of the dorsal hip-
pocampus were blindly graded at each of the post-injury
time points. As shown in Figure 6, protein nitration and
LP immunoreactivity increased to a peak level within the
first hour and remained at that intensity level through
48 h post-injury. Between 48 and 96 h, the mean stain-
ing intensity for both 3-NT and 4-HNE progressively de-
clined. However, even at 96 h post-injury, both markers
were still elevated above the level seen in sham, non-in-
jured. It is apparent, when comparing the overall time
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course of 3-NT and 4-HNE with silver staining (Fig. 1),
that the peak damage caused by protein nitration and LP
precedes the timing of maximal neuronal damage. How-
ever, oxidative damage markers persist throughout the
time course of neurodegeneration.

DISCUSSION

The present results have, for the first time, defined the
time course of oxidative injury versus the time course of
neurodegeneration in a model of diffuse TBI. Damage
caused by protein nitration and lipid peroxidation devel-
ops rapidly, preceding neurodegeneration, and persists
throughout the time of peak neurodegeneration. 3-Ni-
trotyrosine and 4-HNE staining are particularly intense
in areas adjacent to brain contusions and in those areas,
the 3-NT and 4-HNE staining are spatially and tempo-
rally coincident. Both neurons and the cerebral mi-
crovasculature show oxidative damage suggesting that
the initiator of the damage is generated in both contexts.
Since 3-NT is a selective biomarker of PON (Beckman,
1991; Beckman et al., 1993), it is most likely that PON
is the reactive oxygen (nitrogen) species that is respon-
sible. Moreover, the linkage between PON and post-trau-
matic neurodegeneration is supported by the recent find-
ings that PON, generated in the injured rat spinal cord,
induces apoptotic neuronal death and activation of cas-
pase 3 (Bao and Liu, 2003).

The implications of PON in post-traumatic patho-
physiology are further derived from four lines of evi-
dence. First, all three NOS isoforms (endothelial
[eNOS], neuronal [nNOS], and inducible [iNOS]) are
known to be up-regulated, in rodents, during the first
24 h following TBI (Cobbs et al., 1997; Rao et al.,
1999; Gahm et al., 2000). One study looked at the time
course of the individual NOS isoforms after focal con-
tusion in the rat and found that eNOS peaked at 6 h,
while iNOS and nNOS did not peak until 12 h post-in-
jury (Gahm et al., 2000). However, in a more diffuse
TBI model (rat impact-acceleration), the upregulation
of iNOS was not detected until 24 h post-TBI (Petrov
et al., 2000) In this same model, nNOS activity was in-
creased as early as 3 h post-injury (Park and Yi, 2001).
Induction of iNOS has also been documented in con-
tused human brain tissue as early as 6 h post-injury,
with a peak between 8 and 23 h (Gahm et al., 2002).
In another study (Orihara et al., 2001), an increase was
not seen until 48 h post-injury. In human post-mortem
studies, magnetic resonance spectroscopy has also been
used to observe an apparent increase in the NOS by-
product, citrulline, following TBI (Silberstein et al.,
2002). The results of all of these studies would indi-
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FIG. 4. High-power examples of 4-HNE immunostaining in
cortical neurons. (a) Extensive cytoplasmic staining, which is
even more apparent at higher power (b). The immunoreactiv-
ity is more diffuse than that seen in Figure 3 for 3-NT, sug-
gesting that it may involve neuronal, glial and microvascular
cell types.

cate that the timing of NOS induction is heavily de-
pendent on the nature of the TBI.

Secondly, multiple laboratories have shown that the
acute treatment of injured mice or rats with NOS in-
hibitors can exert a neuroprotective effect and/or improve
neurological recovery (Mesenge et al., 1996; Wallis et
al., 1996; Wada, 1999; Mesenge et al., 1998a; Wada et
al., 1998a,b, 1999), consistent with the concept that NOS
induction after TBI is pathophysiologically important.
Most of these studies have looked at non-selective NOS
inhibitors, such as L-nitroarginine methyl ester (L-
NAME) (Mesengeet al., 1996, 1998a; Wada et al., 1999),
which does not allow for a determination of which NOS
isoforms are most important in acute TBI pathophysiol-
ogy. However, selective inhibitors of nNOS, such as
7-nitroindazole (Mesenge et al., 1996; Wada et al.,
1998a,b), or iNOS, such as aminoguanidine (Wada et al.,
1998b), have also been found to be effective in TBI mod-
els. It is most likely that all of the NOS isoforms (eNOS,
nNOS and iNOS) contribute ‘NO to the formation of
PON at different stages after injury.

Thirdly, in addition to the present results, biochemical
markers of PON-mediated damage have previously been
documented in rodent TBI paradigms, including an in-
crease in 3-NT levels (Mesenge et al., 1998a,b) and ADP
ribosylation (evidence of poly ADP ribose polymerase,
PARP, activation). The notion that these markers of
PON-mediated damage are pathophysiologically impor-
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tant is supported by the finding that the non-selective
NOS inhibitor L-NAME can lessen the accumulation of
3-NT in injured brains (Mesenge et al., 1998a) at the same
doses which improve neurological recovery (Mesenge
et al., 1996a). The current immunohistochemical results
confirm those of others (Mesenge et al., 1998a,b), but
more completely define the temporal and spatial charac-
teristics of the post-traumatic increase in 3-NT in the in-
jured mouse brain, including the fact that protein nitra-
tion and lipid peroxidation are largely coincident events,
consistent with their induction by a common initiator,
PON.

The fourth, and perhaps most compelling, line of evi-
dence supporting a role of PON in acute TBI, comes from
recent studies showing the neuroprotective properties of
multiple compounds that possess the ability to directly
scavenge PON or PON-derived radicals. For instance, it

Stain intensity grading scale

3-NT 4-HNE

FIG. 5. Grading scale used for the semi-quantitative analysis
of the post-traumatice time course of 3-NT and 4-HNE im-
munostaining. Staining was graded by intensity levels, where
1 =very low (sham levels), 2 =low, 3 = medium, 4 =
medium high, and 5 = high.



HALL ET AL.

Staining Intensity

O 3NT

? 4-HNE

Time (hours) Post-Injury

FIG. 6. Semi-quantitative analysis of post-traumatic oxidative damage (3-NT and 4-HNE). Points on the graph are (mean =
SE) were derived from five graded brain sections from each of five mice. Therefore, a total of 25 sections, per time point, were
evaluated for immunostaining intensity. The exceptions are at time-points 72 and 96 h, where only four mice were evaluated (re-

sulting in 20 sections per time point).

has been demonstrated that penicillamine, which can stoi-
chiometrically react with PON (Althaus et al., 2000) is
able to improve neurological recovery of mice subjected
to moderately severe diffuse TBI (Hall et al., 1999). That
study found that both the microvascularly-localized peni-
cillamine and the brain-penetrable penicillamine methyl
ester were effective in improving recovery, suggesting
that PON is being generated within the brain microvas-
culature and parenchyma, consistent with the current
finding of intense 3-NT immunostaining in both neurons
and microvessels. Similarly, the brain-penetrable pyr-
rolopyrimidine antioxidant U-101033E, which can react
with PON (Rohn et al., 1998), also improves the neuro-
logical recovery of injured mice (Hall et al., 1997). Fur-
thermore, the indolamine melatonin (also reactive with
PON) has been reported to be neuroprotective in mice af-
ter diffuse TBI (Mesenge et al., 1998b) and in rats after
cortical contusion injury (Cirak et al., 1999; Sarrafzadeh
et al., 2000). Thus far, the most promising anti-PON agent
appears to be the antioxidant tempol, which has been
shown to catalytically scavenge PON-derived ‘NO, and
*CO3 (Carroll et al., 2000; Bonini et al., 2002). Tempol
has been reported to reduce post-traumatic brain edema
and improve neurological recovery in a rat focal contu-
sion injury model (Beit-Yannai et al., 1996; Zhang et al.,
1998). Furthermore, tempol has been shown to reduce is-
chemic brain damage in rodent models of focal (Rak et
al., 2000) and global (Cuzzocrea et al., 2000) cerebral is-

16

chemia and in a dog cardiac arrest paradigm (Behringer
et al., 2002).

Despite the evidence in favor of PON as a principal
initiator of oxidative damage and subsequent neurode-
generation in the injured brain, a careful comparison of
the pattern of 4-HNE and 3-NT immunostaining shows
that lipid peroxidation is more diffuse than protein nitra-
tion. This widespread LP is consistent with findings of
others showing that even with focal contusions, LP-in-
duced consumption of tissue antioxidants, although most
intense in the peri-contusion area is also seen throughout
the brain (Beit-Yannai et al., 1997). The most plausible
explanation for this difference between 3-NT and 4-HNE
(i.e., LP) staining pattern is that iron-dependent processes
may contribute to lipid peroxidative brain damage in ad-
dition to PON (Hall and Braughler, 1993). In other words,
while PON is clearly the source of 3-NT, the broader
staining associated with 4-HNE may indicate that LP is
being initated by both PON and iron-catalyzed mecha-
nisms. Consistent with this hypothesis, compounds that
block PON formation (i.e., NOS inhibitors) (Mesenge et
al., 1996, 1998a; Wada et al., 1999), scavenge PON or
PON-derived radicals (Beit-Yannai et al., 1996; Zhang et
al., 1998; Hall et al., 1999), that chelate iron (Panter et
al., 1992) or inhibit LP (Hall et al., 1988, 1994, 1997)
are all effective in improving the neurological recovery
of mice subjected to the presently employed diffuse in-
jury. However, the present results suggest that the opti-
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mal pharmacological approach to inhibition of oxidative
damage in TBI may be to simultaneously antagonize both
PON and iron-dependent sources of neuronal and mi-
crovascular secondary injury. Accordingly, it has been
shown that BN-80933, a compound that combines a neu-
ronal NOS inhibitor with a trolox moiety (which scav-
enges lipid peroxyl radicals), more effectively improves
neurological recovery in head-injured mice than when ei-
ther moiety is given alone (Chabrier et al., 1999).

In conclusion, the current data demonstrate that the
peak of oxidative damage to lipids and proteins precedes
the timing of actual neurodegeneration, as determined by
silver impregnation. Peroxynitrite and iron-dependent
mechanisms are both involved. The concept that ROS,
protein nitration and LP are mechanistically linked to
neurodegenerationis based upon published reports show-
ing the neuroprotective actions of ROS scavengers and
LP inhibitors in TBI and related models (Hall et al., 1988;
Awasthi et al., 1997; Hall, 1998). However, the exact
linkage between oxidative damage processes and the ac-
tual process of neurodegeneration is not clear. Recent
work by the authors has shown that calpain-mediated cy-
toskeletal damage temporally coincides with the timing
of neurodegeneration (Kupina et al., 2003). Pathological
calpain activation is known to be triggered by excessive
intracellular calcium accumulation (Bartus, 1997;
Kampfl et al., 1997). Thus, a likely explanation for how
oxidative damage contributes to neurodegeneration is
based upon the fact that ROS and LP are known to ex-
acerbate glutamate release and glutamate receptor-cou-
pled and voltage-dependent calcium conductances while
at the same time compromising the neuronal homeosta-
tic mechanisms that regulate glutamate release and in-
tracellular calcium (e.g., Ca?*-ATPase, mitochondrial
Ca* ' sequestration, Na™ K*-ATPase, Na™-Ca’>" ex-
changer) (Siesjo and Bengtsson, 1989; Pellegrini-
Giampietro et al., 1990; Hall, 1995a; Sullivan et al.,
1998). Thus, an ideal neuroprotective strategy may be to
inhibit PON and iron-induced oxidative mechanisms to-
gether with, or followed by, inhibition of calpain-medi-
ated cytoskeletal degradation.
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